
lib_audio_dsp - DSP Run-time Control guide
Release: 1.1.0
Publication Date: 2024/09/23
Document Number: XM-015034-PC

Table of Contents

1 Control Interface Walkthrough 2
1.1 Defining a Controllable Pipeline . 2
1.2 Writing the Configuration of a Stage . 3
1.3 Reading the Configuration of a Stage . 4

1.3.1 Control Interface Details . 5

2 Run-Time Control Helper Functions 6
2.1 Biquad helpers . 6
2.2 DRC helpers . 9
2.3 Reverb helpers . 10
2.4 Signal chain helpers . 12

iiiiii

For many applications, the ability to update the DSP configuration at run time will be required. A simple
example would be a volume control where the end product will update the volume setting based on user
input. This DSP library has been designed with use cases like this in mind and the generated DSP pipeline
provides an interface for writing and reading the configuration of each stage.

This document details how to use this interface to extend a DSP application with run-time control of the audio
processing. For a complete example of an application that updates the DSP configuration based on user input
refer to application note AN02015.

111

1 Control Interface Walkthrough

1.1 Defining a Controllable Pipeline
This section will walk through adding control to a basic DSP pipeline. The following code snippet describes a
simple DSP process with a volume control and a limiter. In the end application the volume can be set by the
application.

from audio_dsp.design.pipeline import Pipeline
from audio_dsp.stages import *

p, edge = Pipeline.begin(4)
edge = p.stage(VolumeControl, edge, "volume")
edge = p.stage(LimiterRMS, edge)
p.set_outputs(edge)

This code snippet will generate the pipeline diagram shown in Fig. 1.1.

Fig. 1.1: The example pipeline diagram

In this example the tuning methods on the stages in the pipeline are not called which means the code that is
generated will intialise the stages with their default configuration values.

A point of interest in this example is that the label argument to the pipeline stage method is set, but only for
the volume control stage. The label for the volume control in this example is “volume”. After generating the
source code for this pipeline, a file will be created in the specified directory named “adsp_instance_id_auto.h”
(assuming that the pipeline identifier has been left as its default value of “auto”). The contents of the generated
file are shown below:

#pragma once

(continues on next page)

222

(continued from previous page)

#define thread0_stage_index (1)
#define volume_stage_index (2)
#define auto_thread_stage_indices { thread0_stage_index }

In this file the macro volume_stage_index is defined. The value of this macro can be used by the control
interface to find the volume control stage and process control commands. The benefit of this to an application
author is that this header file can be included in the application and the value of volume_stage_indexwill always
be correct, even when the pipeline is redesigned.

1.2 Writing the Configuration of a Stage
Each stage type has a set of controllable parameters that can be read or written. A description of each
parameter along with its type and name can be found in the dsp_stages_section section in the DSP compo-
nents document. For volume control, there is a command named CMD_VOLUME_CONTROL_TARGET_GAIN
that can be updated at run time to set the volume. This command is defined in the generated header file
“cmds.h” which will be placed into the build directory at “src.autogen/common/cmds.h”. “cmds.h” contains
all the command IDs for all the stage types that CMake found.

It is also possible to see the available control parameters, along with the values they will be set to, while
designing the pipeline in Python. This can be done using the get_configmethod of the stage as shown below.

config = p["volume"].get_config()
print(config)

This will print this dictionary of parameters:

{'target_gain': 134217728, 'slew_shift': 7, 'mute_state': 0}

This dictionary does not contain CMD_VOLUME_CONTROL_TARGET_GAIN, but is does contain “target_gain”.
The final command name is constructed as “CMD_{STAGE_TYPE}_{PARAMETER}” where stage type and pa-
rameter should be replaced with the correct values for each, capitalised. All stages of the same type (e.g.
VolumeControl) will have the same set of parameters.

The format and type of the control parameters for each stage are chosen to optimise processing time on the
DSP thread. For example, CMD_VOLUME_CONTROL_TARGET_GAIN is not a floating point value in decibels,
but rather a linear fixed point value. For this example we can use the convenience function adsp_dB_to_gain()
which is defined in dsp/signal_chain.h.

