
IO timings for xcore.ai

Publication Date: 2022/3/16
Document Number: XM014231A

IO timings for xcore.ai

IN THIS DOCUMENT

· Basics

· The xcore.ai IO circuitry

· Source-synchronous clocks

· Non source-synchronous clocks

· A worked example: master I2S

· Appendix - Timing components

In this document we show you how to estimate the IO timings for data input and output
by the xcore.ai. Most interfaces are slow enough that the timings work out in any case.
Faster interfaces need their timings analysed to ensure operation under all circumstances.

On reading this document you will see that there are a couple of circumstances where it
will “just work” because the clock timings are so forgiving:

· Application clocks of 15 MHz or slower typically just work

· For data and clock travelling in the same direction (ie, source-synchronous clocking
where both output by the xCORE or both input by the xCORE), frequencies of up to 60
MHz can work.

Faster clocksmay alsowork, but an analysis is needed to showwhether any programmatic
delays are necessary to cover all corners. In particular, some timings depend on PVT
variations (Process, Voltage, and Temperature). An analysis will ensure that an interface
will work under all possible corners, rather than the corners that were tested.

1 Basics

IO refers to transferring digital data between devices. In this document, we are concerned
by transferring a single bit of data between an xcore.ai device and some external device.
We only consider synchronous IO, that is, we assume that there is a clock, and the data
is transferred synchronous to the clock. The limitation to just use a single data-line is
trivially generalised to multiple data lines, including data valid lines.

We assume that the data is transferred in a specific direction. That is, there will be two
sides to the data transfer. One side will be outputting the data-bit by driving the data-net,
the other side will be inputting the data-bit by sampling the data-net. The clock is generated
by either side or by a third party. An example is shown in Figure 1 where the xCORE is
using an externally provided clock to sample a data signal, and the external device is
generating the clock and the data. We assume that data is clocked in by the input side
on the rising edge of the clock, and that the data is clocked out by the output side on the
falling edge of the clock.

We use the term application clock to refer to the clock signal; this makes it clear that it
is different from other clock signals in the system, such as the Core clock of the xCORE
(typically 600 MHz), the Reference clock of the xCORE (typically 100 MHz), or the PLL
input clock (typically 20-25 MHz).

2

IO timings for xcore.ai

XCORE.AIexternal device

Clock

Data

Clock

Data

Data driven on
falling clock edge

Data sampled on
rising clock edge

PCB tracesFigure 1:
Example:

external device
transferring

data to
xcore.ai

There are three critical times in the analysis of the IO timings; one on the output side, and
two on the input side. Every digital device will specify those times in one form or another,
although terminology may differ:

Timing parameter Brief description

T(CLKtoDATA) Time at which output will change
T(setup) Time at which input must be stable
T(hold) Time until which input must be kept stable

On the output side, T(CLKtoDATA) refers to the time between the clock edge falling and
the data appearing on the data line. T(CLKtoDATA) normally has a range of possible
values that depend on environmental conditions, and we use the minimum and maximum
T(CLKtoDATA) to define the first possible time where the data could become valid, and the
last possible time where the data will be valid. In between these times, the data may be
old, new, or something undefined. Normally, T(CLKtoDATA) has a positive value, indicating
that the data will be valid after the falling clock edge. A negative value indicates that the
data may or will be valid prior to the falling clock edge.

On the input side, T(setup) refers to the time at which the data must be valid for it to be
clocked in correctly. T(setup) is the length time before the rising application clock edge.
T(hold) refers to the amount of time that the data should stay valid for, in order for it to be
clocked in correctly. T(hold) is the length of time after the rising edge of the application
clock. Normally setup and hold times are positive numbers. By convention, the setup-time
is the time that the data has to be stable before the clock edge, and the hold time is the
time that the data has to remain stable after the clock edge. We use a negative setup-time
to indicate that the data only has to be stable after the clock edge; and a negative hold
time to indicate that the data does not have to be held after the clock edge.

