
lib_audio_dsp - DSP Run-time Control guide
Release: 1.0.0
Publication Date: 2024/07/30
Document Number: XM-015034-PC

Table of Contents

1 Introduction 1

2 Control Interface Walkthrough 2
2.1 Defining a Controllable Pipeline . 2
2.2 Writing the Configuration of a Stage . 3
2.3 Reading the Configuration of a Stage . 4

3 Control Interface Details 6

iiiiii

1 Introduction

For many applications, the ability to update the DSP configuration at run time will be required. A simple
example would be a volume control where the end product will update the volume setting based on user
input. This DSP library has been designed with use cases like this in mind and the generated DSP pipeline
provides an interface for writing and reading the configuration of each stage.

This document details how to use this interface to extend a DSP application with run-time control of the audio
processing. For a complete example of an application that updates the DSP configuration based on user input
refer to application note AN02015.

111

2 Control Interface Walkthrough

2.1 Defining a Controllable Pipeline
This section will walk through adding control to a basic DSP pipeline. The following code snippet describes a
simple DSP process with a volume control and a limiter. In the end application the volume can be set by the
application.

from audio_dsp.design.pipeline import Pipeline
from audio_dsp.stages import *

p, edge = Pipeline.begin(4)
edge = p.stage(VolumeControl, edge, "volume")
edge = p.stage(LimiterRMS, edge)
p.set_outputs(edge)

This code snippet will generate the pipeline diagram shown in Fig. 2.1.

Fig. 2.1: The example pipeline diagram

In this example the tuning methods on the stages in the pipeline are not called which means the code that is
generated will intialise the stages with their default configuration values.

A point of interest in this example is that the label argument to the pipeline stage method is set, but only for
the volume control stage. The label for the volume control in this example is “volume”. After generating the
source code for this pipeline, a file will be created in the specified directory named “adsp_instance_id_auto.h”
(assuming that the pipeline identifier has been left as its default value of “auto”). The contents of the generated
file are shown below:

#pragma once

(continues on next page)

222

(continued from previous page)

#define thread0_stage_index (1)
#define volume_stage_index (2)
#define auto_thread_stage_indices { thread0_stage_index }

In this file the macro volume_stage_index is defined. The value of this macro can be used by the control
interface to find the volume control stage and process control commands. The benefit of this to an application
author is that this header file can be included in the application and the value of volume_stage_indexwill always
be correct, even when the pipeline is redesigned.

2.2 Writing the Configuration of a Stage
Each stage type has a set of controllable parameters that can be read or written. A description of each
parameter along with its type and name can be found in the dsp_stages_section section in the DSP compo-
nents document. For volume control, there is a command named CMD_VOLUME_CONTROL_TARGET_GAIN
that can be updated at run time to set the volume. This command is defined in the generated header file
“cmds.h” which will be placed into the build directory at “src.autogen/common/cmds.h”. “cmds.h” contains
all the command IDs for all the stage types that CMake found.

It is also possible to see the available control parameters, along with the values they will be set to, while
designing the pipeline in Python. This can be done using the get_configmethod of the stage as shown below.

config = p["volume"].get_config()
print(config)

This will print this dictionary of parameters:

{'target_gain': 134217728, 'slew_shift': 7, 'mute_state': 0}

This dictionary does not contain CMD_VOLUME_CONTROL_TARGET_GAIN, but is does contain “target_gain”.
The final command name is constructed as “CMD_{STAGE_TYPE}_{PARAMETER}” where stage type and pa-
rameter should be replaced with the correct values for each, capitalised. All stages of the same type (e.g.
VolumeControl) will have the same set of parameters.

The format and type of the control parameters for each stage are chosen to optimise processing time on the
DSP thread. For example, CMD_VOLUME_CONTROL_TARGET_GAIN is not a floating point value in decibels,
but rather a linear fixed point value. For this example we can use the convenience function adsp_dB_to_gain()
which is defined in dsp/signal_chain.h.

In order to send a control command, the API defined in stages/adsp_control.h is used. This API is documented
in the Tool User Guide, in the pipeline_design_api section. Complete the following steps:

1. Create a thread that will be updating the DSP configuration. This threadmust be on the same tile as the
DSP.

2. Create a new adsp_controller_t from the adsp_pipeline_t that was initialised for the generated
pipeline. If multiple threads will be attempting control, each thread must have a unique instance of
adsp_controller_t to ensure thread safety.

