XMQOS XVF3800 - User Guide

Release: 1.0.0
Publication Date: 2023/03/31

2 MOS




Table of Contents

1

Overview

2 Setting Up the Hardware

2.1
2.2

2.3

2.4

Introduction

HardwareSetup . . . .. ... ...
Required Components . . .
2.2.2 Settingupthe Evaluation System . . . . . . . . . ...
Installing the Firmware . . .
Settingup the Audio . . . ... ..
Loudspeaker . .. ... ..
2.3.2  Playback and Recording . .
Troubleshooting . . . ... ... ..
Audio Signals . . . ... ..
242 AEC Convergence . .. ..

2.2.7

223

2.3.7

247

Using the Host Application

Installing the Host Application . . .
Connecting to the XVF3800 Device
xfv_host Command Syntax . . . .
Example Uses
Output Selection . . . . ..
3.4.2 Setting an Output Pin . . .

3.1
3.2
3.3
3.4

3.4.1

Tuning the Application

System Preparation . . . . ... ..
Prerequisites . . . ... ..
Initial Parameter Setting . .
Initial Tests . . . . ... ..

4.1

4.2

411
41.2
4.1.3

4.2.7
422
42.3
4.2.4
4.2.5
4.2.6
4.2.7

4.2.8

4.1.3.1
4.1.3.2
4.1.3.3
4134
4.1.3.5

4.2.7.1
4272

Tuning the Non Linear Model

4.2.8.1
4282
4.2.8.3
4284

Input Path . . . .
Control Path . . .
Output Path . . .
Speaker Operation

Microphone Operation . . . . . . . . . .. ... . ...
Tuning the XVF3800 Parameters .
Reference Gain . . . . . ..
Microphone Gain . . . . ..
System Delay . . ... ...
AEC Operation . . ... ..
AGC Configuration . . . ..
Emphasis . ... ... ...
Additional Parameters . . .

FMIN_SPEINDEX
MGSCALE . . ..

Non-linear Echo .

Tuning Setup for Non Linearmodel . . . . . .. ... ... ...

Echo Suppression
Noise Suppression

12
12
12
13
13
13
14
14
16
16
17
17
17
18
19
22
22
23
23
25
25
25
26
28
29



4285 ATTNS . .
4286 PathChangeDetection . . . . . . . . . ... . ... ... ..
4.3 Changing Default Parameter Values . . . . . . . . . . .. .. . .. ...

Building the Application Firmware

571 Introduction . . . . ..
5.2 PrereqUISITES . . . . . . .
521 Python3 . . .
522 XMOSTOOIS . . . . .
523 BuilldTools. . . . . .
53 XVF3800 Release Package . . . . . . . . . . .,
5.3.1 Standard Configurations . . . . . . . . . ...
532 ImageNames . . . . . . .
54 BuUildProCcess . . . . . .
5471 Setuptheenvironment . . .. . . . .
54.2 Configurethe build system . . . . . . . ..
543 Buildanexecutable. . . . . ...
5.5 Installing the Executable lmage . . . . . . . ... ...
5571 InstallUsingxrun . . . . . .
55.2 InstallUsingxflash . . . . . . . .
5.6 Using SPIBOOL . . . .
56.1 CreatingaSPIBootFile . . . . . . . . . . ..
56.2 UsingaSPIBootFile . . . . . . . . . . .
Some Acoustic Design Guidelines
6.1 Microphones . . . . . . .
6.2 Loudspeaker(S) . . . . . . . .
APPENDIX - Control Commands
7.1 AEC Tuning and Control Commands . . . . . . . . .. . ...
7.2 Device Metadata Commands . . . . . . ...
7.3 Audio Manager Commands . . . . . ...
7.4 GPIOCommands . . . . . ..



T Overview

The XMOS VocalFusion ® XVF3800 is a high-performance voice processor that uses microphone array process-
ing and a sophisticated audio processing pipeline to capture clear, high-quality speech from anywhere in a room.
The XVF3800 uses the XMOS xcore.ai processor and supports a range of integrated and accessory voice com-
munication applications.

This document discusses:
« Setting up the hardware,
+ Using the Host application,
- Tuning the XVF3800 firmware,
+ Building and deploying an XVF3800 executable image, and
+ Some acoustic design guidelines.

It includes a list of configurable parameters and a list of default parameter values in two appendices.



2 Setting Up the Hardware

2.1 Introduction

This section explains the process of setting up and configuring the XVF3800 firmware on an XK-VOICE-SQ66
evaluation kit.

Note: Version v1.0.0 of the XVF3800 firmware supports audio /0 via I°S only. For evaluation a Raspberry Pi will
be used to act as an I°S and I°C master.

2.2 Hardware Setup

2.2.1 Required Components

+ An XK-VOICE-SQ66 evaluation kit board.
- An XMOS XTAG4 with associated ribbon cables (Provided in the XK-VOICE-SQ66 evaluation kit package).

- A setup or development machine (Windows, Mac OS or Linux are supported). This must support USB
connections and have the ability to write onto SD memory cards.

+ A USB cable to connect the setup machine to the XTAG4.

+ A Raspberry Pi microcomputer; either a Raspberry Pi 3 Model B or 4 Model B will work for this evaluation.
See https://www.raspberrypi.com/ for more information.

- A region-appropriate USB power supply is also required. The XK-VOICE-SQ66 evaluation kit obtains its
power supply from the Raspberry Pi.

+ An SD memory card - minimum 8GB size

- A stacking header block, such as pictured in Fig. 2.7 to mount the XK-VOICE-SQ66 evaluation kit board onto
the Raspberry Pi using the standard 40 pin GPIO header. A suitable part is Toby REF-182668-01 .

Fig. 2.1: Raspberry Pi HAT Connector - 10 mm Extended Tail Socket

- The XVF3800 evaluation firmware binary release package (available from https:/xmos.ai or via an XMOS
representative).


https://www.raspberrypi.com/
https://www.toby.co.uk/board-to-board-pcb-connectors/254mm-sockets/ref-raspberry-pi-rpi-hat-specification-connector-extended-tail-sockets
https://xmos.ai

XMOS XVF3800 - User Guide

Note: The XK-VOICE-SQ66 evaluation kit is an evaluation kit and after loading the firmware the device will stop
working after 8 hours of continuous use. The board must be restarted after 8 hours to resume operation. Licensed
production XVF3800 devices do not have this restriction.

2.2.2 Setting up the Evaluation System

The following steps are required to set up the XVF3800 evaluation hardware:

1. On the setup machine, install the latest available XTC Tools, available from https://www.xmos.ai/
software-tools/. Installation instructions for the supported platforms are available at https:/www.xmos.
ai/view/Tools-15-Documentation.

2. Onthe setup machine, install and run the Raspberry Pi Imager, available from https:/www.raspberrypi.com/
software

3. Using the Raspberry Pi imager, copy the latest available 32 bit version of the Raspberry Pi OS onto an SD
card.

4. Insert the programmed SD card into the Raspberry Pi. Attach any required peripherals (keyboard, mouse,
monitor), connect the power supply and follow the setup prompts, but skip the option to update the oper-
ating system software.

Warning: The following step builds a kernel module for the 12S interface. In some cases the Raspberry
Pi OS upgrade process does not correctly install the required packages so XMOS currently recommends
that users do not upgrade the OS for this evaluation.

5. Once the Pi has booted, open a terminal window and download the vocalfusion-rpi-setup utility from
https://github.com/xmos/vocalfusion-rpi-setup which should be saved in a convenient directory on the
Raspberry Pi. The following commands will setup the Raspberry Pi for use with the XK-VOICE-SQ66 evalu-
ation kit:

git clone https://github.com/xmos/vocalfusion-rpi-setup
cd vocalfusion-rpi-setup
./setup.sh xvf3800-intdev

To enable a remote GUI access on the Raspberry Pi, the VNC service should be enabled at this point with
the following command.

sudo raspi-config

Select 3 Interfaces Options and enable VNC on the next screen.

6. Shutdown the Pi, detach the power and mount the XK-VOICE-SQ66 evaluation kit board onto the Raspberry
Pi header. After mounting the board, reattach power and verify the Raspberry Pi restarts.

The evaluation hardware is now ready to use, and should resemble Fig. 2.2.

2.2.3 Installing the Firmware

1. Connect an XTAG-4 debug adapter to the setup computer via USB, and connect it to the XK-VOICE-SQ66
evaluation kit using the supplied ribbon cable. The cable should be plugged into XSYS2 connector on the
XK-VOICE-SQ66 evaluation Kit.


https://www.xmos.ai/software-tools/
https://www.xmos.ai/software-tools/
https://www.xmos.ai/view/Tools-15-Documentation
https://www.xmos.ai/view/Tools-15-Documentation
https://www.raspberrypi.com/software
https://www.raspberrypi.com/software
https://github.com/xmos/vocalfusion-rpi-setup

XMOS XVF3800 - User Guide

Fig. 2.2: XVF3800 evaluation kit

Open an XTC tools terminal window on the computer. Verify that the XTAG4 has been correctly connected
by running the following command in that window

xflash -1

The output from this should be of the following form:

Available XMOS Devices

ID Name Adapter ID Devices

0 XMOS XTAG-4 ABCDE123 P[0]

Note: If the XTAG-4 is not properly connected to the development machine, then xflash will report No
Available Devices Found. If the XK-VOICE-SQ66 evaluation kit is not properly connected to the XTAG-4,
then the Devices column will read None. For further guidance on the use of the XTC tools, see the https:
//www.xmos.ai/view/Tools-15-Documentation.

2. Select the required binary firmware image from the release package, and transfer it to the XK-VOICE-SQ66
evaluation kit using the xflash tool.

xflash application_xvf3800_intdevl[...].xe

The XVF3800 firmware release package provided contains several precompiled binaries.
The provided binary images have names in the format:
application_xvf3800_intdev[configuration-options].xe

where the [configuration-options] is constructed as detailed in Table 2.1 below.


https://www.xmos.ai/view/Tools-15-Documentation
https://www.xmos.ai/view/Tools-15-Documentation

XMOS XVF3800 - User Guide

Table 2.1: Build configuration settings

Option Values Description

Sample rate -Ir16 / -Ir48 to choose between a 16 kHz or 48 kHz IS LR clock (and therefore
reference input and processed output audio sample rate)

Microphone topology  -sqr/-lin to choose between a “squarecular” or linear microphone array

Control protocol -i2¢c / -spi to choose between I2C or SPI control modes

Note: Some binaries are provided which have the suffix -extmclk. These are intended for use in systems where
an external MCLK is provided, and they disable the XVF3800’s clock recovery system. These builds are not for
use with a Raspberry Pi.

2.3 Setting up the Audio

2.3.1 Loudspeaker

To play reference audio into the room, a high quality loudspeaker operating in its linear region is required. Connect
the loudspeaker to the LINE OUT port on the XK-VOICE-SQ66 evaluation kit, which accepts a 3.5 mm TRS jack plug
connector. Itisimportant for the ideal demonstration that the position, orientation, and volume of the loudspeaker
are representative of a real-world system.

To achieve optimal performance:

+ Align the front of the loudspeaker with the microphone strip at the top of the XK-VOICE-SQ66 evaluation kit
and

+ Place the loudspeaker 2-4 cm away from the device

An example layout can be seen pictured in Fig. 2.3.

Fig. 2.3: XVF3800 demo example layout



XMOS XVF3800 - User Guide

To calibrate the volume of the loudspeaker for optimal performance, a test file such as the IEEE 269-2010 Male
Mono 48 kHz signal can be used.

These test signals can be downloaded from:

https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip

and transferred to the Raspberry Pi for playback.

The output volume must be changed directly on the loudspeaker or on a connected amplifier, not on the Raspberry
Pi. The volume of the track measured at a 1 metre distance from the loudspeaker should be 73 dB,4-2 dB4 on
average.

2.3.2 Playback and Recording

Playback and recording through the XVF3800's IS interface, once the Raspberry Pi has been set up correctly,
can be achieved through standard use of the ALSA card snd_rpi_simple_card, device 0. For example, from
the command line, a 2 channel 32-bit 48 kHz WAV file may be played as reference audio through aplay with the
following command:

aplay -c 2 -f S32_LE -r 48000 -D hw:sndrpisimplecar,0 <filename>

Similarly, the returned processed audio from the XVF3800 may be recorded to a file with

arecord --mmap -c 2 -d <time> -f S32_LE -r 48000 -D hw:sndrpisimplecar,0 <filename>

Alternatively, in a desktop environment on the Raspberry Pi, Audacity ™ may be used to visually play and record.
The sample rate must be set to match the XVF3800 in the Project Rate (Hz) selection in the bottom left. The
sound card settings must match the ones highlighted in Fig. 2.4:

Audacity v o x
File Edit Select View Transport Tracks Generate Effect Analyze Help
] T T > T - T « T N [] o [T/ &5 57 s Click tostart Monitoring 3 128630, | M)[L 5748 42 36 30 -24 18 -12-9-6-30
LIS aek] o 20— [XIDOwiw -] alalgiale] o

ASA v & snd_rpi_simple_card: simple-card_codec_link snd-soc-dummy-dai-0 (hw:0,0) ¥ 2 (Stereo) Recording Channels ~ 9 snd_rpi_simple_card: simple-card_codec._link snd-soc-dummy-dai-0 (hw:00) +
Vio 4,]) 10 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

Fig. 2.4: Audacity ™ example

2.4 Troubleshooting

2.4.1 Audio Signals

If audio is being played by the host but not heard from the loudspeaker, it is likely that there exists a connection
issue between the host and the XK-VOICE-SQ66 evaluation kit board. Ensure that the XK-VOICE-SQ66 evaluation
kit board is powered, and the loudspeaker connected and powered.