These times are summarised in Figure 2 and Figure 3. The important consideration is
that the external device shall not change in the capture window of the xCORE (for input
on the xCORE), or that the xCORE shall not change the data in the capture window of the
external device (for output by the xCORE)

Note that this assumes an idealised setup - typically clock and data travel across the
PCB, and signals will not abruptly change from a zero to a one but take time to rise and
fall depending on the PCB characteristics. A discussion on this is outside the scope of

3

IO timings for xcore.ai

Application
Clock

Data

T(CLKtoDATA)

Data validData valid Data valid

T(CLKtoDATA)

Figure 2:
Definition of
clock-to-data

times for
xCORE

outputting
data.

Application
Clock

Data

T(setup) T(hold)

Data Capture Window
Data must be valid during this period

Figure 3:
Definition of

setup and hold
times for

xCORE
inputting data.

this document. In this document we assume an ideal setup where there are no latencies
incurred in PCB traces.

The ideal way to implement data transfer uses a source-synchronous clock. That is, the
device that drives the data also drives the clock. The alternative is that the clock is driven
by the device that inputs the data, or by some third party. Section 4 describes the timings
of source-synchronous clocked systems; Section 5 describes the timings of systems that
are not source-synchronous.

4

IO timings for xcore.ai

2 The xcore.ai IO circuitry

IO circuitry comprises two clock domains: logic that is running synchronous to the core
clock, and IO drivers that are asynchronous. These are shown in Figure 4.

Clock
block

IO domain Core domain

XCORE.AIexternal device

core clock

Input

Output

resynch
roniser

Data
capt

Data
launch

Figure 4:
xcore.ai IO
elements

On the output path, data is launched on a clock-edge, it then has to traverse the IO drivers,
which in turn have to drive the net, until the signal is stable. On the input side, the external
device has to drive the net, it then has to traverse the input buffer, a resynchroniser which
makes the signal synchronous to the core clock, until it is captured on a clock edge. There
are multiple clock blocks available to deal with different application clocks.

The IO driver logic introduces a delay and uncertainty that is independent of the core
clock, but that does depend on environmental factors such as the core voltage, IO voltage,
temperature, and process variation (“PVT variation”). The timings depend on the pins that
you use; some pins are better matched and/or faster than others. In the main body of this
document we show how to calculate worst case T(setup), T(hold), and T(CLKtoDATA)
for xcore.ai devices. These calculations are based on three device parameters, the input
skew, output skew, and round trip time. These three device parameters are characterised
for xcore.ai devices as follows:

Parameter Description Min Typ Max Units

T(iskew) Input skew 0.9 ns
T(oskew) Output skew 1.2 ns
T(RTT) Round trip time 1.8 10.3 ns

T(oskew) is defined as measuring the time difference between two signals that are
launched by the xCORE at the same time (Figure 5). T(iskew) is defined as the time
difference between two signals entering the xCORE at the same time (Figure 6). T(RTT)
finally is defined as the time difference between a signal being launched by the xCORE,
travelling through a loopback, and then back in (Figure 7). Note that all three only relate to
the IO domain, not to the core domain.

Wewill explain later how to use these parameters. The values above are worst-case values
assuming an external load of 5 pF. Appendix A lists tighter timings for these parameters for
specific groups of IO pins on specific tiles, and explains in which situations the minimum
and maximum values may be encountered. This will enable you to make tighter designs,

5

IO timings for xcore.ai

Clock
block

IO domain Core domain

XCORE.AI

Data
capture

Data1

Data
capture

Data0

Data
resync

Data
resync

core
clock

Figure 5:
Definition of

T(iskew)

Clock
block

IO domain Core domain

XCORE.AI

Data
launch

Data1

Data
launch

Data0

Figure 6:
Definition of

T(oskew)

Clock
block

IO domain Core domain

XCORE.AI

Data
capture

Data
launch

Data

core
clock

Data
resync

Clock
block

Figure 7:
Definition of

T(RTT)

and guide you in using the pins that have tighter IO timings. Appendix A also gives timings
for higher loads.

In the rest of this document we use the above worst-case values for T(iskew), T(oskew)
and T(RTT) to calculate example IO timings.