3. Initialise a new adsp_stage_control_cmd_t, specifying the instance ID (volume_stage_index), the com-
mand ID (CMD_VOLUME_CONTROL_TARGET_GAIN), and payload length (sizeof(int32_t)).

4. Create the command payload; this will be an int32_t containing the computed gain. Update the com-
mand payload pointer to reference the payload.

5. Call adsp_write_module_config until it returns ADSP_CONTROL_SUCCESS. There may be in-progress
write or read commands which have been issued but not completed when starting the new command.
In this scenario the adsp_write_module_config will return ADSP_CONTROL_BUSY which means that the
attempt to write had no effect and should be attempted again.

A full example of a control thread that does this is shown below.

333

#include <xcore/parallel.h>
#include "cmds.h"
#include "adsp_generated_auto.h"
#include "adsp_instance_id_auto.h"
#include "dsp/signal_chain.h"
#include "stages/adsp_control.h"
#include "stages/adsp_pipeline.h"

void control_thread(adsp_controller_t* control) {
// convert desired value to parameter type
float desired_vol_db = -6;
int32_t desired_vol_raw = adsp_dB_to_gain(desired_vol_db);

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_TARGET_GAIN,
.payload_len = sizeof(desired_vol_raw),
.payload = &desired_vol_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(control, &command));

// DONE!
}

void audio_source_sink(adsp_pipeline_t* p) {
// sends and receives audio to the pipeline

}

void dsp_main(void) {
adsp_pipeline_t* dsp = adsp_auto_pipeline_init();

// created a controller instance for each thread.
adsp_controller_t control;
adsp_controller_init(&control, dsp);

PAR_FUNCS(
PFUNC(audio_source_sink, dsp),
PFUNC(control_thread, &control),
PFUNC(adsp_auto_pipeline_main, dsp)

);
}

2.3 Reading the Configuration of a Stage
In some cases it makes sense to read back the configuration of the stage. Some stages have dynamic val-
ues that are updated as the audio is processed and can be read back to the control thread. Volume control
is an example of this as it will smoothly adjust the gain towards CMD_VOLUME_CONTROL_TARGET_GAIN;
the current value of the gain which is actually being applied can be read by reading from the parameter
CMD_VOLUME_CONTROL_GAIN. The API for reading is largely the same as writing, except the control API
will write to the payload buffer.

This code example shows how to read the current CMD_VOLUME_CONTROL_GAIN parameter from the “vol-
ume” stage that is created in the example above.

int32_t read_volume_gain(adsp_controller_t* control) {
int32_t gain_raw;

(continues on next page)

444

(continued from previous page)

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_GAIN,
.payload_len = sizeof(gain_raw),
.payload = &gain_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(control, &command));

return gain_raw;
}

555

3 Control Interface Details

This section provides a brief overview of how the control interface works.

Each stage that is included in the generated DSP pipeline has its own state which it will maintain as it pro-
cesses audio. It also has a structure that contains its configuration parameters. Finally, it has a control state
variable which is used to communicate between the DSP and control threads. Threads that wish to read or
write to the configuration of a stage use the control API that is discussed above.

For a write command, the controlling threadwill check that a command is not ongoing by querying the control
state of the stage. If the stage is not processing a control command then the control thread will update the
configuration struct for the stage and write to the control state variable that new parameters are available.
When the DSP thread next gets an opportunity the stage will see that the parameters have been updated and
update its internal state to match. When this is complete the control state variable will be cleared.

For a read command the process is similar. The control thread requests a read by updating the control state
variable. The stage will see this and update the configuration struct with the latest value and notify the control
thread, via the control state variable, that it has completed the request.

The control API ensures thread safety through the use of the adsp_controller_t struct. As long as each thread
uses a unique instance of adsp_controller_t then the control APIs will return ADSP_CONTROL_BUSY if a com-
mand that was initialised by another adsp_controller_t is ongoing.

666

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

777

	1 Introduction
	2 Control Interface Walkthrough
	2.1 Defining a Controllable Pipeline
	2.2 Writing the Configuration of a Stage
	2.3 Reading the Configuration of a Stage

	3 Control Interface Details