If audio is heard from the loudspeaker but no input audio is received by the host, ensure that the Raspberry Pi is
configured to transmit and receive audio at the correct sample rate (either 16 kHz or 48 kHz, depending on the
chosen firmware).

If there is still no input from the device, it is possible that the device firmware has stalled; disconnect and reconnect
power to the XK-VOICE-SQ66 evaluation kit to reset the device, and then attempt input again.

(o))

X


https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip
https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip

XMOS XVF3800 - User Guide

2.4.2 AEC Convergence

The AEC requires a reference signal be present in order to converge on a room transfer function estimate - this
process will take a few seconds after reference audio has begun being provided. If the AEC has not been allowed
to converge, the XVF3800 will tend to over-suppress near-end speech in its output to avoid undesirable artefacts
being relayed to the far-end. This effect does subside within the first few seconds of use, so if the device is
unexpectedly restarted then performance will be reduced momentarily but should restore over time.

If the device has consistently poor acoustic performance, it is likely that the AEC has not converged appropriately;
restart the device and repeat the AEC convergence procedure described in the later sections to reset the AEC to
a new set of coefficients.

If this does not resolve the issues, it is permissible to lower the loudspeaker volume. If loudspeaker volume is
adjusted, or if there is any other change in environment, ensure that the AEC has reconverged before proceeding
by playing several seconds of far-end audio again. The AEC will constantly reconverge, so a small change in
environment such as a window opening or a change in loudspeaker volume should be automatically adjusted for
by the AEC; however, actions that alter the direct delay path significantly, such as moving the loudspeaker, will
require the device be reset and the AEC be allowed a few seconds to reconverge from startup.



3 Using the Host Application

The XVF3800 contains a control interface that enables users to configure the operation of the device and to set
and read parameter data.

In 1.0 a sample host application, xvf_host is provided which can be used to connect to the control interface
on the XVF3800 from a Raspberry Pi host. Contact XMOS for information on using these tools on other host
platforms.

3.1 Installing the Host Application

The sample xvf_host application can be found in the evaluation binaries release package in the subfolder
host_v<version>/rpi This whole folder needs to be transferred to the Raspberry Pi. It can be placed in any
convenient location. This directory should contain the following files:

libcommand_map.so
libdevice_i2c.so
libdevice_spi.so
xvf_host

To verify the xvf_host application is installed, change to the directory and run the application as per the example
below, setting the appropriate permissions first.

chmod +x xvf_host
xvf_host --help

Users may find it convenient to store the host tools in a directory such as ~/bin and add this to the SPATH
environment variable so that the tools can be invoked from any directory, for example with the shell command:

PATH="/bin:$PATH

3.2 Connecting to the XVF3800 Device

To use the host application, login to the Raspberry Pi, either directly, via a VNC connection or ssh and to open a
terminal command line.

Change to the directory containing xvf_host. If the host tools have been added to the path as above this step is
not needed.

The xvf_host device control application is run from the command line.

To check connection to the XVF3800, any command can be given; for example, the command:

$ xvf_host -u <protocol> VERSION



XMOS XVF3800 - User Guide

where <protocol> canbe i2c or spi depending on the interface used in the specific firmware. The default control
protocol is 12C.

This command should give an expected return value of:

VERSION 1 0 O

3.3 xfv_host Command Syntax

The general syntax of the ~xfv_host command is:
xvf_host [ command | option ]
[ -u <protocol>] [ command | option ]
More documentation on the available options in the use of the host application are found with:

. code-block:: bash

xvf_host —help

A full list of control commands may be found using:

xvf_host --list-commands

These commands are also listed in an Appendix of this User Guide.

It is possible to read all the control parameter settings from the XVF3800 using the following option:

xvf_host --dump-params
To support scripted set up of the XVF3800 it is possible to save the list of commands in a text file (txt) which
can be executed using: .. code-block:: bash

xvf_host —execute-command-list <command_file> txt

Further options for saving and loading parameter sets can found by using the --help option or in the section of
the User Guide on tuning the device where their usage is described.

3.4 Example Uses

The xvf_host tool allows the configuration of the XK-VOICE-SQ66 evaluation kit to be changed during operations.
The following examples illustrate some common operations.

3.4.1 Output Selection

By default, the left (first) channel of the device’s output is the processed output from the XVF3800's AEC and
beamforming stage, while the right (second) channel is the raw input from one of the microphones after ampli-
fication. This is intended to provide a good comparison between the raw and processed audio. The selected
outputs may be changed by using the AUDIO_MGR_OP_L and AUDIO_MGR_OP_R commands. These commands
each take two integers defining the mux routing settings, described as a pair of (category, source) values.

The available categories and sources are as detailed in Table 3.1.



XMOS XVF3800 - User Guide

Table 3.1: Audio manager mux options

Category

Sources

0: Silence

0: Silence

1: Raw microphone data - before amplification

0,1,2,3: Specific microphones accessed by index

2: Unpacked microphone data

0,1,2,3: Unpacked microphone signals. If using
packed input, the packed microphone data is ac-
cessed though here. This will be undefined when not
using packed input

3: Microphone data - after amplification and delay

0,1,2,3: specific microphones accessed by index after
amplification. This is the microphone signal passed
to the SHF task for processing. Source 2 is the default
setting for the right channel output

4: Far end

0: Far end (reference) data received over I°S, post
sample rate conversion to 16 kHz if required

5: Far end with system delay

0: Far end (reference) data received over I°S, post
sample rate conversion to 16 kHz if required, and with
system delay applied

6: Processed data

0,1 Slow-moving post-processed beamformed out-
puts, 2. Fast-moving post-processed beamformed
output, 3: The “auto-select” beam; chooses the best
of the previous three beams as an output. This is the
recommended option for selecting the beamformed
outputs

7: AEC residuals

0,1,2,3: AEC residuals for the specified beam

8: User chosen channels

0,1: These currently copy the auto-select beam (cat-
egory 6, source 3) and are the default setting for the
left channel output.

9: Post SHF DSP channels

0,1,2,3: All output channels from user post SHF DSP

10: Far end at native rate

0,1,2,3,4,5: Output from 12S task which is the far end
reference signal with the custom pre-processing DSP
applied. Always at native 12S rate.

11: Amplified microphone data after delay

0,1,2,3: Raw microphones after applying the delay.
Thisis the reference signal whichis passed to the SHF
task for processing

12: Far end with amplification and delay

0: Far end signal with configurable fixed gain applied.
This is the signal which is passed to the SHF task for
processing. Note that this is after system delay has
been applied.

For example, to set the left output to the 4th raw microphone signal (without gain applied), issue the command:

xvf_host AUDIO_MGR_OP_L 1 3

This will set the left channel to output the 4th (0-indexed) microphone signal of the 4 present. To reset this channel

back to its default value, issue:

xvf_host AUDIO_MGR_OP_L 8 O

to set the channel to the postprocessed auto-selected output beam.

Similarly, the right channel may be set to any desired category/source; to reset to its default value, issue:

10



XMOS XVF3800 - User Guide

xvf_host AUDIO_MGR_OP_R 3 2

3.4.2 Setting an Output Pin
The xvf_host can be used to configure the General Purpose Outputs on the XVF3800.

To turn on the LED on the XK-VOICE-SQ66 evaluation kit issue the following commands:

vi_host gpo_port_pin_index O 6
xvf_host gpo_pin_pwm_duty 100

and to turn it off use:

xvf_host gpo_pin_pwm_duty O

Note: The gpo_port_pin_index selects a port and subsequent gpo_pin_xxx commands only act on that pin.

1 4



4 Tuning the Application

The measured performance of the XVF3800 depends very heavily on the electrical and acoustic environment of
the end product that it is incporporated into. In order to achieve optimal performance, including the ability to pass
product certification tests, it is necessary to perform a configuration and tuning process to adapt the firmware to
the end product’s form factor and hardware design.

The majority of this configuration is intended to ensure optimal performance of the XVF3800 audio pipeline,
including the behaviour of the Adaptive Echo Canceller (AEC).

The full set of configurable parameters for the XVF3800 is given in the Appendix

This chapter makes heavy use of the xvf_host application to control configuration parameters at run-time. For fur-
ther documentation on this utility, please see the section Using the Host Application. Throughout this document,
the -u [i2c/spi] parameter to this utility will be omitted for brevity.

To facilitiate the tuning process a set of software tools are also supplied to process measurements. These tools
are provided as python programs and can be found with the host application in the XVF3800 evaluation release
package.

4.1 System Preparation

4.1.1 Prerequisites

There are a number of prerequisites that should be met in order to facilitate the tuning process:

- It must be possible to both play arbitrary reference input through the XVF3800 over 12S and to record the
device's output.

« It must also be possible to access the control interface on the XVF3800, either through I°C or SPI as desired.

+ Create a block diagram of the whole system, showing audio path from input through to output and including
the XVF3800. This can be used to understand how to optimise and control the performance of the overall
product. Ensure that the path from the reference input through to the loudspeaker and from the micro-
phones to the XVF3800, including any gain, EQ, compression, filtering, and limiting applied, are illustrated.
Ensure also that the points where control is available over these parameters (and, more importantly, where
it is not) is fully understood.

- Ensure a good understanding of the coherence between the individual microphones; see the discussion of
microphone coherence in the acoustic guidelines section for details and requirements on this.

« Further, ensure a good understanding of the delay between the microphones and the reference signal input;
see section on system delay for details, requirements, and terminology surrounding this.

- This delay should remain constant while the device is running. Any inconsistency in this delay will
result in severely degraded algorithmic performance.

- If this delay should change between device reboots, for example due to any front-end processor used
to receive the far-end signal, it is important that the device remain causal.

- Care should be taken that samples not be dropped between the device’s reference audio input and the
XVF3800.

- In addition, ensure that any clocking jitter on the interface that carries the reference signal, such as 1S
or a USB interface, is minimised.

12 y,



XMOS XVF3800 - User Guide

+ Prepare (by generation via sox or other utility) a set of test signals: silence, a 1 kHz sine wave at 0 dBgg
amplitude, and white noise at e.g. -12 dBgs amplitude.

+ Access to the IEEE 269-2010 reference signals is useful for representative clear speech signals. At time of
writing, these may be found under the “Additional Resources” header on the webpage for this IEEE standard.
Additional speech signals may be found from the ITU, in particular the files associated with Recommenda-
tion P501, which at time of writing may be acquired from the webpage for this ITU recommendation. Files
from these two sets will be referred to in this document by filename.

+ Copy the tuning tools from the release package to a suitable directory on the development system.

4.1.2 |Initial Parameter Setting

There are a selection of parameters that should be chosen before the tuning process starts, and will not be
modified during the provided tuning process:

« AEC_HPFONOFF: This sets a high-pass filter (HPF) on the microphone signals as they enter the processing
block; this takes the form of a 4th order Butterworth filter, and therefore has a -80 dB per decade rolloff. The
corner frequency (-3 dB point) for this HPF may be set to 70 Hz, 125 Hz, 150 Hz, 180 Hz, or the filter may be
disabled.

« AEC_FAR_EXTGAIN: This parameter informs the audio pipeline how much external gain has been applied to
the AEC reference signal. The value that this parameter should take is coupled to the volume control of the
device; if the device attenuates the signal by e.g. -6 dB, this value should be set to -6.

« AEC_AECSILENCELEVEL: This sets a power threshold for signal detection in the AEC. If there is known e.g.
ADC induced noise in the reference audio signal line, this parameter may be set to avoid the AEC adapting
to this noise.

« PP_LIMITONOFF and PP_LIMITPLIMIT: A power limiter may be inserted in line with the processed audio
outputs from the audio pipeline using PP_LIMITONOFF. The power threshold used may be set with the
PP_LIMITPLIMIT commmand. If the output energy is predicted to exceed PP_LIMITPLIMIT, compression is
applied to the outputs to avoid this.

« PP_DTSENSITIVE: PP_DTSENSITIVE allows some control over the balance struck between double-talk per-
formance and echo suppression, including the use of an optional near-end speech detector. This is sum-
marised in Fig. 4.1; as echo suppression increases, double-talk performance will tend to decrease as more
near-end is suppressed.

4.1.3 Initial Tests

The first step in tuning the product is to ensure that the send, receive, and loopback paths through the XVF3800
are electrically stable and that the XVF3800 has a stable control interface.

4.1.3.1 Input Path

This test will attempt to verify that a signal injected into the device through the device's intended input path suc-
cessfully reaches the XVF3800. This tests path 1in Fig. 4.2. If possible, inject an test signal (such as white noise)
through the device's reference audio input path and monitor the signal path immediately prior to the XVF3800.
Consider disabling the device’s loudspeaker for the duration of this test if the test signal chosen would cause
auditory discomfort. Verify that the test signal is observed.