6

IO timings for xcore.ai

3 Source-synchronous clocks

The timings of source-synchronous clocked systems depend on the skew between pins
only. The skew measures the difference in timings for signals that travel in the same
direction, and is up to T(oskew) (1.2 ns) depending on the conditions and the direction of
the signal.

When designing a source-synchronous clocked system, you can use the skew times
listed in this document as a start, but you should add the skew introduced by external
components. All nets (clock and data) should be matched for maximum performance.

3.1 Input: Calculating setup and hold times for an external application clock

This section describes how you can compute the setup and hold time for capturing data
relative to an external application clock. This is the situation where both clock and data
originate outside the xcore.ai, as shown in Figure 8. The blue arrow is the timing path of
the clock, and the red arrow is the timing path of the data. The difference between the
two is the skew that governs the uncertainty of where the data will be captured.

IO domain Core domain

XCORE.AIexternal device

Clock

core clock

Data
resync

Clock
block

Data
capt

Data

core clock

Data
resync

Figure 8:
Conceptual
diagram of
input with

source-
synchronous

clock

The table below shows how to compute the setup and hold timings for the xcore.ai
processor. The setup- and hold-time depends on the input skew of the xcore.ai and core
clock frequency of the xCORE. and the table shows setup- and hold-times for a 600 MHz
device, and a formula for the general case. The general formulas show that T(iskew) is
required on both sides of the eye (the eye is the window during which data must be valid).
An extra T(coreclock) is required at the end of the eye because of resynchronisation. The
whole window is shifted one T(coreclock) to the right because the clock is delayed by one
T(coreclock). The signals are shown in Figure 9.

Parameter 600 MHz For any core-clock

T(setup) -0.8 ns T(iskew) - T(coreclock)
T(hold) 4.2 ns T(iskew) + 2 x T(coreclock)

T(iskew) is at most 0.9 ns. For specific sets of pins tighter T(iskew) can be found in
Appendix A, reducing the eye size. Note that the negative T(setup) indicates that the eye
opens after the clock edge.

7

IO timings for xcore.ai

For a part that runs on a 600 MHz core clock we show the setup and hold times in the
diagram below, in this example with a 50 MHz application clock. The capture point is
notionally 2.55 ns after the application clock edge, with 1.75 ns uncertainty either way.
This is the minimum required eye, and the data may be presented earlier, for example
before the clock edge. This will show a more familiar eye that straddles the clock edge.

Application
Clock

Input
Data

T(setup) = -0.8 ns
T(hold) = 4.2 ns

Data valid

0 ns ns5 10 15 20 25

T(eye) = 3.5 ns

Figure 9:
Setup and hold
time for a 50
MHz external

clock.

We can calculate the eye by adding the setup-time and the hold-time. Given that T(setup)
is T(iskew) - T(coreclock) and that T(hold) is T(iskew) + 2 x T(coreclock), the eye is T(iskew)
- T(coreclock) + T(iskew) + 2 x T(coreclock) = 2 x T(iskew) + T(coreclock) or at most 3.5 ns
for an arbitrary pair of pins on a 600 MHz xcore.ai part.

3.1.1 Adjusting setup and hold timings

If the setup and hold times are too early or too late to reliably capture the data, then they
can be adjusted in increments of a single core-clock cycle, ie, in steps of 1.66 ns on a 600
MHz part. This is implemented by one of two mechanisms:

· The data signal can be delayed by up to five core-clock cycles by setting a delay on the
data port. Setting the delay to X on the data port, will subtract X core-clock cycles from
the hold-time, and add X core-clock cycles to the setup-time. Use the set_pad_delay
function.

· An external application clock signal can be delayed by up to 4096 core-clock cycles by
setting the rise-delay and fall-delay on the clock block. Setting the rise- and fall-delays
to X, will add X core-clock cycles to the hold-time, and subtract X core-clock cycles
from the setup-time. The application clock should never be delayed by more than one
application clock cycle. Use the set_clock_fall_delay and set_clock_rise_delay
functions. The delay is limited to half a clock cycle.

Setting the data-delay or the application-clock rise- and fall-delay brings the eye forwards
and backwards; it does not affect the size of the eye.