In order to send a control command, the API defined in stages/adsp_control.h is used. This API is documented
in the Tool User Guide, in the pipeline_design_api section. Complete the following steps:

1. Create a thread that will be updating the DSP configuration. This threadmust be on the same tile as the
DSP.

2. Create a new adsp_controller_t from the adsp_pipeline_t that was initialised for the generated
pipeline. If multiple threads will be attempting control, each thread must have a unique instance of
adsp_controller_t to ensure thread safety.

3. Initialise a new adsp_stage_control_cmd_t, specifying the instance ID (volume_stage_index), the com-
mand ID (CMD_VOLUME_CONTROL_TARGET_GAIN), and payload length (sizeof(int32_t)).

4. Create the command payload; this will be an int32_t containing the computed gain. Update the com-
mand payload pointer to reference the payload.

5. Call adsp_write_module_config until it returns ADSP_CONTROL_SUCCESS. There may be in-progress
write or read commands which have been issued but not completed when starting the new command.
In this scenario the adsp_write_module_config will return ADSP_CONTROL_BUSY which means that the
attempt to write had no effect and should be attempted again.

A full example of a control thread that does this is shown below.

333

#include <xcore/parallel.h>
#include "cmds.h"
#include "adsp_generated_auto.h"
#include "adsp_instance_id_auto.h"
#include "dsp/signal_chain.h"
#include "control/signal_chain.h"
#include "stages/adsp_control.h"
#include "stages/adsp_pipeline.h"

void control_thread(adsp_controller_t* control) {
// convert desired value to parameter type
float desired_vol_db = -6;
int32_t desired_vol_raw = adsp_dB_to_gain(desired_vol_db);

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_TARGET_GAIN,
.payload_len = sizeof(desired_vol_raw),
.payload = &desired_vol_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(control, &command));

// DONE!
}

void audio_source_sink(adsp_pipeline_t* p) {
// sends and receives audio to the pipeline

}

void dsp_main(void) {
adsp_pipeline_t* dsp = adsp_auto_pipeline_init();

// created a controller instance for each thread.
adsp_controller_t control;
adsp_controller_init(&control, dsp);

PAR_FUNCS(
PFUNC(audio_source_sink, dsp),
PFUNC(control_thread, &control),
PFUNC(adsp_auto_pipeline_main, dsp)

);
}

1.3 Reading the Configuration of a Stage
In some cases it makes sense to read back the configuration of the stage. Some stages have dynamic val-
ues that are updated as the audio is processed and can be read back to the control thread. Volume control
is an example of this as it will smoothly adjust the gain towards CMD_VOLUME_CONTROL_TARGET_GAIN;
the current value of the gain which is actually being applied can be read by reading from the parameter
CMD_VOLUME_CONTROL_GAIN. The API for reading is largely the same as writing, except the control API
will write to the payload buffer.

This code example shows how to read the current CMD_VOLUME_CONTROL_GAIN parameter from the “vol-
ume” stage that is created in the example above.

int32_t read_volume_gain(adsp_controller_t* control) {
(continues on next page)

444

(continued from previous page)

int32_t gain_raw;

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_GAIN,
.payload_len = sizeof(gain_raw),
.payload = &gain_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(control, &command));

return gain_raw;
}

1.3.1 Control Interface Details

This section provides a brief overview of how the control interface works.

Each stage that is included in the generated DSP pipeline has its own state which it will maintain as it pro-
cesses audio. It also has a structure that contains its configuration parameters. Finally, it has a control state
variable which is used to communicate between the DSP and control threads. Threads that wish to read or
write to the configuration of a stage use the control API that is discussed above.

For a write command, the controlling threadwill check that a command is not ongoing by querying the control
state of the stage. If the stage is not processing a control command then the control thread will update the
configuration struct for the stage and write to the control state variable that new parameters are available.
When the DSP thread next gets an opportunity the stage will see that the parameters have been updated and
update its internal state to match. When this is complete the control state variable will be cleared.