13 y,


https://standards.ieee.org/ieee/269/4739/
https://www.itu.int/rec/T-REC-P.501-202005-I/en

XMOS XVF3800 - User Guide

A
Echo and
double-talk
suppression
(arb. units)
N _ | | | | | g
No additional speech detection: 1 2 3 4 5
Additional speech detection: 10 11 12 13 14 15
for additional robustness Value of
PP_DTSENSITIVE
(arb. units)

Fig. 4.7: lllustration of relationship between PP_DTSENSITIVE value and echo suppression

Note: If direct monitoring of the signal path immediately prior to the XVF3800 is not feasible, it is permissible to
skip this test; its function is implied in later tests.

4.1.3.2 Control Path

This test will attempt to verify that the XVF3800 has a stable control interface. This tests path 2 in Fig. 4.2.
Following the guidelines in Using the Host Application, issue:

xvf_host VERSION

and ensure that the device returns v1.0.0.

4.1.3.3 Output Path

This test will attempt to verify that a signal injected into the XVF3800 is output faithfully from the XVF3800 and
successfully output by the device. This tests paths Tand 3in Fig. 4.2. Set up the XVF3800's output mux as follows
to loop back any 12S data received:

xvf_host AUDIO_MGR_OP_UPSAMPLE O O
xvf_host AUDIO_MGR_OP_ALL 10 0 10 2 10 4 10 1 10 3 10 5

Note: As the signals produced here are by definition at the 1°S sample rate, they do not require the use of the
upsampler in the case of a 48 kHz 1°S bus, and therefore we explicitly unset the AUDIO_MGR_OP_UPSAMPLE flags

14 4



XMOS XVF3800 - User Guide

Reference
input

Control input

The reference input may either
be bridged directly to
the loudspeaker or pass
through the XVF3800's
user-defined pre-processing
pathway

g XVF3800 {-------(4 )—>

Device output

Fig. 4.2: Top-level schematic showing the 5 input and output paths of the XVF3800; numbered points correspond
to the suggested order of testing.

15 y,



XMOS XVF3800 - User Guide

(setto 1by defaultin a 48 kHz configuration). If using a 48 kHz IS bus, be sure that AUDIO_MGR_OP_UPSAMPLE is
reset appropriately to accommodate signals that are generated at 16 kHz, including the processed output signals.

Inject a test signal (such as white noise) through the device’s reference audio input path and monitor the signal
on the device's communications output. Verify that the output matches the input signal. This should have a
fixed delay, but should otherwise be the raw 12S data, after any customer-specific pre-processing DSP has been
applied. Consider disabling the device's loudspeaker for the duration of this test if the test signal chosen would
cause auditory discomfort.

4.1.3.4 Speaker Operation

It is advised that the linearity, stability (even operation over the desired frequency range), output level, and total
harmonic distortion (THD) be characterised for the loudspeaker(s) in use in the product. Play a test file, such as
an |EEE Reference file, through the loudspeaker and observe the output level. The loudspeaker level should be
adjusted such that it meets the desired output level target. This tests path 4 in Fig. 4.2.

Note: The desired loudspeaker output level is usually specified by product certification requirements such as
those constructed by Amazon, Microsoft, or Zoom. Refer to your desired certification requirements for appropri-
ate targets for this test.

With the loudspeaker at an appropriate level, observe that there is not audible distortion or nonlinearity present
in the speech signal. If desired, make a quantitative measurement of THD to ensure that the loudspeaker is
operating as intended. Correct operation of the loudspeaker is essential to the tuning process. Operating the
loudspeaker and associated amplifier within their linear region is highly important for the tuning process and for
optimal algorithmic performance.

4.1.3.5 Microphone Operation

Ensure that the microphone assignment is as expected and that they sound natural and artefact-free. This tests
paths 3 and 5in Fig. 4.2.

Set up the XVF3800's output mux as follows to output raw data for microphones 0 and 1:

xvf_host AUDIO_MGR_O

10
xvf_host AUDIO_MGR_O 11

P_L
P_R
and set up as follows to output raw data for microphones 2 and 3:

xvf_host AUDIO_MGR_OP_

L12
xvf_host AUDIO_MGR_OP_R 1 3

Note: As the microphone signals are decimated to 16 kHz within the XVF3800’s audio manager, the microphone
signals require upsampling on a 48 kHz bus - ensure that the AUDIO_MGR_OP_UPSAMPLE flags have been reset
after previous testing if using a 48 kHz XVF3800 configuration.

Ensure that each microphone is assigned as expected; this can be achieved by e.g. clicking near or tapping each
microphone in turn to ensure that the signal is routed to the expected output. If the microphone assignment is not
as expected, then the microphone geometry may be incorrect and therefore Direction of Arrival (DoA) information
may be incorrect.

16 y,



XMOS XVF3800 - User Guide

Record some near-end signal (such as speech) and analyse the result for undesirable artefacts, such as noise,
distortion, or interference. Ensure that speech through each microphone sounds clear and natural. Verify that
each microphone is similar in level, for example by examining a power spectral density plot (PSD) of a known
near-end source and observing that each microphone signal has a similar total power.

4.2 Tuning the XVF3800 Parameters

This section will walk through a typical tuning process, step by step. Itis advised that, when appropriate values for
each tuning parameter are determined, the device firmware is rebuilt with these values as default and the device
is reflashed, This process is described in the section Building the application. It is recommended that the device
be restarted at the start of each of these tuning steps.

4.2.1 Reference Gain

The AUDIO_MGR_REF_GAIN parameter is provided to control a gain block placed in the reference audio path after
the customer-specific pre-processing DSP stage. The reference audio should be amplified such that any peak
amplitude losses through the input path (such as attenuation or filtering prior to the XVF3800 or in the customer-
specific pre-processing DSP stage) are accounted for. This gain is applied within the audio manager internal to
the XVF3800, and therefore does not have an impact on the signal sent to the loudspeaker.

Set up the XVF3800'’s output mux as follows to output pre- and post-gain data for the reference input:

xvf_host AUDIO_MGR_OP_L 4 O
xvf_host AUDIO_MGR_OP_R 12 O

This will set the left output as the pre-gain reference input, and the right output as the post-gain reference input.
With default device configuration, these should be the same.

Inject a test signal with a known peak amplitude, such as 0 dBgs white noise, into the device's reference input and
verify that the reference input observed by the XVF3800 is the same level, i.e. with a peak of 0 dBks. If this is not
the case, tune AUDIO_MGR_REF_GAIN such that the post-gain reference input has as maximal a peak value as
possible, up to 0 dBgs.

Note: White noise is chosen in this example as it contains equal energy in all frequency bands. This is important
in cases where e.g. a filter is applied to the reference signal before the XVF3800 or in the customer-specific pre-
processing DSP block. In these cases, a single tone may be attenuated more than other tones, and tuning to this
specific frequency may lead the device to clip at other frequencies. If no such filter is applied, a tone (suchas a1
kHz sine wave) may be chosen instead, which has a more predictable peak amplitude in a shorter timeframe.

Note: Itis very important that the reference input can never digitally clip. If this is a risk, it is permissible to leave
some headroom in this parameter of approximately 1-2 dB.

4.2.2 Microphone Gain

Similarly, the AUDIO_MGR_MIC_GAIN parameter is provided to control a gain block placed in the input path from
the microphones. The same gain is applied to all four microphones. To tune AUDIO_MGR_MIC_GAIN, set the left
output as a selected microphone post-gain - for example, microphone 0 - and the right input as the reference
audio post gain:

17 4



XMOS XVF3800 - User Guide

xvf_host AUDIO_MGR_OP_L 3 O
xvf_host AUDIO_MGR_OP_R 12 O

Inject a test signal with a known peak amplitude, such as 0 dBrs white noise, into the device's reference input
and observe the relationship between the post-gain reference signal and the post-gain microphone signal. Tune
AUDIO_MGR_MIC_GAIN such that the microphone signal has a peak amplitude 6 dB below the reference signal.

Observe the other 3 microphone channels and ensure that none exceed 6 dB below the reference signal.

Note: If the microphone signal becomes louder than 6 dB below the reference signal, the AEC may converge
to coefficients in the frequency domain greater than 0 dB. This has a significantly negative effect on algorithmic
performance, and may lead to instability.

Consider rotating the device, placing it near walls or corners, placing objects in front of the microphones, or
exercising other realistic use-cases. Ensure that in each of these cases the post-gain microphone signal does
not exceed 6 dB below the reference signal.

4.2.3 System Delay

With an appropriate gain structure, the next step in the tuning process is to ensure that the product is causal; that
is to say, that an event played in the reference audio stream and over the loudspeaker is received by XVF3800
reference input an appropriate amount of time (in samples) before the coupled signal returns through the mi-
crophone path. This is very important; if the system is acausal (a signal played into the room in the reference
audio stream is received in the microphone inputs before it is received in the reference input) then effective echo
cancellation cannot be achieved. By the same token, the microphones should not be overly delayed compared
to the reference input; each coefficient in the AEC corresponds to a sample in the time domain, and so if the
microphone signal is overly delayed, fewer AEC coefficients will be of use and the overall behaviour of the AEC
will be less optimal.

Expanding on the top-level diagram featured in Fig. 4.2, a more realistic understanding of the main two paths
for the reference signal to take can be seen in Fig. 4.3. If the reference signal takes path A pictured, where it is
passed through the XVF3800 before it is then sent to the loudspeaker, then it is highly unlikely that the device
will become acausal. If instead the signal is sent via path B pictured, where the reference input is passed to the
loudspeaker assembly prior to sending on to the XVF3800, an arbitrary reference path delay has the potential to
push the device into acausality if it exceeds the echo path delay between the loudspeaker and the microphones.

In an ideal system, the delay between the reference and microphone signals should be at or less than 40 samples.
The AUDIO_MGR_SYS_DELAY parameter allows a configurable delay to be applied to either the microphone signal
or the reference signal to achieve this 40 sample difference.

A positive value for this parameter, measured in number of samples, sets a delay on the reference signal; if the
delay between microphones and reference is too large, setting this value as positive will reduce this difference. A
negative value sets a delay on the microphone signals. Setting this delay to a negative value is the recommended
method to correct acausality in the device. Note that this will naturally increase the overall delay from input to
output through the device.

To estimate the current causality of the system, use the mic_ref_correlate.py script provided. To obtain the re-
quired signals for this script, set the output mux as follows:

xvf_host AUDIO_MGR_OP_L 3 <microphone number>
xvf_host AUDIO_MGR_OP_R 5 0

Note: Causality must be checked for all four microphones, as each of the microphones may have a different

18 y,



XMOS XVF3800 - User Guide

Reference

: )
> % SR EREE L N
XVF3800 | P
B B

._ (Ref.path /|
delay

L Echo path

delay

Fig. 4.3: A more detailed representation of the reference input path for the XVF3800, showing both path A where
the signal is routed through the XVF3800 (and any customer-specific pre-processing) before sending to the loud-
speaker, and path B where the signal is routed via the loudspeaker before it reaches the XVF3800.

echo path delay. Calculate correlation between each microphone and the reference in turn.

With the audio output mux set, generate a test signal with e.g. 5s of silence, followed by 10s of 0 dBgs, followed
by 5s of silence. Pass this through the reference input and record the device output in your chosen audio tools,
e.g. Audacity. Save the result as a 2 channel WAV file with the left channel (the post-delay post-gain microphone)
as channel 0 and the right channel (the looped-back post-delay post-gain reference signal) as channel 1. Use this
as the input to the script:

python3 mic_ref_correlate.py [input wav file].wav

A diagram similar to Fig. 4.4 should be generated.

Fig. 4.4 shows a 7 sample delay between microphones and the reference signal. This system is causal, but only
just. Setting AUDIO_MGR_SYS_DELAY to around 30 will bring the system to the recommended headroom.

This procedure may be repeated after the AUDIO_MGR_SYS_DELAY parameter has been set to verify that the
system remains causal and has the desired (less than 40 samples) delay between the reference and microphone
inputs. Ensure that the device is causal for all four microphones.

4.2.4 AEC Operation

To verify the AEC’s operation, play through the reference input a representative test sample, such as IEEE_269-
2070_Male_mono_48_kHz.wav.

Allow the AEC to converge. The convergence of the AEC may be monitored by use of the AEC_AECCONVERGED
parameter. This is a read-only parameter. Issuing

19 4



peak2ave ratio

20

XMOS XVF3800 - User Guide

ref-mic delay

7.2 A

7.0 A

6.8

corr delay (samples)

time

Mean correlation

correlation

T T T T T
10000 20000 30000 40000 50000
lag

corr peak2ave ratio

T
60000

225.5

225.01
224.5 4
224.0 4
223.51
223.0 4

time

Fig. 4.4: Screenshot showing example output of mic_ref_correlate.py




XMOS XVF3800 - User Guide

xvf_host AEC_AECCONVERGED

will present the return value as:

AEC_AECCONVERGED [0]1]

If the returned value is 1, the AEC has converged.

Note: Once thisvalueis setto Tinternally, it is never reset, even if a significant path change or other circumstance
forces a significant change in the AEC.

When the AEC reaches convergence (which is expected to take less than 30 seconds), read the AEC coefficients
from the device:

xvf_host (-gf | --get-aec-filter) [filename.bin]

These may then be analysed with the read_aec._filter.py script provided:

python3 read_aec_filter.py [filename.bin]
This should generate a plot as shown Fig. 4.5.