An example is shown in Figure 10 for an external clock, where the data is delayed by
one core-clock. As it is delayed in the chip, it needs to be presented on the pads one
core-clock-cycles, or 1.66 ns, earlier to meet the setup-time. The delay also reduces the
hold-time by 1.66 ns, effectively bringing the eye forward by 1.66 ns.

8

IO timings for xcore.ai

Application
Clock

Input
Data

T(setup) = 0.9 ns
T(hold) = 2.5 ns

Data valid

0 ns ns5 10 15 20 25

T(eye) = 3.5 ns

Data val

Figure 10:
Setup and hold
times for data

given an
external clock,
with a delay of
one core-clock

cycle in the
data.

It is tempting to think that any device that meets this eye will meet the required setup-
and hold-times. However, given that the eye-window can only be moved in steps of a
single core-clock cycle, it is not possible to meet all setup- and hold-time combinations
that sum to the minimum eye opening. However, any device that provides an eye-opening
that is at least one core clock cycle longer than the minimum eye, can always have its
setup and hold times met.

3.1.2 Maximum clock rates

The application clock should never be faster than half the core-clock-frequency. For
example, if the xCORE is running at 100 MHz (rather than the normal 600 Mhz), then the
application clock is limited to 50 MHz.

The application clock is also limited by the speed at which signals can be supplied to the
xCORE. This is limited by the drive strength, the analogue characteristics of the pad, and
inductances, capacitances, and resistance of the PCB traces. In addition, the data has to
be stable during the eye.

For example, for a specific driver and PCB design, you may have calculated that 12.5 ns is
sufficient for the data-signal to stabilise after an external clock. In that case the minimum
application clock period is 3.5 ns+12.5 ns, or 66 MHz (assuming a 600 MHz part, and
assuming that the eye can be lined up with the application clock). This is visualised in
Figure 11.

Clock

Data Data valid

0 ns ns5 10 15 20 25

T(eye) = 3.5 ns

Data valid
Data signals are changed

externally and stabilise

T(ext) = 12.5 ns

T(minimum application clock period) = 16 ns

Figure 11:
Establishing

the minimum
external

application
clock period.

9

IO timings for xcore.ai

3.1.3 Input window summary

Setup and hold times for an external clock for various data delays are shown below:

Core freq Data delay T(setup) T(hold)
600 MHz 2 2.5 ns 0.9 ns

1 0.9 ns 2.5 ns
0 -0.8 ns 4.2 ns

Assuming that the data is input on a port p, the second line can be achieved by calling
set_pad_delay(p, 1).

3.2 Output: Calculating clock-to-data times for an internal application clock

The output timings of an xCORE are straightforward if an internal clock is used. This is
source-synchronous clocking where both data and clock will leave the synchronous core
at the same time, as shown in Figure 12. The blue arrow is the timing path of the clock,
and the red arrow is the timing path of the data. The difference between the two is the
skew that governs the uncertainty of where the data will be launched.

Clock
block

IO domain Core domain

XCORE.AIexternal device

Clock

Data
launch

Data

Figure 12:
Conceptual
diagram of
output with

source-
synchronous

clock

The only uncertainty is the output skew. The maximum output skew on an arbitrary pair
of pins on an xcore.ai is 1.2 ns, hence the Clock-to-data time is between -1.2 ns and +1.2
ns. That is, the data may precede the clock by as much as 1.2 ns; and the data will be
stable 1.2 ns after the falling clock edge, as shown in Figure 13. Better timings can be
achieved by picking a tile and bank with a lower output skew, as listed in Appendix A: the
IO is grouped in banks, with better timings within a bank of IO pins.

If open-drain outputs are used, then an extra 5 ns skew should be accounted for, in addition
to the extra times required by the external resistor to pull the signal high.

10

IO timings for xcore.ai

Internal
Application

Clock

Output
Data

T(CLKtoDATA) = 1.2 ns

New data
valid

0 ns ns5 10 15 20 25

Old data
valid

T(CLKtoDATA) = -1.2 ns
max

min

Figure 13:
T(CLKtoDATA)

on an
internally

generated,
source-

synchronous
clock.