For a read command the process is similar. The control thread requests a read by updating the control state
variable. The stage will see this and update the configuration struct with the latest value and notify the control
thread, via the control state variable, that it has completed the request.

The control API ensures thread safety through the use of the adsp_controller_t struct. As long as each thread
uses a unique instance of adsp_controller_t then the control APIs will return ADSP_CONTROL_BUSY if a com-
mand that was initialised by another adsp_controller_t is ongoing.

555

2 Run-Time Control Helper Functions

Most DSP Stages have fixed point control parameters. To aid conversion from typical tuning units (e.g. deci-
bels) to the correct fixed point format, the helper functions below have been provided.

2.1 Biquad helpers

Functions

void adsp_design_biquad_bypass(q2_30 coeffs[5])
Design biquad filter bypass This function creeates a bypass biquad filter. Only the b0 coefficient is set.

Parameters

• coeffs – Bypass filter coefficients

void adsp_design_biquad_mute(q2_30 coeffs[5])
Design mute biquad filter This function creates a mute biquad filter. All the coefficients are 0.

Parameters

• coeffs – Mute filter coefficients

left_shift_t adsp_design_biquad_gain(q2_30 coeffs[5], const float gain_db)
Design gain biquad filter This function creates a biquad filter with a specified gain.

Parameters

• coeffs – Gain filter coefficients

• gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

void adsp_design_biquad_lowpass(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q)
Design lowpass biquad filter This function creates a biquad filter with a lowpass response fc must be
less than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Lowpass filter coefficients

• fc – Cutoff frequency

• fs – Sampling frequency

• filter_Q – Filter Q

void adsp_design_biquad_highpass(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q)
Design highpass biquad filter This function creates a biquad filter with a highpass response fcmust be
less than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Highpass filter coefficients

• fc – Cutoff frequency

• fs – Sampling frequency

• filter_Q – Filter Q

666

void adsp_design_biquad_bandpass(q2_30 coeffs[5], const float fc, const float fs, const float bandwidth)
Design bandpass biquad filter This function creates a biquad filter with a bandpass response fc must
be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Bandpass filter coefficients

• fc – Central frequency

• fs – Sampling frequency

• bandwidth – Bandwidth

void adsp_design_biquad_bandstop(q2_30 coeffs[5], const float fc, const float fs, const float bandwidth)
Design bandstop biquad filter This function creates a biquad filter with a bandstop response fc must
be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Bandstop filter coefficients

• fc – Central frequency

• fs – Sampling frequency

• bandwidth – Bandwidth

void adsp_design_biquad_notch(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q)
Design notch biquad filter This function creates a biquad filter with an notch response fc must be less
than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Notch filter coefficients

• fc – Central frequency

• fs – Sampling frequency

• filter_Q – Filter Q

void adsp_design_biquad_allpass(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q)
Design allpass biquad filter This function creates a biquad filter with an allpass response fc must be
less than fs/2, otherwise it will be saturated to fs/2.

Parameters

• coeffs – Allpass filter coefficients

• fc – Central frequency

• fs – Sampling frequency

• filter_Q – Filter Q

left_shift_t adsp_design_biquad_peaking(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q,
const float gain_db)

Design peaking biquad filter This function creates a biquad filter with a peaking response fc must be
less than fs/2, otherwise it will be saturated to fs/2.

The gain must be less than 18 dB, otherwise the coefficients may overflow. If the gain is greater than
18 dB, it is saturated to that value.

Parameters

• coeffs – Peaking filter coefficients

• fc – Central frequency

• fs – Sampling frequency

777

• filter_Q – Filter Q

• gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

left_shift_t adsp_design_biquad_const_q(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q,
const float gain_db)

Design constant Q peaking biquad filter This function creates a biquad filter with a constant Q peaking
response.

Constant Q means that the bandwidth of the filter remains constant as the gain varies. It is commonly
used for graphic equalisers. fc must be less than fs/2, otherwise it will be saturated to fs/2.

The gain must be less than 18 dB, otherwise the coefficients may overflow. If the gain is greater than
18 dB, it is saturated to that value.