AEC impulse response

filt.bin.f0.mMO, time _ filt.bin.f0.mO, freq
o 011 3
3 z
Q
% 0.0 \V\A\ku\/“ S -251
£ s
TS0 : : . . : : : A E-sol . ‘ . ‘ . . .
-50 -25 0 25 50 75 100 125 150 0 1000 2000 3000 4000 5000 6000 7000 8000
samples frequency(Hz)
filt.bin.f0.m1, time _ filt.bin.f0.m1, freq
0.1 ) 0
3 s
=1 @
£ o g
<ot 0 Jgr |
-50 -25 0 25 50 75 100 125 150 = 0 1000 2000 3000 4000 5000 6000 7000 8000
samples frequency(Hz)
filt.bin.f0.m2, time _ filt.bin.f0.m2, freq
s g
=1 | [
% 0.0 g -204
£ 01 S 40
=50 =25 0 25 50 75 100 125 150 0 1000 2000 3000 4000 5000 6000 7000 8000
samples frequency(Hz)
filt.bin.f0.m3, time _ filt.bin.f0.m3, freq
3 g
=1 [
£ 004 S-25
£ €
< -0.19 g -50
T T T T T T T T ~ 2 1 T T T T T T T
=50 =25 0 25 50 75 100 125 150 0 1000 2000 3000 4000 5000 6000 7000 8000
samples frequency(Hz)

Fig. 4.5: Screenshot showing example output of read_aec_filter.py

It will also print in the console the value of the peak coefficient in the frequency domain. Ensure that this is below
0 dB for all four microphones. If it is not, reduce AUDIO_MGR_MIC_GAIN to satisfy this.

Observe the period between 0 and 100 samples in the time domain. There should be a strong first peak, as
shown in Fig. 4.5. The location of this peak in the time domain should be the same as the previously observed
delay between each microphone and the reference input. If this value is significantly above 40 samples, increase
AUDIO_MGR_SYS_DELAY to reduce this. If the time domain response starts with a strong peak at the first sample,
this could be an indication that your system is acausal - reduce AUDIO_MGR_SYS_DELAY to attempt to bring the
full time domain response into view.

21 4



XMOS XVF3800 - User Guide

4.2.5 AGC Configuration

The audio pipeline includes an automatic gain controller (AGC) which is applied equally to all four processed
outputs from the XVF3800.

This is controlled by four parameters: PP_AGCGAIN, PP_AGCMAXGAIN, PP_AGCDESIREDLEVEL, and
PP_AGCONOFF.

« PP_AGCGAIN both controls and reports the current multiplicative gain applied to the output beams by the
AGC. The value set as the product default is the initial value. When the AGC is active, this value is then
dynamically adjusted to attempt to meet the specified output power.

+ PP_AGCDESIREDLEVEL is the parameter that sets this desired output power. The signal power of the free-
running beam is measured and compared to the value of PP_AGCDESIREDLEVEL, and PP_AGCGAIN is ad-
justed to attempt to meet it.

+ PP_LAGCMAXGAIN is the maximum value that PP_AGCGAIN may take in operation.

+ PP_AGCONOFF determines whether the AGC is permitted to adapt or whether the value of PP_AGCGAIN is
fixed.

Note: Itisimportant to note that the gain specified by PP_AGCGAIN is always applied, regardless of the value of
PP_AGCONOFF; PP_AGCONOFF will only control whether or not this value is permitted to change during operation.

To set appropriate default values for these parameters, set the device's output mux to output the free-running
beam:

xvf_host AUDIO_MGR_OP_L 6 2
xvf_host AUDIO_MGR_OP_R O O
Initialise the parameters to sensible default values:

xvf_host PP_AGCGAIN 1.0
xvf_host PP_AGCMAXGAIN 1000
xvf_host PP_AGCONOFF 1

Play a near-end signal, such as IEEE_269-2010_Male_mono_48_kHz.wav, at a nominal level and at a nominal dis-
tance. The exact specification for this should be determined by the desired certification. Allow PP_AGCGAIN to
converge on a value, record the device output, and observe the output level. Should the device output be too
quiet or too loud for the desired certification specification, alter PP_AGCDESIREDLEVEL and allow PP_AGCGAIN
to reconverge. Once the device output level is as desired, record the stable value of PP_AGCGAIN. This should
then be set as the product’s default value for PP_AGCGAIN.

To configure PP_AGCMAXGAIN, reduce the near-end signal by 10 dB and repeat the above process, allowing
PP_AGCGAIN to converge on a stable value. This should become the product’s default value for PP_LAGCMAXGAIN.

4.2.6 Emphasis

The rate at which the AEC converges can be optimised by compensating for the spectral characteristics of the
reference signal. If the signal has significant low-frequency energy but proportionally less high-frequency energy,
this will affect the AEC's rate of convergence in the high frequencies, and therefore rate of convergence over-
all. An optional high shelf boost may be applied to the microphone inputs using the AEC_AECEMPHASISONOFF
parameter.

Play a representative voice sample such as IEEE_269-2010_Male_mono_48_kHz.wav as the reference audio and
capture the post-gain, post-delay reference signal:

22 p,



XMOS XVF3800 - User Guide

xvf_host AUDIO_MGR_O

P.L5O
xvf_host AUDIO_MGR_OP_R O O
Perform a Fourier transform using Audacity, or equivalent, and identify the peak magnitude value. Compare this
to the magnitude of the signal at 8 kHz. It is expected that the magnitude of the signal at 8 kHz will be less than
the peak magnitude. If they have similar magnitudes, set AEC_AECEMPHASISONOFF to 0. If the difference in
magnitudes is around or greater than 8 dB, set AEC_AECEMPHASISONOFF to 1. If the difference is around or

greater than 40 dB, set AEC_AECEMPHASISONOFF to 2.

The impact of tuning this parameter may be observed by measuring the AEC convergence speed. From a fresh
restart, set the following parameters to output clear AEC residuals from a selected pair of microphones:

xvf_host PP_MIN_NS 1.0

xvf_host PP_MIN_NN 1.0

xvf_host PP_ECHOONOFF O

xvf_host PP_NLATTENONOFF O

xvf_host PP_AGCONOFF O

xvf_host AUDIO_MGR_OP_L 7 [microphone number]
xvf_host AUDIO_MGR_OP_R 7 [microphone number]

Play a representative voice sample such as IEEE_269-2010_Male_mono_48_kHz.wav as the reference input on a
loop for around 60 seconds. Capture the device output; these will be the AEC residuals generated. Observe the
spectrogram of the output signal, and verify that the AEC converges evenly for all frequencies; that is to say, that
the high frequencies converge as quickly as the low frequencies.

4.2.7 Additional Parameters
4.2.7.1 FMIN_SPEINDEX

PP_FMIN_SPEINDEX is a parameter that controls the frequency-dependent suppression that the device performs
in a double-talk environment. In the case of double-talk, the device’s output will suppress frequencies below the
value of PP_FMIN_SPEINDEX more than frequencies above the value of PP_FMIN_SPEINDEX

Set the following to output clear AEC residuals from a selected pair of microphones:

xvf_host PP_MIN_NS 1.0

xvf_host PP_MIN_NN 1.0

xvf_host PP_ECHOONOFF O

xvf_host PP_NLATTENONOFF O

xvf_host PP_AGCONOFF O

xvf_host AUDIO_MGR_OP_L 7 [microphone number]
xvf_host AUDIO_MGR_OP_R 7 [microphone number]

Play through the reference input 1 minute of a 0dBgs white noise signal, and capture the AEC residuals that are
output from the device. Take a Fourier transform of the interval from 40 - 60 seconds, and plot the magnitude of
the coefficients. Set PP_FMIN_SPEINDEX to the highest frequency after which there is no further decrease in the
amplitude spectrum; in the spectrum shown in Fig. 4.6 for example, PP_FMIN_SPEINDEX should be set to around
1200 (1.2 kHz). If the spectrum appears roughly flat from around 500 Hz onwards, with no significant decrease
in amplitude at higher frequencies, leave PP_FMIN_SPEINDEX at its default value of 593.75 Hz.

23 p,



XMOS XVF3800 - User Guide

-25dB
-27dB+

-20dB+

-33dB+

B
5]

-39dB+

-42dBA

-45dB+

- |
ik ﬂuli

|
PP_FMIN_SPEINDEX

20Hz  30Hz 40Hz G0Hz 100Hz 140Hz 200Hz 300Hz 500Hz &80Hz 1000Hz 2000Hz 3000Hz  5000Hz
Cursor:| 491 Hz (B4) = -45dB |Peak.'| 492 Hz (B4) = -46.0 dB | Grids
Algorithm: |Spectrum V| Size: |'|DE4 V| | Export... |
Function: |Har‘|r‘| window V| Axis: | Log frequency V| | Replot... |

Fig. 4.6: lllustration of the method by which PP_FMIN_SPEINDEX may be determined

24 )\



XMOS XVF3800 - User Guide

4.2.7.2 MGSCALE

The PP_MGSCALE parameter controls additional noise suppression that is applied during periods of far-end activ-
ity. The aim is to optimise speech clarity output from the device during periods of stationary far-end activity, while
also ensuring that there is good echo suppression in periods of non-stationary far-end activity. An undesirable
scenario may arise if there exists unintended low-level noise in the reference signal, from e.g. ADC noise in the
reference path. In this scenario, the low-level noise may be erroneously detected as far-end speech; the device
may then incorrectly detect that double-talk is present and overly suppress near-end speech. The PP_MGSCALE
parameter configures where this trade-off between far-end echo suppression and near-end signal clarity lies.

To tune both the min and max values for the PP_MGSCALE parameter, set the following:

xvf_host PP_GAMMA_E 1.0
xvf_host PP_GAMMA_ENL 1.0
xvf_host PP_GAMMA_ETAIL 1.0
xvf_host PP_ECHOONOFF 1
xvf_host PP_NLATTENONOFF O
xvf_host PP_MIN_NS 1.0
xvf_host PP_MGSCALE 1 1 1
xvf_host AUDIO_MGR_OP_L 6 3
xvf_host AUDIO_MGR_OP_R 0 O

Play a representative far-end signal such as IEEE_269-2070_Male_mono_48_kHz.wav on loop as the reference
input. Provide a just-noticable stationary near-end noise signal. Observe the device output, including the spec-
trogram. Increasing the value of max - the first parameter to PP_MGSCALE - will reduce the amount of residual
echo. Increase max until no further improvements are observed.

Note: A typical value for max will be between 100 and 1000.

Set min to the derived value for max so that the two are equal.

Play silence into the reference input, and provide a representative near-end signal such as IEEE_269-
2070_Male_mono_48_kHz.wav. Subjectively listen to the device output. There may be stationary noise present on
the far-end, which may cause erroneous echo suppression and therefore erroneous speech distortion. Reducing
min can reduce near-end speech distortion at the cost of reduced stationary noise suppression where stationary
noise is present in the far-end signal.

4.2.8 Tuning the Non Linear Model
4.2.8.1 Non-linear Echo

It is likely that in all devices, regardless of the quality of the audio design, there will exist some non-linearities.
The aim of non-linear estimation is to model the remaining residual echo after linear echo content (including tail
echoes) has been removed. This is achieved in the XVF3800 by use of a self-training non-linear model.

It is very important to ensure that non-linear model training takes place in a silent environment, and that the
envionment is ideally anechoic; the RT60 of the environment for example should be as low as possible, and
absolutely below 0.3s. Itis also important to minimise/eliminate any path changes in the environment during non-
linear tuning, such as movement of people or objects. This tuning step is very deliberately placed after any gain
or pre-processing adjustments have been made. Any changes to the device's gain structure, including changing
any filtering, will require retuning of the non-linear model.

25 y,



XMOS XVF3800 - User Guide

4.2.8.2 Tuning Setup for Non Linear model

This tuning process is somewhat lengthy, and so a set of files and associated training script have been provided
for this tuning step. The process differs slightly depending on whether the host device can play audio directly
through the device (as in Fig. 4.7) or whether a 3rd machine is required (as in Fig. 4.8).

Local device [« ~

Reference
input

Control input

XVF3800 |-~

Device output

Fig. 4.7: Top-level diagram of a system where the audio host and control host are the same device

Local Device For this route, it is assumed that the host device (assumed to be a Raspberry Pi) is also the device
that is providing audio to the XVF3800, through e.g. an I°S interface. Locate the nl_model_training.py script

provided. Run the script as:
python3 nl_model_training.py <host application> -p <communication protocol>
This will generate an output file with the default name of nimodel_buffer_override.bin. Copy this file to

/sources/applications/nl_model_gen/nimodel_bin and rerun the build process to generate a binary with this non-
linear model set as default. Refer to the docstring for this script for further guidance.

26 4



27

XMOS XVF3800 - User Guide

Local device |«

Reference
input

Control input

XVF3800

Device output

R -\.____)

Fig. 4.8: Top-level diagram of a system where the audio host and control host are separate devices



XMOS XVF3800 - User Guide

Remote Device For this route, it is assumed that a 3rd device is acting as the audio source (here termed the
“audio host”"). Therefore, to issue control commands, it is necessary to remotely connect to the “control host” (as-
sumed to be a Raspberry Pi) over SSH. Locate the remote_nl_model_training.py script included in the release pack-
age. Further, locate the host application binaries on the audio host; these should be located at /host_v0.2.0/rpi in
the release package. Ensure that the audio host has passwordless access to the control host over SSH; this may
be achieved by generating an SSH key pair and adding the public key to ~/.ssh/authorized_keys on the control
host. This script requires that the audio host have an installation of sox on its path, as well as Python 3 with
matplotlib and asyncssh installed via Pip. Ensure that the default loudspeaker and microphone on the audio host
are set as the device to be tuned.