4 Non source-synchronous clocks

For non source-synchronous clocks, the timings are governed by the round trip time
through an output pin and an input pin. We define the round trip time as the sum of time
taken by a signal to traverse the output path of the xcore.ai, and the time taken by a signal
to traverse the input path of the xcore.ai. Electrically, this path will never be taken, but
logically it will be taken as one signal (eg, the clock) will travel out whereas the causally
dependent signal (eg, the data) will travel in. The round trip time is difficult to control
tightly. Systems that need to work under a set of environmental conditions need to be
closed so that they work with both the best case round trip time T(RTTmin), and worst
case round trip time, T(RTTmax).

When designing the system, you can use the round-trip times listed in this document as a
start, but you should add the time required to drive the input and output net; taking into
account the load on the net.

4.1 Input: Calculating setup and hold times for an internal application clock

When data is input on an internal application clock, we have to contend with a round-trip
time out of the xCORE and back in, as shown in Figure 14. The blue arrow shows the
timing path of the clock causing the data to be driven by the device; the red arrow shows
the timing path of the clock sampling the data on the xCORE. The capture window has
to be aligned so that it captures the data late enough to allow for the round trip delay;
and the window has to be large enough to deal with uncertainty of the minimum and the
maximum round trip times.

The minimum and maximum round trip times for xcore.ai are 1.8 and 10.3 ns. (See
Appendix A for specific banks that have tighter round trip times.) In addition we have a
delay of between 4 and 5 core clocks for resynchronising the data and capturing the data.
For a 600 MHz part this brings us to a minimum round trip time of 1.8 + 4 x 1.667 = 8.5 ns,
and a maximum round trip time of 10.3 + 5 x 1.667 = 18.6 ns . That is an eye of 18.6 - 8.5 =
10.1 ns, that closes 8.5 ns before the rising clock edge.

There are three ways to improve on these setup and hold times:

1. Use a pair of pins inside a specific bank (up to 2.5 ns better)

11

IO timings for xcore.ai

Clock
block

IO domain Core domain

XCORE.AIexternal device

core clock

Data

Clock

Data
resync

Data
captFigure 14:

Round trip of
clock and data

2. Use a part with a higher core clock rate of 800 MHz (0.4 ns better)

3. Increase drive strength and/or reduce the capacitance of the net (0.2 ns better)

The general formulas for setup and hold timings are given in the table below. The setup
time is governed by the maximum round trip time, T(RTTmax), plus the time for travelling
through the resynchronisers assuming the signal arrives just after the core-clock edge.
The hold time is governed by the minimum round trip time, T(RTTmin), plus the time for
travelling through the synchronisers assuming the signal arrives just before the core-clock
edge. The hold time is negative because the data can be released before the clock edge:

Parameter 600 MHz For any core-clock

T(setup) 18.6 ns T(RTTmax) + 5 x T(coreclock)
T(hold) -8.5 ns -T(RTTmin) - 4 x T(coreclock)

The resulting eye limits the application clock to 99 MHz; at which point the data valid
window occupies the whole clock cycle, and there is no longer any time for the external
device to modify the data. In practice, the external device will have a clock-to-data window,
that will reduce the eye and the maximum frequency.

Application
Clock

Input
Data

T(setup) = 18.6 ns
T(hold) = -8.5 ns

Data
valid

0 ns ns5 10 15 20 25

T(eye) = 10.1 ns

Figure 15:
Setup and hold

times of an
XCORE on an

internal
application

clock

12

IO timings for xcore.ai

It is important to note that for clocks in excess of 1/(2 x 18.6 ns) = 26.8 MHz the eye
opening may overlap with the falling edge of the application clock. An external device with
a short clock-to-data timing will modify data in the eye. In these cases, the data should
either be delayed or sampled on the falling edge in order to move the eye away from the
window where the data changes. Figure 15 above has a clock period of 50 ns (20 MHz), if
one imagines the falling edge of the clock shifting closer to the rising edge, then it will end
up in the data valid window, which may cause the device that drives the data to update
during the data valid window.