Parameters

• coeffs – Constant Q filter coefficients

• fc – Central frequency

• fs – Sampling frequency

• filter_Q – Filter Q

• gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

left_shift_t adsp_design_biquad_lowshelf(q2_30 coeffs[5], const float fc, const float fs, const float filter_Q,
const float gain_db)

Design lowshelf biquad filter This function creates a biquad filter with a lowshelf response.

The Q factor is defined in a similar way to standard low pass, i.e. Q > 0.707 will yield peakiness (where
the shelf response does not monotonically change). The level change at f will be boost_db/2. fc must
be less than fs/2, otherwise it will be saturated to fs/2.

The gain must be less than 12 dB, otherwise the coefficients may overflow. If the gain is greater than
12 dB, it is saturated to that value.

Parameters

• coeffs – Lowshelf filter coefficients

• fc – Cutoff frequency

• fs – Sampling frequency

• filter_Q – Filter Q

• gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

left_shift_t adsp_design_biquad_highshelf(q2_30 coeffs[5], const float fc, const float fs, const float
filter_Q, const float gain_db)

Design highshelf biquad filter This function creates a biquad filter with a highshelf response.

The Q factor is defined in a similar way to standard high pass, i.e. Q > 0.707 will yield peakiness. The
level change at f will be boost_db/2. fc must be less than fs/2, otherwise it will be saturated to fs/2.

The gain must be less than 12 dB, otherwise the coefficients may overflow. If the gain is greater than
12 dB, it is saturated to that value.

Parameters

888

• coeffs – Highshelf filter coefficients

• fc – Cutoff frequency

• fs – Sampling frequency

• filter_Q – Filter Q

• gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

void adsp_design_biquad_linkwitz(q2_30 coeffs[5], const float f0, const float fs, const float q0, const
float fp, const float qp)

Design Linkwitz transform biquad filter This function creates a biquad filter with a Linkwitz transform
response.

The Linkwitz Transform is commonly used to change the low frequency roll off slope of a loudspeaker.
When applied to a loudspeaker, it will change the cutoff frequency from f0 to fp, and the quality factor
from q0 to qp. f0 and fp must be less than fs/2, otherwise they will be saturated to fs/2.

Parameters

• coeffs – Linkwitz filter coefficients

• f0 – Original cutoff frequency

• fs – Sampling frequency

• q0 – Original quality factor at f0

• fp – Target cutoff frequency

• qp – Target quality factor of the filter

2.2 DRC helpers
static inline int32_t calc_alpha(float fs, float time)

Convert an attack or release time in seconds to an EWM alpha value as a fixed point int32 number in
Q_alpha format. If the desired time is too large or small to be represented in the fixed point format, it is
saturated.

Parameters

• fs – sampling frequency in Hz

• time – attack/release time in seconds

Returns
int32_t attack/release alpha as an int32_t

static inline int32_t calculate_peak_threshold(float level_db)
Convert a peak compressor/limiter/expander threshold in decibels to an int32 fixed point gain in Q_SIG
Q format. If the threshold is higher than representable in the fixed point format, it is saturated. The
minimum threshold returned by this function is 1.

Parameters

• level_db – the desired threshold in decibels

Returns
int32_t the threshold as a fixed point integer.

999

static inline int32_t calculate_rms_threshold(float level_db)
Convert an RMS² compressor/limiter/expander threshold in decibels to an int32 fixed point gain in
Q_SIG Q format. If the threshold is higher than representable in the fixed point format, it is saturated.
The minimum threshold returned by this function is 1.

Parameters

• level_db – the desired threshold in decibels

Returns
int32_t the threshold as a fixed point integer.

static inline float rms_compressor_slope_from_ratio(float ratio)
Convert a compressor ratio to the slope, where the slope is defined as (1 - 1 / ratio) / 2.0. The division
by 2 compensates for the RMS envelope detector returning the RMS². The ratio must be greater than
1, if it is not the ratio is set to 1.