From the audio host, run the script as:

python3 remote_nl_model_training.py <control host IP address> <host application binary path,
—on the audio host>

Once the script has run, locate the generated nimodel_buffer_override.bin and corresponding plot in the
src.autogen directory. Copy this file to /sources/applications/nl_model_gen/nImodel_bin and rerun the build pro-
cess to generate a binary with this non-linear model set as default. Refer to the docstring for this script for further
guidance.

4.2.8.3 Echo Suppression

With the non-linear model trained, we are now in a position to balance echo suppression against speech distortion.
Five tuning parameters are relevant for this section:

« PP_ECHOONOFF: This parameter sets whether echo suppression is enabled or disabled overall.

« PP_NLATTENONOFF: This parameter sets whether non-linear echo suppression is enabled or disabled.
« PP_GAMMA_E: This parameter adjusts the oversubtraction factor for direct and early echo suppression.
« PP_GAMMA_ENL: This parameter adjusts the oversubtraction factor for non-linear echo suppression.

« PP_GAMMA_ETAIL: This parameter adjusts the oversubtraction factor for echo tail suppression.

For the PP_GAMMA_* parameters, a value of 1.0 indicates that the device has correctly estimated and suppressed
the respective echo classes from the output. Increasing these values increases the amount of suppression, and
indicates that the device has underestimated the amount of echo in the outputs. It is unlikely for the device to
overestimate the amount of echo, and so it is not advised to set these parameters to values below 1.0. A typical
range for these parameters is between 1.0 and 1.7.

Increasing these parameters will always affect the quality of the speech signal. Attempt in the first instance
to create as good an acoustic design as possible, with a linear loudspeaker, good quality microphones, and a
maximally non-linear enclosure. This will reduce or eliminate the need to adjust these values, and will present a
more performant device.

PP_GAMMA_E and PP_GAMMA_ENL The objective of tuning these two parameters is the removal of echoes
to pass Teams EQUEST and ECC specifications. Ensure that this tuning step takes place in an anechoic or mildly
reverberant envionment, with an RT60 less than 0.3 s.

Set the device as follows to output the autoselect beam in the left channel and the AEC residual signal for micro-
phone 0 in the right channel:

xvf_host PP_AGCONOFF O
xvf_host PP_MIN_NN 1.0
xvf_host PP_MIN_NS 1.0
(continues on next page)

28 p,



XMOS XVF3800 - User Guide

(continued from previous page)

xvf_host PP_GAMMA_E 1.0
xvf_host PP_GAMMA_ENL 1.0

xvf_host PP_GAMMA_ETAIL 1.0

xvf_host AUDIO_MGR_OP_L 6 3

xvf_host AUDIO_MGR_OP_R 7 O

Play through the reference input a representative signal, such as IEEE_269-2010_Male_mono_48_kHz. wav. Allow
the AEC to converge After 30 seconds, play a representative near-end signal in addition to the far-end signal, to
place the device into a representative double-talk scenario. Listen to the device's output. Starting with the default
value of 1.0, adjust PP_GAMMA_E to make the trade-off between double-talk performance and echo suppression.
Should the value of PP_GAMMA_E need to exceed around 1.4 to achieve acceptable performance, consider ad-
justing PP_GAMMA_ENL instead, especially if the echoes that remain in the AEC residual signal are of a non-linear
nature.

To identify the nature of the echoes that remain, listen to the AEC residual signal and categorise the residual
echoes as follows:

- Linear residual echoes: Echoes can be understood at a low level but do not sound distorted and do not
sound reverberated. Controlled by PP_GAMMA_E.

+ Tail echoes: Echos sound reverberated, with no direct component. Controlled by PP_GAMMA_ETAIL.

+ Non-linear echoes: Echoes sounds very distorted, with no discernable e.g. speech content. Controlled by
PP_GAMMA_ENL.

PP_GAMMA_ETAIL To tune this parameter, repeat the above procedure in a moderately reverberant room (with
an RT60 between 0.3 and 0.9s). Clear tail echoes should be observed in the residual signal, and these tail echoes
should be improved by adjustment of PP_GAMMA_ETAIL. Adjust this parameter, making a trade-off between
double-talk performance and echo suppression.

4.2.8.4 Noise Suppression

Two parameters control suppression of stationary and non-stationary noise in the device output: PP_MIN_NS
and PP_MIN_NN respectively. These parameters take values between 0 and 1, representing the multiplicative
attenuation of these two noise sources. For example, PP_MIN_NS is set to 0.15 by default, representing a roughly
15 dB attenuation of stationary noise in the device output. It is recommended that PP_MIN_NN is set by default to
0.57 or higher, representing at most a 6 dB attenuation of non-stationary noise in the device output. Reducing this
value further may have significant impact on near-end speech quality, especially in reverberant environments.

To tune these parameters, set the device as follows:

xvf_host PP_AGCONCFF O
xvf_host PP_MIN_NS 0.15
xvf_host PP_MIN_NN 0.51
xvf_host AUDIO_MGR_OP_L 6 3
xvf_host AUDIO_MGR_OP_R O O

Play a representative near-end signal, such as IEEE_269-2010_Male_mono_48_kHz.wav. Subjectively evaluate the
device output, first noting the presence of stationary noise. Reduce PP_MIN_NS to suppress this noise further.
Reducing this parameter may introduce or increase distortion in near-end speech; ensure that a balance is struck
between speech quality and stationary noise suppression. Note next the presence of non-stationary noise. Re-
duce PP_MIN_NN to suppress this noise further. As with PP_MIN_NS, reducing this parameter may introduce
distortion in near-end speech, particularly in reverberant environments. Ensure that an appropriate balance is
struck between speech quality and non-stationary noise suppression.

29 p,



XMOS XVF3800 - User Guide

4.2.8.5 ATTNS

The ATTNS parameters (PP_ATTNS_MODE, PP_ATTNS_NOMINAL, and PP_ATTNS_SLOPE) control an additional
reduction in AGC gain during non-speech periods. Collectively, they attempt to combat an undesirable side-effect
of the use of an AGC - the tendency to noticeably amplify noise in non-speech periods when the near-end speech
signal is quiet. The Zoom Rooms specification test 7.4.3 (as of writing, last issued in October 2019) sets limits on
how amplified this non-speech noise may be when the AGC is at a high gain compared to the noise level when
the AGC is at a low gain. Therefore, by attenuating noise at a greater strength when the AGC is at a high gain we
may reduce this noise and achieve better performance in these tests.

The overall behaviour of the ATTNS may be selected with the PP_ATTNS_MODE parameter, which both functions
as a specifier of whether the ATTNS is in use and whether bias is applied against selecting beams with high noise
as the autoselected beam.

+ 0-The ATTNS is off

+ 1-The ATTNS s on, with an additional check to ensure no beam with high noise is selected as the autoselect
beam (recommended if in use)

« 2-The ATTNS is on, with no additional check

When the ATTNS is on, PP_ATTNS_NOMINAL and PP_ATTNS_SLOPE control the additional attenuation propor-
tional to:

; ATTNS_SLOPE
ATTNS,NOMINAL*< AGCGAIN INTT )

AGCGAIN_.CURRENT

where AGCGAIN_INIT is the value of PP_AGCGAIN set as the default value at initialisation, and AGC-
GAIN_CURRENT is the current value of PP_AGCGAIN. Because of this module’s relationship with the current value
of PP_AGCGAIN, this module has no effect when PP_AGCONOFF is set to 0.

Because both the Teams v4 and Zoom Rooms specifications specify this suppression as a ratio between the
noise at a nominal speech level and the noise at a low speech level, it may be required to tune both of these
parameters in parallel; changing one may have an effect on the required value for the other, and vice-versa.

To tune these parameters, ensure that PP_AGCGAIN and PP_AGCMAXGAIN are tuned correctly, then perform the
following:

ATTNS_NOMINAL Issue the following to set appropriate default values for this tuning step:

xvf_host PP_AGCONOFF 1
xvf_host PP_ATTNS_MODE 1
xvf_host PP_ATTNS_NOMINAL 1.0
xvf_host PP_ATTNS_SLOPE 0.0

Play a representative near-end signal at a nominal level, such as the ITU P501 7.3.2 reference signal
FB_male_female_single-talk_seq.wav. Setting ATTNS_NOMINAL > 1 should provide more noise suppression dur-
ing silence. With a particular specification in mind, increase this value until desired/specified noise suppression
is achieved during the test conditions. For example, this could be done by monitoring average A-weighted noise
during the period 1s after the end of a sentence in the reference signal and ensuring that it is within satisfactory
bounds; this is usually specified as a ratio between this value and the averaged value obtained with the near-end
signal at a range of low levels.

ATTNS_SLOPE Issue the following to set appropriate default values for this tuning step:

30 p,



XMOS XVF3800 - User Guide

xvf_host PP_AGCONOFF 1

xvf_host PP_ATTNS_MODE 1

xvE_host PP_ATTNS_NOMINAL <default found in previous step>
xvf_host PP_ATTNS_SLOPE 1.0

Play a representative near-end signal at a nominal level, such as the ITU P501 7.3.2 reference signal
FB_male_female_single-talk_seg.wav. Setting ATTNS_SLOPE > 1.0 provides additional noise suppression during
silence, proportional to an increased AGC gain. With a particular specification in mind, increase this value un-
til desired/specified noise suppression is achieved during the test conditions. For example, this could be done
by monitoring average A-weighted noise during the period 1s after the end of a sentence in the reference signal
and ensuring that it is within satisfactory bounds; this is usually specified as a ratio between this value and the
averaged value obtained with the near-end signal at a range of low levels.

4.2.8.6 Path Change Detection

The XVF3800 provides a facility to detect significant path changes in the device's environment such as handling
the device and moving to a different location using a module called the Path Change Detector (PCD). If a path
change is detected, heavy near-end suppression during far-end activity is applied in order to allow the AEC time
to reconverge to its new environment. If the device incorporating the XVF3800 is not intended for a mobile appli-
cation (for example, a wall-mounted sound bar), then detection of path changes is not necessary.

The PCD may be tuned using the AEC_PCD_COUPLINGI, AEC_PCD_MINTHR, and AEC_PCD_MAXTHR parameters.

AEC_PCD_COUPLINGI controls the rate of detection of a path change, and takes a value between 0 and 1. Setting
this to a low value encourages fast detection of path changes at the increasing risk of false positives during
double-talk. Setting this to a high value slows detection of path changes (and increases the detection threshold,
meaning some small changes may be missed) but reduces the risk of false positives in double-talk. Setting this
parameter to a value outside of the range 0 to 1 will disable the PCD. Tuning of this parameter is necessarily
very situation- and product-dependent. Monitoring of the AEC_AECPATHCHANGE parameter can allow insight
into whether a path change has been detected; reading a 1 value implies that a path change has recently been
detected and that the device output is currently heavily suppressed during far-end activity. This parameter will
reset to 0 after the AEC has reconverged.

AEC_PCD_MINTHR and AEC_PCDP_MAXTHR are used to set sensitivity thresholds, and their use depends on
the overall Echo Return Loss Estimate (ERLE) of the device. For devices with a high ERLE (implying a high ra-
tio between the provided reference signal and the resultant AEC residual, and therefore high cancellation), use
AEC_PCD_MINTHR to limit the lower bound. Decreasing this value from its default of 0.02 will increase the sen-
sitivity of the PCD. For devices with a low ERLE, use AEC_PCD_MAXTHR to limit the upper bound. Decrease this
value from its default of 0.2 to increase the sensitivity of the PCD.

4.3 Changing Default Parameter Values

The default parameters set at start-up are loaded from the file product __defaults.c in sources/applications/
app_xvf3800/src/default_params. In this file the values are included from some header files auto-generated at
compile time. The values used in product_defaults.c must be updated using the YAML files stored in sources/
applications/app_xvf3800/cmd_map_gen/yaml_files/defaults/

Note: Any default value set outside the YAML files will be overwritten at compile time.