4.2 Output: Calculating clock-to-data times for an external application clock

When data is output on an external application clock, we have to contend with a round-trip
time in to the xCORE and back out, as shown in Figure 16. The blue arrow shows the
timing path of the clock causing the data to be driven by the xCORE; the red arrow shows
the timing path of the clock sampling the data inside the device. The capture window has
to be aligned so that it captures the data late enough to allow for the round trip delay;
and the window has to be large enough to deal with uncertainty of the minimum and the
maximum round trip times.

IO domain Core domain

XCORE.AIexternal device

core clock

ClockClock
gen

Data
resync

Clock
block

Data
launch

Data
capt

Data

Figure 16:
Round trip of

clock and data

The general formulas for setup and hold timings are as follow, and are illustrated in
Figure 17:

Parameter 600 MHz For any core-clock

T(CLKtoDATAmax) 18.6 ns T(RTTmax) + 5 x T(coreclock)
T(CLKtoDATAmin) 8.5 ns T(RTTmin) + 4 x T(coreclock)

Banks with tighter timings can be found in Appendix A. One can also use a source-
synchronous clock to achieve far superior timings.

If open-drain outputs are used, then an extra 2 ns margin on the max time should be
accounted for, and 3 ns should be subtracted from the min time; in addition to any time
required by the external resistor to pull the signal high

13

IO timings for xcore.ai

External
Application

Clock

Output
Data

new data
valid

0 ns 5 10 15 20 25

Old data
valid

T(CLKtoDATA) = 18.6 nsmax

T(CLKtoDATA) = 8.5 nsmin

Figure 17:
T(CLKtoDATA)
on externally

generated
clocks.

5 A worked example: master I2S

Below we show the timings of a worked example: I2S. I2S uses a bit-clock (signal
I2S_BCLK) to clock DAC-data out to the CODEC (signal I2S_DAC), to clock ADC-data
in from the CODEC (signal I2S_ADC), and to clock out a Left-Right clock (I2S_LRCLK)
that indicates whether the data transferred is a left-sample or a right sample. There are
a master and a slave, and in this example the xCORE will be the master that produces
I2S_BCLK and I2S_LRCLK (and I2S_DAC), and the external device will be the slave. The
bit-clock is produced by the xCORE from a master-clock (signal I2S_MCLK). I2S transmits
2 x 32 bits of data for each audio-frame; a 32-bit left value and a 32-bit right value.

We assume:

· On the xCORE there are five 1-bit ports connected to the I2S_MCLK, I2S_BLCK,
I2S_LRCLK, I2S_DAC and I2S_ADC signals.

· The LR-clock will operate at 192 KHz.

· The bit-clock will operate at 12.288 MHz (LR-clock x 64)

· The master-clock will operate at 24.576 MHz (LR-clock x 128)

We assume that the master-clock is sampled on a one bit port, this master clock is divided
down and drives the bit-clock, which in turn drives a clock-block that is used to clock out
the LRCLK and DAC data, and used to clock in the ADC data. This is shown in Figure 18.
From top to bottom note that:

· I2S_BCLK is not source-synchronous to I2S_MCLK (there is a long blue path from the
Clock generator into the xCORE and back out through I2S_BCLK, and a short red path
outside the xCORE).

· I2S_LRCLK is not source-synchronous with I2S_BCLK (the blue arrow is a long path
into and back out of the xCORE, the red arrow is a short path near the device).

· I2S_DAC is not source-synchronous with I2S_BCLK (the blue arrow is a long path into
and back out of the xCORE, the red arrow is a short path near the device).

14

IO timings for xcore.ai

CODEC

core clock

Input Data
capt

IO domain Core domain

XCORE.AI

core clock

Clock

resynch
roniser

I2S_MCLK

Output

Output

I2S_BCLK

I2S_ADC resynch
roniser

Output

Input Clock
block

core clock

resynch
roniser

Clock
block

Data
launch

Data
launch

I2S_DAC

I2S_LRCLK

Figure 18:
I2S clock block

organisation

· I2S_ADC is source-synchronous to I2S_BCLK (the blue path is the clock path into the
xCORE, the red path is the data signal into the xCORE). Note that as the clock does not
eminate from the DAC, there is some delay caused by the CODEC in the red path. Note
that the reason it is source sychronous is because the BLCK is in this setup resampled
at the pin.