Parameters

• ratio – the desired compressor ratio

Returns
float slope of the compressor

static inline float peak_expander_slope_from_ratio(float ratio)
Convert an expander ratio to the slope, where the slope is defined as (1 - ratio). The ratiomust be greater
than 1, if it is not the ratio is set to 1.

Parameters

• ratio – the desired expander ratio

Returns
float slope of the expander

2.3 Reverb helpers

Functions

static inline int32_t adsp_reverb_float2int(float x)
Convert a floating point value to the Q_VERB format, saturate out of range values. Accepted range is 0
to 1

Parameters

• x – A floating point number

Returns
postive Q_VERB int32_t value

static inline int32_t adsp_reverb_db2int(float db)
Convert a floating point gain in decibels into a linear Q_VERB value for use in controlling the reverb gains.

Parameters

• db – Floating point value in dB, values above 0 will be clipped.

Returns
Q_VERB fixed point linear gain.

static inline int32_t adsp_reverb_calculate_damping(float damping)
Convert a user damping value into a Q_VERB fixed point value suitable for passing to a reverb.

Parameters

101010

• damping – The chose value of damping.

Returns
Damping as a Q_VERB fixed point integer, clipped to the accepted range.

static inline int32_t adsp_reverb_calculate_feedback(float decay)
Calculate a Q_VERB feedback value for a given decay. Use to calculate the feedback parameter in
reverb_room.

Parameters

• decay – The desired decay value.

Returns
Calculated feedback as a Q_VERB fixed point integer.

int32_t adsp_reverb_room_calc_gain(float gain_db)
Calculate the reverb gain in linear scale.

Will convert a gain in dB to a linear scale in Q_RVR format. To be used for converting wet and dry gains
for the room_reverb.

Parameters

• gain_db – Gain in dB

Returns
int32_t Linear gain in a Q_RVR format

void adsp_reverb_wet_dry_mix(int32_t gains[2], float mix)
Calculate the wet and dry gains according to the mix amount.

When the mix is set to 0, only the dry signal will be output. The wet gain will be 0 and the dry gain will be
max. When the mic is set to 1, only they wet signal will be output. The wet gain is max, the dry gain will
be 0. In order to maintain a consistent signal level across all mix values, the signals are panned with a
-4.5 dB panning law.

Parameters

• gains – Output gains: [0] - Dry; [1] - Wet

• mix – Mix applied from 0 to 1

reverb_room_t adsp_reverb_room_init(float fs, float max_room_size, float room_size, float decay, float
damping, float wet_gain, float dry_gain, float pregain, float
max_predelay, float predelay, void *reverb_heap)

Initialise a reverb room object A room reverb effect based on Freeverb by Jezar at Dreampoint.

Parameters

• fs – Sampling frequency

• max_room_size – Maximum room size of delay filters

• room_size – Room size compared to the maximum room size [0, 1]

• decay – Lenght of the reverb tail [0, 1]

• damping – High frequency attenuation

• wet_gain – Wet gain in dB

• dry_gain – Dry gain in dB

• pregain – Linear pre-gain

• max_predelay – Maximum size of the predelay buffer in ms

• predelay – Initial predelay in ms

• reverb_heap – Pointer to heap to allocate reverb memory

111111

Returns
reverb_room_t Initialised reverb room object

2.4 Signal chain helpers
uint32_t time_to_samples(float fs, float time, time_units_t units)

Convert a time in seconds/milliseconds/samples to samples for a given sampling frequency.

Parameters

• fs – Sampling frequency

• time – New delay time in specified units

• units – Time units (SAMPLES, MILLISECONDS, SECONDS) . If an invalid unit is
passed, SAMPLES is used.

Returns
uint32_t Time in samples

121212

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

131313

	1 Control Interface Walkthrough
	1.1 Defining a Controllable Pipeline
	1.2 Writing the Configuration of a Stage
	1.3 Reading the Configuration of a Stage
	1.3.1 Control Interface Details

	2 Run-Time Control Helper Functions
	2.1 Biquad helpers
	2.2 DRC helpers
	2.3 Reverb helpers
	2.4 Signal chain helpers