In the defaults folder four files are present:

31 y,



XMOS XVF3800 - User Guide

* mic_geometries.yaml

* control_param_values.yaml
* gpi_config.yaml

* gpo_config.yaml

Warning: Allthe parameters in the files above must be set; failure to do this can lead to unexpected behaviour
of the device, such as uninitialized start-up values.

mic_geometries.yaml contains the coordinates for each of the 4 mics for both the linear and squarecular ge-
ometries. An example of the values is below:

LINEAR_GEOMETRY:

- MICO: ( -0.04995f, 0.00f, 0.00f )
- MIC1: ( -0.01665f, 0.00f, 0.00f )
- MIC2: ( 0.01665f, 0.00f, 0.00f )
- MIC3: ( 0.04995f, 0.00f, 0.00f )
SQUARECULAR_GEOMETRY :
- MICO: ( 0.0333f, -0.0333f, 0.00f )
- MIC1: ( 0.0333f, 0.0333f, 0.00f )
- MIC2: ( -0.0333f, 0.0333f, 0.00f )
- MIC3: ( -0.0333f, -0.0333f, 0.00f )

The user must update the value in the geometry used in their build. For more information about how to set these
values, please refer to the Direction of Arrival section in the User Guide.

control_param_values.yaml lists all the control parameters which can be configured. An example of a param-
eter with a default value is below:

PP_RESID:
- cmd: PP_AGCONOFF
default_value: on

The parameters in the file are organized into arrays, and each array contains all the parameters related to a partic-
ular control resource ID. The parameter name is stored in the cmd key and the default value in the default_value
key. In the example above, the default value of the parameter PP_AGCONOFF belonging to the PP_RESID is on.
The number of values and type of each parameter may vary from command to command. It is advised to look up
the command information in the tables in an Appendix of the User Guide and to follow the format of the original
default values in order to set the values properly.

gpi_config.yaml stores all the settings of the GPI pins. The XVF3800 has 2 configurable GPI pins and the
following parameters can be modified:

- active_level: O for low and 1 for high
+ event_config: four types of events are supported:

— EdgeNone: no event is detected on either edge

EdgeFalling: an event is detected on the falling edge (high to low transition)

EdgeRising: an event is detected on the rising edge (low to high transition)

EdgeBoth: one event is detected on the rising edge and one on the falling edge

32 p,



XMOS XVF3800 - User Guide

The default configurations of the GPI pins are below:

# Exzactly GPIO_NUM_INPUT_PINS pins should be defined here

PINO:
active_level: 1
event_config: EdgeNone
PIN1:
active_level: 1
event_config: EdgeNone

gpo_config.yaml lists the settings of all the GPO pins and ports. The XVF3800 device has one 8-bit port desig-
nated for GPO. Only five of the eight are pinned out, and three pins are required for the device to operate normally,
leaving the remaining two pins available for user modification. These pins are number 6 and 7, and they are used
to control the LEDs in the default firmware.

In the file each port must be listed; the XVF3800 only implements PORTO. For each port an array of eight pins
must be defined and each pin has the following configurable settings:

+ pin_number: this value shouldn't be modified
+ active_level: 0 for low and 1 for high
* output_duty_percent: Pulse-width modulation (PWM) duty cycle specified as a percentage

« flash_serial_mask: serial flash mask where each bit specifies the GPO pin state for a 100 ms time period
interval

The default configurations of the GPO port and pins are below:

PORTO:
# UNUSED: NOT PINNED OUT
- pin_number: 0
active_level: 1
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF
# UNUSED: NOT PINNED 0OUT
- pin_number: 1
active_level: 1
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF
# UNUSED: NOT PINNED OUT
- pin_number: 2
active_level: 1
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF
# GPO_DAC_RST_N_PIN
- pin_number: 3
active_level: 1
output_duty_percent: 100
flash_serial_mask: OxFFFFFFFF
# GPO_SQ_nLIN_PIN
(continues on next page)

33 4



pin_number: 4

active_level: 1
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF
GPO_INT_N_PIN

pin_number: 5

active_level: 1
output_duty_percent: 100
flash_serial_mask: OxFFFFFFFF
GPO_LED_RED_PIN

pin_number: 6

active_level: O
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF
GPO_LED_GREEN_PIN

pin_number: 7

active_level: O
output_duty_percent: 0
flash_serial_mask: OxFFFFFFFF

XMOS XVF3800 - User Guide

(continued from previous page)

Warning: Allthe parameters in the files above must be set; failure to do this can lead to unexpected behaviour
of the device, such as uninitialized start-up values.

When the default parameters are changed it is necessary to rebuild the application and reload onto the XVF3800

as described in the following section. See Building an Executable.

34



5 Building the Application Firmware

5.1 Introduction

The XVF3800 comprises a specialised xcore.ai processor and a firmware executable. A set of firmware images
is provided in the binary release package which are configured to run correctly on the XK-VOICE-SQ66 evaluation
kit. However, when using the XVF3800 in a product design it is normally necessary to modify the firmware to
match the hardware and to configure a number of settings. This is achieved by modification of the configuration
files supplied as source code and rebuilding the modified code to create a new firmware image.

Instructions on configuring the firmware is included in the [ FINAL - link to section] Tuning the application section

This section explains how to build the XVF3800 application from the source files.

5.2 Prerequisites

The XVF3800 source code can be build on Windows, MacOS and Linux platforms.

Note: An active internet connection is required as part of the process as the build scripts download additional
packages to configure the environment.

The XVF3800 build procedure requires that a set of 3rd Party software packages, listed below, are installed on a
development computer before attempting to build firmware for the XVF3800.

5.2.1 Python3

A standard installation of Python version 3.9 or higher should be present on the development machine. This
is available by default on some platforms, but if required it can be installed from https://www.python.org/
downloads/

The pip3 package manager included in the standard python configuration is used to install some tools and python
is required to run some setup and tuning tools.

5.2.2 XMOS tools

XTC Tools 15.2.x : This is the XMOS toolchain which allows users to compile, link, deploy and debug applications
on all XMOS processors.

The XTC Tools can be downloaded from https://www.xmos.ai/software-tools/ and installed on a development
machine following the instructions in the https://www.xmos.ai/view/Tools-15-Documentation. XTC tools can run
on Windows, MacOS and Linux platforms.

35 y,


https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.xmos.ai/software-tools/
https://www.xmos.ai/view/Tools-15-Documentation

XMOS XVF3800 - User Guide

5.2.3 Build Tools

CMake >= version 3.21.0 : CMake is a build tool for managing application compilation.

The CMake tool package can be installed following the instructions for your specific platform at https://cmake.
org/install/

5.3 XVF3800 Release Package

The XVF3800 firmware is supplied in two different release packages which are distributed as ZIP archive files
with the following contents:

1. Binary release - a set of pre-compiled images that will run on the XK-VOICE-SQ66 evaluation kit
2. Source release - Source code and libraries to allow customisation of the XVF3800

This section describes how to use the second package.

Release packages can be obtained from FINAL www.xmos.ai/xxx or your XMOS representative.

Load ZIP archive onto your development plaform and expand the archive into a convenient directory. The contents
of the source release package are shown below:

CHANGELOG.rst <- list of changes of current and past releases
LICENSE.rst <- license file

precompiled <- folder containing the precompiled libraries
README.md <- readme file

sources <- source files necessary to build XVF3800 applications

The user modifiable code is found in the sources/applications folder.
5.3.1 Standard Configurations

The XVF3800 release package contains a set of standard build configurations that will suit the majority of use
cases for the XVF3800 device. The table below lists the key configuration parameters.

36 4


https://cmake.org/install/
https://cmake.org/install/

XMOS XVF3800 - User Guide

Table 5.1: Build-time combinable parameters

Parameter Options Abbreviation Notes

Device configuration

INT Device -intdev Note - only intdev is avalable in |version|
INT Host -inthost
USB -usb
I2S LR clock rate Select sampling rate for I12S interface
16000 -Ir6
48000 -Ir48
USB IN sample rate Only valid in USB configuration; ignored for INT
. configurations.
16000 -i16
48000 -i48
USB OUT sample rate Only valid in USB configuration; ignored for INT
configurations.
16000 -016
48000 -048
Input/output bit depth Only valid in USB configuration; implicitly 32b for
INT configurations.
24 -b24
32 -b32
Microphone geometry Selects microphone configuration on EVK board
Linear -lin
Square or -sqr
circular
Control protocol Selects which interface is used for the device
. control.
[12C] -i2¢c
SPI -Spi
Audio MCLK Use external Only valid on intdev configuration. Should be
MCLK signal extmolk omitted if external MCLK not used.
-ex

Note: USB support is not available in XVF3800 v 1.0 so the USB options above are not shown in the build presets
at this time.

37 y,



XMOS XVF3800 - User Guide

5.3.2 Image Names

The XVF3800 built image names comprise the parameter abbreviations listed above in a set order:

|[project|-<device config>-<sample rate>-<mic geometry>-<control protocol>-<audio
MCLK>

Examples:

xvf3800-inthost-1r48-sqr-i2c

xvE3800-intdev-1r48-1lin-spi-extmclk

5.4 Build Process

5.4.1 Set up the environment

Note: The software packages in the Prerequisites section must be installed before starting this process.

To build the XVF3800 application, open a command-line terminal and ensure that the XMOS tools are configured
in the environment. This can be checked by typing

Xcc --version
which should display the tools version information. If this does not happen please consult the Configuring

the command-line environment Section of https:/www.xmos.ai/software-tools/ at https:/www.xmos.ai/view/
Tools-15-Documentation.

5.4.2 Configure the build system

The build process comprises of two phases - the first phase sets up the build environment and downloads key
components while the second phase builds a specific executable. Configuration is only required to be done once.

To set up the environment change directory to the sources directory of the release package and install the re-
quired Python3 packages.

cd sources

pip3 install -r requirements_build.txt

Then configure the build. This step can take several minutes.

cmake --preset=rel_app_xvi3800

When this is complete the XVF3800 build system will have been configured.

5.4.3 Build an executable

The next phase is to build a specific executable. The release package contains a set of preset configurations that
cover the main use case for the XVF3800 device.

38 4


https://www.xmos.ai/software-tools/
https://www.xmos.ai/view/Tools-15-Documentation
https://www.xmos.ai/view/Tools-15-Documentation

XMOS XVF3800 - User Guide

To see the available build presets use

cmake --build --list-presets

The naming scheme for these presets is defined in the Standard Configurations section above.

Select the preset you wish and start the build. For example to build a 16kHz 12S configuration with a square
microphone array and 12C control the command is:

cmake --build --preset=intdev-lrl6-sqr-i2c

The script will compile all the source file and when it completes the generated binary file is saved in the subdirec-
tory output.

The required executable binary will be named application_xv£3800_intdev-<build options>.xe. AS an ex-
ample the result of the build command above would be:

output/application_xvf3800_intdev-1lri6-sqr-i2c.xe.

5.5 Installing the Executable Image

Two methods exist to install on the XVF3800 hardware the executable image created in the previous section,
using the xrun and xflash tools that are suppled in the XTC Tools suite.

Both methods require a connection between a development computer and the XVF3800 via an XTAG4 debug
adapter. Instructions to set up the XK-VOICE-SQ66 evaluation kit can be found in the Setting up the hardware
[FINAL add link] section of this guide.

5.5.1 Install Using xrun

The xrun tool loads the executable image into the XVF3800 RAM without storing it in the XVF3800 Flash ROM. It
then starts the operation of the XVF3800 using this executable image. Using the example from above the required
command is:

xrun application_xvf3800_intdev-1lrl6-sqr-i2c.xe

5.5.2 Install Using xflash

The xflash tool stores the executable image in the XVF3800 Flash ROM. A subsequent power-cycle loads the
stored image into the XVF3800 RAM and starts its operation. Using the same example from above the required
command is:

x1flash application_xvf3800_intdev-1r16-sqr-i2c.xe

5.6 Using SPI Boot

5.6.1 Creating a SPI Boot File

To use the built application_xvf3800_[..].xe executable generated from the above process as a SPI boot
image it is necessary to convert the .xe image into a . bin file that includes a bootloader.

39 4



XMOS XVF3800 - User Guide

The files required to build this . bin image can be found in the sources/boot_spi_slave directory of the release
package.

Warning: This procedure requires the XTC tools to be installed on a development computer. It cannot be run
on the Raspberry Pi host.

To create a SPI boot image change into the scripts folder:

cd sources/scripts

and then generate the binary image using the following command:

python3 generate_image.py path/to/application_xvf3800_[..].xe

An SPI bootable file application_xvf3800_[..]_spi_boot.bin will be created in the output subdirectory.

5.6.2 Using a SPI Boot File

The SPI boot process is documented in the XVF3800 datasheet. An example script is provided in the release
package which uses a Raspberry Pi to transfer the image and boot the XVF3800 device on an XK-VOICE-SQ66
evaluation Kit.

Note: The Raspberry Pi must be setup as described in the setting up the hardware section for this script to
operate correctly.

The script can be found in sources/boot_spi_slave/scripts subdirectory. The _spi_boot.bin image gener-
ated using the procedure described above can be transferred to the XVF3800 device using the following com-
mand.

python3 send_image_from_rpi.py output/application_xvf3800_[..]_spi_boot.bin

The example script will need to be modified to if this procedure is executed other host systems.

40 7



6 Some Acoustic Design Guidelines

This chapter presents a brief guide to a number of introductory acoustic considerations that designers should
take into account when integrating the XVF3800 into their end product.

It should be stressed that a more ideal acoustic design will result in fewer compromises needing to be made
whilst configuring the XVF3800. Designers should invest time in the acoustic design of the end product in order
to optimise the overall product performance.

6.1 Microphones

The XVF3800 requires 4 microphone inputs. These microphones may be omnidirectional; no additional benefit
has been observed from the use of e.g. cardioid polar patterns.

Microphones chosen for a design should exhibit a signal-to-noise ratio (SNR) greater than 67 dB. This ensures a
sufficiently low microphone self-noise, allowing a low enough noise floor for the XVF3800 to function effectively.
Matched microphones are however not necessary. Total Harmonic Distortion (THD) should be less than 1%,
although with modern MEMS microphones this is usually the case so long as the microphone is not operating
near its acoustic overload point.

For compatibility with the XVF3800, microphones chosen should be digital MEMS microphones with a PDM out-
put. These will be clocked at 3.072 MHz, with a decimation factor applied in firmware to generate the sampling
rate used internally.

With loudspeakers operating at their loudest volume, microphones should not reach acoustic overload. At loudest
loudspeaker volume, a headroom of 6 to 10 dB is a reasonable goal. It is important that the microphones are not
driven into a non-linear response due to the volume of the loudspeakers in the end product.