Hence, I2S_BCLK is a round-trip-time behind I2S_MCLK. In addition, I2S_LRCLK and
I2S_DAC will be delayed relative to I2S_BCLK (Section 4.2), and I2S_ADC will incur a small
skew (Section 3.1). The time between the MCLK edge and the BCLK edge is variable
amongst voltage, process, and temperature, but constant in a given environment.

The timings are shown in Figure 19. Since the external CODEC will typically sample the
I2S_DAC on the rising edge this will have a good margin (close to 20 ns); the CODEC will
typically present the ADC on the falling edge which has a larger margin (around 40 ns).

Note also that as I2S_MCLK is resynchronised to XCORE.AI, I2S_BCLK will be running
at 12.288 MHz, but synchronous to the core-clock. That is, I2S_BCLK will have a period
of 81.380... ns, but this will be a sequence of clocks that are 80, 82, 82, 80, 82, 82, 80,
... ns apart to, on average, create a clock of exactly 12.288 MHz. This introduces jitter
on the BCLK; this normally does not matter, but if the CODEC is sensitive to jitter on
I2S_BCLK then it can be resynchronised to the master clock using a D-type flip flop

15

IO timings for xcore.ai

I2S_BCLK

0 ns ns20 40 60 80 100

I2S_LRCLK LRCLK data valid

T(setup) = -0.8 ns
T(hold) = 4.2 ns

I2S_ADC

I2S_ADC sampling window

I2S_MCLK

I2S_DAC DAC data valid

T(RTT) = 1.8..10.3 ns

T(CLKtoDATA) = 18.6 ns
T(CLKtoDATA) = 8.5 ns

max

min

Figure 19:
I2S signal

timings

clocked by I2S_MCLK. Note that doing so will alter the setup, hold, and clock-to-data
timings, because the clock edges of BCLK are shifted.

16

IO timings for xcore.ai

6 Appendix - Timing components

The tables below show the expected worst case minimum and maximum Round-Trip-
Times for specific groups of pins and ports, and for specific capacitances and drive
strengths. In the case of 4-tile devices, tile 2 behaves the same as tile 0 and tile 3 the
same as tile 1. All times are given in ns (where 1 ns = 0.000,000,001 s).

The minimum round trip time is defined as the fastest possible input path plus the fastest
possible output path. The maximum round trip time is defined as the slowest possible
input path plus the slowest possible output path. You must sum together the capacity
dependent component and the pin-dependent component. Paths can be slow or fast
depending on the following parameters:

· Variation in the process will cause some devices to be slower and some devices to be
faster. The values shown in the tables below assume the fastest possible silicon, and
the slowest possible silicon. Typical silicon at nominal voltages will have an RTT of
0.3-3.1 ns plus 2.6ns to drive the output (1V8, 5pF, 8mA) and a skew of 0.7-0.8 ns.

· Variation in temperature will cause a device to run slower or faster. For the IO measure-
ments, hot devices will run slowest, and cold devices will run fastest. Designs that run
in a controlled temperature (for example, always hot, or always cold) will have RTTmin
and RTTmax times that are closer together.

· Variation in core voltage and (to a much lesser degree) IO voltage will cause a device
to run slower or faster. The minimum time is for 0.81V core and 1.62/3.0V IO, and
the maximum time is for 0.99V core and 1.98/3.6V IO. Designs with tightly controlled
voltages (eg, 0.9V +/- 2%) will have RTTmin and RTTmax times that are closer together.

· Some IO pins are systematically faster than others. For example, using pins
X0D12..X0D23 to input data using an internal clock will result in an eye that is 2.8 ns
smaller than picking random pins from X1D00..X1D71.

We assume no slew-rate control on the output, no Schmitt-Trigger on the input, and no
pull-resistors applied. Extra time should be allowed for external loads, and this will add
to both minimum and maximum Round-Trip-Times. Skew may also increase with an
increased external load.