The XVF3800 supports both circular and linear microphone arrays. However, regardless of the geometry chosen,
at least 2 (and preferably more) of the microphones should be at least 10 cm apart. This is in order to ensure suf-
ficient low frequency coupling between microphones, allowing more coherent and natural speech to be captured.

With zero input (i.e. a silent room), there should be low coherence between microphone signals - that is to say, the
self-noise of the microphones chosen should not be correlated between microphones. If correlation is observed
with zero input, this usually indicates that there exists some common-mode interference between the microphone
signals. The presence of correlated noise has a negative effect on the performance of the XVF3800, and so this
should be as minimal as possible. To estimate coherence between pairs of microphones at frequencies up to
the Nyquist limit (which in this system will be 8 kHz), the provided coherence.py script can be used to generate
a plot similar to that shown in Fig. 6.1, where the blue line shown is real data from two microphones in a silent
room and the red line is a theoretical coherence plot between two perfect microphones measuring diffuse noise.
This theoretical model is a sinc?  function with its maximum at DC and its first zero crossing at f given by f=c¢ /
2d, where c is the speed of sound (in m/s) and d is the distance between microphones (in m). The coherence.py
script may be used as:

python3 coherence.py <micO_1.wav>

The signal micO_71.wav should be a 2 channel, 16 kHz WAV file with two microphone signals, which should be
captured in silence; to capture these signals using the XVF3800's output, issue:

xvf_host AUDIO_MGR_O

PL1O
xvf_host AUDIO_MGR_OP_R 1 1

41 y,



XMOS XVF3800 - User Guide

Record 30 seconds of output from the device, and repeat for the other microphones:

xvf_host AUDIO_MGR_OP_L 1 2
xvf_host AUDIO_MGR_OP_R 1 3

Further information on the use of the host application to capture output can be found in [FINAL: link to the hard-
ware setup guide section where we talk about this] and documentation of this script may be found in its docstring.

For optimal algorithmic performance, the coherence between each possible pair of microphones should be less
than 0.1. All possible pairs of microphones should be tested; this will result in a total of 6 plots.

1 mic1-mic2 coherence Welch plot

measured
10cm

o
©
T

o o
~ (0]
T T
1 1

o
o
T
|

©
SN
T
1

Magnitude-Squared Coherence
o o
w [6]

o
N
T

1

o
—
T

0 MMMMM sl g lima /\AMAMMA am/M AN A
2 4 6 8

10 12 14 16
Frequency (kHz)

Fig. 6.1: Sample coherence plot between two microphones, where the blue line is real data and the red line is a
theoretical coherence between two perfect microphones recording diffuse noise

6.2 Loudspeaker(s)

The most pressing consideration when incorporating loudspeakers into a design using the XVF3800 is the min-
imisation of non-linearities within the design. Whilst the XVF3800 features a linear echo canceller (the AEC), and
whilst it can also suppress tail echo and non-linear echo, it is advisable to keep any non-linearities in the design
to a minimum in order to guarantee optimal intelligibility and algorithmic performance.

42 7



XMOS XVF3800 - User Guide

The two main sources of non-linearity in a design arise from mechanical coupling between a loudspeaker and the
microphones and from non-linearities present in the loudspeaker/amplifier stage itself. Efforts should be made
to ensure that any loudspeakers are appropriately isolated from the microphones and placed physically as far
away as feasible. Isolation may take the form of mechanical decoupling from the rest of the enclosure and/or
the use of soundproofing material between loudspeakers and the microphones. Additionally, product enclosures
should be designed in such a manner as not to introduce non-linear effects; they should not rattle, click, vibrate,
or otherwise introduce extraneous noise during normal operation.

Non-linearities present in the loudspeaker/amplifier stage are more difficult to provide generalised advice on.

Loudspeakers and amplifiers should be specified such that at nominal operating volume they are both operating
within their linear region; this usually pushes design decisions towards larger or more powerful loudspeakers. As
noted in the previous section, the loudspeakers at their maximum level should not be so loud that they push the
microphones in the design to acoustic overload.

A THD of below 3 to 5%, measured over the full frequency range at the maximum level, is desirable. Design-
ers should note that the THD for loudspeakers is typically only specified in datasheets at 1 kHz. THD can also
be introduced by the amplifier used:; it is important that amplifiers are chosen such that the overall THD of the
loudspeaker system is minimised wherever possible.

Finally, it is important to consider the effect of loudspeaker placement on the far-field sensitivity of the device's
microphones. In general for a given nominal level, the closer a microphone is placed to a loudspeaker the lower
its gain must be in order to avoid clipping. This means that the closer a loudspeaker is located to a microphone,
the lower the overall system gain will be, and therefore the lower the far-field sensitivity of the device.

43 ).



7 APPENDIX — Control Commands

There are a number of control commands available for use with the XVF3800. These are detailed using the
--list-commands option of the Host Application, but may also be found below for reference. Note that all pa-
rameters in this appendix will be reset to their default values on a device reset.

7.1 AEC Tuning and Control Commands

These commands focus on tuning parameters for the AEC and postprocessing tasks.

Table 7.1: AEC and PP control commands

Command name Read / | Params| Param Description
Write format

AEC_AECPATHCHANGE READ 1 int32 AEC Path Change Detection. Valid range: 0,1
ONLY (false,true)

AEC_HPFONOFF READ / | 1 int32 High-pass Filter on microphone signals.
WRITE Valid range: 0,1,2,3,4 (0:0ff, 1:0n70, 2:0n125,

3:0n150, 4:0n180). Default value(s): on70

AEC_AECSILENCELEVEL READ /| 2 float Power threshold for signal detection in adap-

WRITE tive filter (set,cur), Valid range (set): [0.0 ..

1.0] Valid range (cur): 0.05*set, 1e-6f or set..
Default value(s): 1e-8f

AEC_AECCONVERGED READ 1 int32 Flag indicating whether AEC is converged.
ONLY Valid range: 0,1 (false,true). Default value(s):

False
AEC_AECEMPHASISONOFF READ / |1 int32 Pre-emphasis and de-emphasis filtering for
WRITE AEC. Valid range: 0,1,2 (off,on,on_eg)on: Em-

phasis filter for speech signals without modi-
fication of far-end ref. on_eq: Emphasis filter
for far-end reference signals where the low
frequencies are boosted by e.g. an equal-
izer.. Default value(s): False

AEC_FAR_EXTGAIN READ / | 1 float External gain in dB applied to the far-end ref-
WRITE erence signals. Valid range: [-inf .. inf]. De-
fault value(s): 0.0dB
AEC_PCD_COUPLINGI READ / | 1 float Sensitivity parameter for PCD. Valid range:
WRITE [0.0 .. 1.0]PCD can be disabled by setting
a value outside the range. Default value(s):
disabled
AEC_PCD_MINTHR READ / | 1 float Minimum threshold value used in PCD. Valid
WRITE range: [0.0 .. 0.02]. Default value(s): 0.005
AEC_PCD_MAXTHR READ / | 1 float Maximum threshold value used in PCD. Valid
WRITE range: [0.025 .. 0.2]. Default value(s): 0.1
AEC_RT60 READ 1 float Current RT60 estimate. Valid range: [0.250 ..
ONLY 0.900] (seconds) A negative value indicates

that the RT60 estimation is invalid.
continues on next page

44 p,



XMOS XVF3800 - User Guide

Table 7.1 — continued from previous page

Command name Read / | Params| Param Description
Write format
SHF_BYPASS READ / |1 uint8 AEC bypass
WRITE
AEC_NUM_MICS READ 1 int32 Number of microphone inputs into the AEC
ONLY
AEC_NUM_FARENDS READ 1 int32 Number of farend inputs into the AEC
ONLY
AEC_MIC_ARRAY_TYPE READ 1 int32 Microphone array type (1 - linear, 2 - squarec-
ONLY ular)
AEC_MIC_ARRAY_GEO READ 12 float Microphone array geometry. Each micro-
ONLY phone is represented by 3 XYZ coordinates
incm
AEC_AZIMUTH_VALUES READ 4 radians | Azimuth values in radians - beam 1, beam 2,
ONLY free-running beam, 3 - auto-select beam
AEC_FILTER_CMD_ABORT WRITE 1 int32 Reset the special command state machine.
ONLY Used for safely exiting from an AEC fil-
ter read/write command sequence that has
gone wrong.
PP_AGCONOFF READ / | 1 int32 Automatic Gain Control.  Valid range: 0,1
WRITE (off,on). Default value(s): True
PP_AGCMAXGAIN READ / | 1 float Maximum AGC gain factor. Valid range:
WRITE [1.0 .. 1000.0] (linear gain factor). Default
value(s): 31.6
PP_AGCDESIREDLEVEL READ / | 1 float Target power level of the output signal. Valid
WRITE range: [1e-8 .. 1.0] (power level). Default
value(s): 0.0025
PP_AGCGAIN READ / | 1 float Current AGC gain factor. Valid range: [1.0 ..
WRITE 1000.0] (linear gain factor). Default value(s):
1.0
PP_AGCTIME READ / | 1 float Ramp-up/down time-constant. Valid range:
WRITE [0.5 .. 4.0] (seconds). Default value(s): 0.9
PP_AGCFASTTIME READ / | 1 float Ramp down time-constant in case of peaks.
WRITE Valid range: [0.05 .. 4.0] (seconds). Default
value(s): 0.1f
PP_AGCALPHAFASTGAIN READ / | 1 float Gain threshold enabling fast alpha mode.
WRITE Valid range: [0.0 .. 1000.0] (linear gain fac-
tor). Default value(s): 0.0
PP_AGCALPHASLOW READ / | 1 float Slow memory parameter for speech power.
WRITE Valid range [0.0 .. 1.0]. Default value(s):
0.984
PP_AGCALPHAFAST READ / | 1 float Fast memory parameter for speech power.
WRITE Valid range [0.0 .. 1.0]. Default value(s): 0.36
PP_LIMITONOFF READ / | 1 int32 Limiter on communication output. Valid
WRITE range: 0,1 (off,on). Default value(s): True
PP_LIMITPLIMIT READ / | 1 float Maximum limiter power. Valid range: [1e-8 .
WRITE 1.0] (power level). Default value(s): 0.47
PP_MIN_NS READ / |1 float Gain-floor for stationary noise suppression.
WRITE Valid range: [0.0 .. 1.0]. Default value(s): 0.15
continues on next page
45



XMOS XVF3800 - User Guide

Table 7.1 — continued from previous page

Command name Read / | Params| Param Description
Write format
PP_MIN_NN READ / | 1 float Gain-floor for non-stationary noise suppres-
WRITE sion. Validrange: [0.0 .. 1.0]. Default value(s):
0.15
PP_ECHOONOFF READ / | 1 int32 Echo suppression. Valid range: 0,1 (off,on).
WRITE Default value(s): True
PP_GAMMA_E READ / |1 float Over-subtraction factor of echo (direct and
WRITE early components). Valid range: [0.0 .. 2.0].
Default value(s): 1.0
PP_GAMMA_ETAIL READ / | 1 float Over-subtraction factor of echo (tail compo-
WRITE nents). Valid range: [0.0 .. 2.0]. Default
value(s): 1.0
PP_GAMMA_ENL READ / | 1 float Over-subtraction factor of non-linear echo.
WRITE Valid range: [0.0 .. 5.0]. Default value(s): 1.0
PP_NLATTENONOFF READ / | 1 int32 Non-Linear echo attenuation. Valid range:
WRITE 0,1 (off,on). Default value(s): 1
PP_NLAEC_MODE READ / | 1 int32 Non-Linear AEC training mode. Valid range:
WRITE 0,1,2 (normal,train,train2). Default value(s): 0
PP_MGSCALE READ /| 3 float Minimum gain scale for acoustic echo
WRITE suppression.(max,min,cur),  Valid range
(max,min): [(1.0,0.0) .. (Te5max)] Valid range
(cur): min or max.. Default value(s): (1.0,1.0)
PP_FMIN_SPEINDEX READ / | 1 float In case of double talk, frequencies below
WRITE SPEINDEX are more suppressed than fre-
guencies above SPEINDEX. The actual sup-
pression is depending on the setting of DT-
SENSITIVE. The parameter is not a taste pa-
rameter but needs to be tuned for a specific
device. Valid range: [0.0 .. 7999.0]. Default
value(s): 593.75
PP_DTSENSITIVE READ / | 1 int32 Tradeoff between echo suppression and
WRITE doubletalk performance. A lower value
prefers high echo suppression (possibly at
the cost of less doubletalk performance), a
higher value prefers better doubletalk perfor-
mance (possibly at the cost of good echo
suppression). Good doubletalk performance
is only possible for hardware without much
non-linearities. When the value has 2 digits,
for robustness an extra near-end speech de-
tector is used. Valid range: [0 .. 5,10 .. 15].
Default value(s): 12
PP_ATTNS_MODE READ / | 1 int32 Additional reduction of AGC gain during non-
WRITE speech. Valid range: 0,1,2 (off, on, on
with modified beamselection off). Default
value(s): 0
PP_ATTNS_NOMINAL READ / | 1 float Amount of additional reduction during non-
WRITE speech at nominal speech level. Valid range:

[0.0 .. 1.0]. Default value(s): 1.0

46

continues on next page



XMOS XVF3800 - User Guide

Table 7.1 — continued from previous page

Command name Read / | Params| Param Description
Write format
PP_ATTNS_SLOPE READ / | 1 float Determines the extra amount of sup-
WRITE pression during non-speech when the
AGC level increases at lower speech
level. The extra attenuation is given by (agc-
gain_nominal/agcgain_current)*attns_slope.
With a value of 1.0 the amount of noise in
the output remains approximately the same,
independent of the agc gain. Valid range:
[0.0 .. 5.0]. Default value(s): 1.0
PP_NL_MODEL_CMD_ABORT | WRITE 1 int32 Reset the special command state machine.
ONLY Used for safely exiting from a NL model

read/write sequence that has gone wrong.

47




7.2 Device Metadata Commands

XMOS XVF3800 - User Guide

These commands focus on querying the device's metadata, e.g. software version, boot status, and build infor-

mation.

Table 7.2: Metadata control commands

Command name Read / | Params| Param Description
Write format
VERSION READ 3 uint8 The version number of the firmware. The for-
ONLY mat is VERSION_MAJOR VERSION_MINOR
VERSION_PATCH
BLD_MSG READ 50 char Retrieve the build message built in to the
ONLY firmware, normally the build configuration
name
BLD_HOST READ 30 char Retrieve details of the Cl build host used to
ONLY build the firmware
BLD_REPO_HASH READ 40 char Retrieve the GIT hash of the sw_xvf3800
ONLY repo used to build the firmware
BLD_MODIFIED READ 6 char Show whether or not the current firmware
ONLY repo has been modified from the official re-
lease. Requires use of a GIT repo
BOOT_STATUS READ 3 char Shows whether or not the firmware has been
ONLY booted via SPI or JTAG/FLASH
TEST_CORE_BURN READ / | 1 uint8 Set to enable core burn to exercise worst
WRITE case timing. This will reboot the chip, reset

all parameters to default and significantly in-
crease power consumption.

48



XMOS XVF3800 - User Guide

7.3 Audio Manager Commands

These commands are targeted toward setting and retrieving various options around the audio path into and out
of the device, including setting 12S loopback modes and debug “packed” 10 modes. Includes diagnostic data on
idle times for both the audio manager core and the 12S core.

Table 7.3: Audio Manager control commands

Command name Read / | Params| Param Description
Write format
AUDIO_MGR_MIC_GAIN READ / | 1 float Audio Mgr pre shf microphone gain. Default
WRITE value(s): 80.0
AUDIO_MGR_REF_GAIN READ / |1 float Audio Mgr pre shf reference gain. Default
WRITE value(s): 1.0
AUDIO_MGR_CURRENT_IDL | READ 1 int32 Get audio manager current idle time
E_TIME ONLY
AUDIO_MGR_MIN_IDLE_TI READ 1 int32 Get audio manager min idle time
ME ONLY
AUDIO_MGR_RESET_MIN_I WRITE 1 int32 Rest audio manager min idle time
DLE_TIME ONLY
MAX_CONTROL_TIME READ 1 int32 Get audio manager max control time
ONLY
RESET_MAX_CONTROL_TIM | WRITE 1 int32 Reset audio manager max control time
E ONLY
I2S_CURRENT_IDLE_TIME READ 1 int32 Get 12S current idle time
ONLY
I2S_MIN_IDLE_TIME READ 1 int32 Get 12S min idle time
ONLY
I2S_RESET_MIN_IDLE_TI ME | WRITE 1 int32 I2S reset idle time
ONLY
[2S_INPUT_PACKED READ / | 1 uint8 Will expect packed input on both 12S chan-
WRITE nels if this is not 0. Note, could take up to 3

samples to take effect. Valid range: val0: [0
. 1]. Default value(s): 0
AUDIO_MGR_SELECTED_AZ | READ 2 radians | The azimuths associated with
IMUTHS ONLY the left and right channels of
MUX_USER_CHOSEN_CHANNELS, how
this aligns with actual output channels
depends on the mux configuration
AUDIO_MGR_SELECTED_CH | READ / | 2 uint8 Default implementation of post
ANNELS WRITE processing will use this to select
which channels should be output to
MUX_USER_CHOSEN_CHANNELS. Note
that a customer implementation of the
beam selection stage could override this
command. How this channel selection
aligns with actual output depends on the
mux configuration. Valid range: valO: [0 .. 3]
val1: [0 .. 3]. Default value(s): (3, 3)
AUDIO_MGR_OP_PACKED READ / | 2 uint8 <L>, <R>; Sets/gets packing status for L and
WRITE R output channels. Valid range: valO: [0 .. 1]
val1: [0 .. 1]. Default value(s): (0, 0)
continues on next page

49 7



XMOS XVF3800 - User Guide

Table 7.3 — continued from previous page

Command name Read / | Params| Param Description
Write format
AUDIO_MGR_OP_UPSAMPLE | READ / | 2 uint8 <L>, <R>; Sets/gets upsample status for L
WRITE and R output channels, where appropriate.
Valid range: valO: [0 .. 1] val1: [0 .. 1]
AUDIO_MGR_OP_L READ / | 2 uint8 <category>, <source>, Sets category and
WRITE source for L output channel. Equivalent to
AUDIO_MGR_OP_L_PKO0. Valid range: valO:
[0 ..12] val1: [0 .. 5]. Default value(s): (8, 0)
AUDIO_MGR_OP_L_PKO READ / | 2 uint8 <category>, <source>; Sets category and
WRITE source for first (of three) sources on the L
channel in packed mode. Equivalent to AU-
DIO_MGR_OP_L. Valid range: valQ: [0 .. 12]
val1: [0 .. 5]
AUDIO_MGR_OP_L_PK1 READ / | 2 uint8 Sets category and source for second (of
WRITE three) sources on the L channel in packed
mode. Valid range: val0: [0 .. 12] vall: [0 ..
5]. Default value(s): (1, 0)
AUDIO_MGR_OP_L_PK2 READ /| 2 uint8 Sets category and source for third (of three)
WRITE sources on the L channel in packed mode.
Valid range: val0: [0 .. 12] val1: [0 .. 5]. Default
value(s): (1,2)
AUDIO_MGR_OP_R READ /| 2 uint8 <category>, <source>, Sets category and
WRITE source for R output channel. Equivalent to
AUDIO_MGR_OP_R_PKQ. Valid range: valO:
[0 ..12] val1: [0 .. 5]. Default value(s): (3, 2)
AUDIO_MGR_OP_R_PKO READ /| 2 uint8 <category>, <source>, Sets category and
WRITE source for first (of three) sources on the R
channel in packed mode. Equivalent to AU-
DIO_MGR_OP_R. Valid range: valO: [0 .. 12]
vall: [0 .. 5]
AUDIO_MGR_OP_R_PK1 READ /| 2 uint8 Sets category and source for second (of
WRITE three) sources on the R channel in packed
mode. Valid range: val0: [0 .. 12] val1: [0 ..
5]. Default value(s): (1, 1)
AUDIO_MGR_OP_R_PK2 READ /| 2 uint8 Sets category and source for third (of three)
WRITE sources on the R channel in packed mode.
Valid range: valO: [0 .. 12] val1: [0 .. 5]. Default
value(s): (1, 3)
AUDIO_MGR_OP_ALL READ / | 12 uint8 Sets category and source for all 3
WRITE sources on L channel and all 3 sources

for R channel. Equivalent to AU-
DIO_MGR_OP_[L,R]_PK[0,1,2] ~ with  suc-
cessive pairs of arguments. Valid range:
val0: [0 .. 12] val1: [0 .. 5] val2: [0 .. 12] val3:
[0..5]val4:[0..12] val5: [0 .. 5] val6: [0 .. 12]
val7: [0 .. 5] val8: [0 .. 12] val9: [0 .. 5] val10:
[0..12] val11: [0 .. 5]

50

continues on next page



XMOS XVF3800 - User Guide

Table 7.3 — continued from previous page

Command name Read / | Params| Param Description
Write format
PLL_LOCK_STATUS READ 1 int32 Returns the lock status of the audio PLL
ONLY used for generating MCLK (for builds where
it is used). It may return one of the follow-
ing - -1 input frequency too low to track; O pll
output is locked to input; 1 input frequency
is too high to track Note that the PLL status
is only valid when the external clock source
is active (eg. 12S is running for int-dev). See
I2S_INACTIVE to check this
I2S_INACTIVE READ 1 uint8 Returns whether the main audio loop is ex-
ONLY changing samples with 12S (0). If not (1), 12S
is inactive
AUDIO_MGR_FAR_END_DSP | READ / | 1 uint8 Enables/disables far-end DSP (if imple-
_ENABLE WRITE mented). Write a 1 to enable, 0 to disable.
Valid range: valO: [0 .. 1]. Default value(s): 0
AUDIO_MGR_SYS_DELAY READ / | 1 int32 Delay, measured in samples, that is applied
WRITE tothereference signal before passing to SHF

BeClear algorithm. Valid range: valO: [-64 ..
256). Default value(s): 0

51



7.4 GPIO Commands

XMOS XVF3800 - User Guide

These commands set up and manipulate various functions of the device's GPO and GPI services.

Table 7.4: GPIO control commands

Command name Read / | Params| Param Description
Write format
GPI_INDEX READ / |1 uint8 Set/get pin index for next and subse-
WRITE qguent GPI reads. Maximum value should
be equal to GPIO_NUM_INPUT_PINS. Valid
range: val0: [0 .. 1]
GPI_LEVENT_CONFIG READ / |1 uint8 Set/get event config for selected pin. Valid
WRITE range: val0: [0 .. 3]
GPI_ACTIVE_LEVEL READ / |1 uint8 Set/get active level for selected pin
WRITE
GPI_VALUE READ 1 uint8 Get current logic level of selected GPI pin.
ONLY
GPI_LEVENT_PENDING READ 1 uint8 Get whether event was triggered for selected
ONLY GPI pin. Event flag is cleared for the pin.
Interrupt pin is set when all event flags are
cleared
GPI_VALUE_ALL READ 1 uint32 Get current logic level of all GPI pins as a
ONLY bitmap, where GPI index n -> bit n of returned
value.
GPI_EVENT_PENDING_ALL READ 1 uint32 Get whether event was triggered for all GPI
ONLY pins as a bitmap, where GPI index n -> bit n
of returned value. Event flag is cleared for all
GPI pins. Interrupt pin is set.
GPO_PORT_PIN_INDEX READ / | 2 uint32 GPO port index and pin index that the follow-
WRITE ing commands would be directed to. Valid
range: val0: [0 .. O] vall: [3 .. 7]
GPO_PIN_VAL WRITE 3 uint8 value to write to one pin of a GPO port.
ONLY Payload specifies port_index, pin_index and
value to write to the pin. Valid range: val0: [0
. 0lvall:[3..7]val2: [0 .. 1]
GPO_PIN_ACTIVE_LEVEL READ / | 1 uint32 Active level of the port/pin specified by the
WRITE GPO_PORT_PIN_INDEX command. 1= AC-
TIVE_HIGH, 0 = ACTIVE_LOW. Valid range:
val0: [0 .. 1]
GPO_PIN_PWM_DUTY READ / | 1 uint8 PWM duty cycle of the pin specified by the
WRITE GPO_PORT_PIN_INDEX command. Speci-
fled as an integer percentage between 0 and
100. Valid range: valO: [0 .. 100]
GPO_PIN_FLASH_MASK READ / | 1 uint32 Serial flash mask for the pin specified by the
WRITE GPO_PORT_PIN_INDEX command. Each bit

in the mask specifies the GPO pin state for a
100 ms time period interval

52



XMOS XVF3800 - User Guide

2MOS

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMQOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

53 y,



	Overview
	Setting Up the Hardware
	Introduction
	Hardware Setup
	Required Components
	Setting up the Evaluation System
	Installing the Firmware

	Setting up the Audio
	Loudspeaker
	Playback and Recording

	Troubleshooting
	Audio Signals
	AEC Convergence


	Using the Host Application
	Installing the Host Application
	Connecting to the XVF3800 Device
	xfv_host Command Syntax
	Example Uses
	Output Selection
	Setting an Output Pin


	Tuning the Application
	System Preparation
	Prerequisites
	Initial Parameter Setting
	Initial Tests
	Input Path
	Control Path
	Output Path
	Speaker Operation
	Microphone Operation


	Tuning the XVF3800 Parameters
	Reference Gain
	Microphone Gain
	System Delay
	AEC Operation
	AGC Configuration
	Emphasis
	Additional Parameters
	FMIN_SPEINDEX
	MGSCALE

	Tuning the Non Linear Model
	Non-linear Echo
	Tuning Setup for Non Linear model
	Local Device
	Remote Device

	Echo Suppression
	PP_GAMMA_E and PP_GAMMA_ENL
	PP_GAMMA_ETAIL

	Noise Suppression
	ATTNS
	ATTNS_NOMINAL
	ATTNS_SLOPE

	Path Change Detection


	Changing Default Parameter Values

	Building the Application Firmware
	Introduction
	Prerequisites
	Python3
	XMOS tools
	Build Tools

	XVF3800 Release Package
	Standard Configurations
	Image Names

	Build Process
	Set up the environment
	Configure the build system
	Build an executable

	Installing the Executable Image
	Install Using xrun
	Install Using xflash

	Using SPI Boot
	Creating a SPI Boot File
	Using a SPI Boot File


	Some Acoustic Design Guidelines
	Microphones
	Loudspeaker(s)

	APPENDIX – Control Commands
	AEC Tuning and Control Commands
	Device Metadata Commands
	Audio Manager Commands
	GPIO Commands