6.1 Example combined timings

In order to compute worst case round-trip-times, and skews for 1.8V IO, 8 mA drive
strength, 5 pF load we combine the pin dependent timings with the Round trip dependent
timings:

Component RTTmin RTTmax Tiskew Toskew

Pin dependent 0.2 4.5 0.9 1.2
Load dependent 1.6 5.8
Total 1.8 10.3 0.9 1.2

These are the times we have used throughout the document, they can be refined by using
the appopriate values from the tables in the rest of this appendix

17

IO timings for xcore.ai

6.2 Pin dependent timings

The tables below show the pin dependent round trip times andmaximum input and output
skew. In order to calculate a complete round trip time you must add the capacitance
dependent part of the round-trip-time as listed in the next section.

Overall timings:

Pins Ports RTTmin RTTmax Tiskew Toskew

Any IO pin 0.2 4.5 0.9 1.2

Timings per tile:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D71 All 0.2 2.5 0.5 0.8
X1D00..X1D71 All 0.4 4.5 0.9 1.2

Timings of pairs of banks, each pair comprising eight 1-bit ports and a 16-bit port:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D23 1A..H 16A 0.5 2.2 0.3 0.5
X0D24..X0D43 1I..P 16B 0.4 2.5 0.5 0.8
X1D00..X1D23 1A..H 16A 0.4 4.5 0.9 1.1
X1D24..X1D43 1I..P 16B 0.4 3.3 0.8 1.2

Timings of individual banks, each bank comprising four 1-bit ports and an 8-bit port (two
4-bit ports):

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D11 1A..D 4A..B 8A 0.6 2.2 0.3 0.5
X0D12..X0D23 1E..H 4C..D 8B 0.5 1.8 0.3 0.4
X0D24..X0D35 1I..L 4E..F 8C 0.4 2.2 0.4 0.7
X0D36..X0D43 1M..P 8D 0.6 2.5 0.5 0.8
X1D00..X1D11 1A..D 4A..B 8A 1.1 4.5 0.9 1.1
X1D12..X1D23 1E..H 4C..D 8B 0.4 1.8 0.2 0.7
X1D24..X1D35 1I..L 4E..F 8C 0.4 1.7 0.5 0.5
X1D36..X1D43 1M..P 8D 0.6 3.3 0.8 1.2

18

IO timings for xcore.ai

6.3 Capacitance dependent part

These are theminimumand themaximum round-trip-times in nanoseconds of the external
signal. They depend on:

· The capacitance of the net that is driven (5/10 pF, extrapolate for other values)

· The drive strength (2-12 mA)

· The IO voltage (1.8 or 3.3V nominal)

You must add the pin dependent component to these round trip times to calculate a final
round trip time.

VDDIO Load Drive RTTmin RTTmax

1.8 V 5 pF 12 mA 1.6 5.7
1.8 V 5 pF 8 mA 1.6 5.8
1.8 V 5 pF 4 mA 1.7 6.2
1.8 V 5 pF 2 mA 2.0 7.2
1.8 V 10 pF 12 mA 1.7 6.1
1.8 V 10 pF 8 mA 1.8 6.3
1.8 V 10 pF 4 mA 1.9 6.8
1.8 V 10 pF 2 mA 2.4 8.4
3.3 V 5 pF 12 mA 1.5 8.4
3.3 V 5 pF 8 mA 1.6 8.7
3.3 V 5 pF 4 mA 1.7 9.0
3.3 V 5 pF 2 mA 2.3 9.9
3.3 V 10 pF 12 mA 1.7 9.0
3.3 V 10 pF 8 mA 1.8 9.4
3.3 V 10 pF 4 mA 2.1 9.9
3.3 V 10 pF 2 mA 3.0 12.1

To design an interface with a tight window, use 1.8V IO, nets with a low capacitance and
set the IO driver to utilise a high drive-strength.

19

IO timings for xcore.ai

Copyright © 2022, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it
to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

20

	Basics
	The xcore.ai IO circuitry
	Source-synchronous clocks
	Non source-synchronous clocks
	A worked example: master I2S
	Appendix - Timing components

