ANO03007: XCORE Ports - An Introduction

2 MOS

ANQ3007: XCORE Ports - An Introduction

Publication Date: 2025/3/10
Document Number: XM-015272-AN v1.0.0

IN THIS DOCUMENT

1 Ports and How to Programme Them 2
2 System Design Using Ports and Libraries 3
3 Example Applications Using Ports 3

The XMOS XCORE processor can interface electrical signals on a package pin to signals
in the processor through a highly efficient low-latency interface called a port.

Ports are the interface between th physical and the logical worlds. Their structure is
shown in Fig. 1. On the left side a port is connected to a physical GPIO wire that can drive
a signal at some voltage, or that can sample a signal. On the right side of the diagram,
a port is connected to the execution unit where those voltage levels are represented by
logical values: zero, one, or multi-bit values.

strobes < |
s v | D .
Execution
conditional port | || = unit
value logic .
o stampftime |
A
! 1
sample FIFO ’ ﬂ input path
gpio <> port SERDES tran.s er
value register 4
drive . . output path
A J

Fig. 1: Structure of a port

Between the GPIO pins and the execution unit is a set of components that can be used
to serialise, deserialise, buffer, and clock data.

This document provides an overview of the capabilities of XCORE ports and the options
available for system designers. It is intended to provide a starting point for understand-
ing the capabilities of the XCORE ports, and provides links to more detailed information
on the various aspects of port operation. The following application notes describe port
operations in detail:

» AN03000: XCORE Input and Output

» ANO0300T: XCORE Clocked Input and Output

» AN03002: XCORE Port Buffering

» AN03003: XCORE Serialization and Strobing

» AN02039: Ports, Pins, and the XN file

» ANO02047: Modifying the Electrical Characteristics of Pins and Ports
This document shows how these application notes relate to each other.

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015262-AN/html/doc/rst/an03003.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-000000-AN/html/doc/rst/an02041.html

ANO03007: XCORE Ports - An Introduction

1 Ports and How to Programme Them

A port provides the interface between the processor and its environment. The port logic
can drive its pins high or low, or it can sample the value on its pins, optionally waiting
for a particular condition. Ports are not memory mapped; instead they are accessed
using dedicated instructions. Each XCORE port operates autonomously as a small state
machine that can provide deterministic, hardware-timed processing of signals, ensuring
that the signals can be operated on in real-time with low latency.

ANO03000: XCORE Input and Output

Ports operate independently to the instruction stream, but are directly accessible to
programs running on the processor. It takes just a single instruction to, for example,
output a value to a port (drive a signal) or input a value from a port (sample a signal).
This is explained in detail in ANO3000: XCORE Input and Output. This application note
shows how to write programmes in the C language that sample buttons or drive LEDs.
It also covers how input ports can be configured to wait for some condition to occur,
e.g. a port is equal to a value. Using conditional inputs is much more power-efficient
than the conventional approach of polling a pin in a loop, as it allows the processor to
idle or perform other tasks while waiting for the condition to occur.

ANO02039: Ports, Pins, and the XN file

To provide flexibility with small packages, the package pins are mapped onto ports
through a multiplexer. The multiplexer also allows different uses of pins, including
overlaying other physical functions such as an LPDDR interface. The structure of the
multiplexer is explained in AN02039: Ports, Pins, and the XN file. That document also
explains the naming structure of ports and pins, and how you can assign your own
names for your design.

ANO03007: XCORE Clocked Input and Output

An XCORE device does not have fixed hardware interfaces (such as 12C, SPI, etc));
instead, these are built using ports and software. Many interfaces rely on data to be
clocked, meaning that one or more data wires are known to be stable relative to a
specific transition on a clock wire. Clocked ports are described in ANO30071: XCORE
Clocked Inputand Output. Clocked ports use a clock-block to capture an external clock
or drive an internally generated clock, and we show how to connect clock-blocks and
ports in that application note.

AN03002: XCORE Port Buffering

By default ports are tightly coupled to the instruction processing stream. The instruc-
tion processor and the pin will synchronise on input and output. This synchronisa-
tion may be too slow to implement fast interfaces (such as an Ethernet RMII) so for
these we need buffering, serialisation, and strobing. These are three functions that the
ports can perform autonomously. Buffering is the subject of AN0O3002: XCORE Port
Buffering, and it introduces the notion of a decoupling register between a port and an
instruction stream.

ANO03003: XCORE Serialization and Strobing

The port itself can serialise or deserialise data (relative to a clock), and can only ad-
vance in the presence of external handshake signals. These two subjects are ex-
plained in ANO3003: XCORE Serialization and Strobing.

By combining all these capabilities, ports can be configured to perform complex opera-
tions. For example, the signal shown in Fig. 2 can be deserialised and clocked in by ports
functions alone. Looking at the four data wires RX_D0..RX_D3 we can see bit patterns
0b0101, 0b1101, 0b0011, 0bO00O, Ob1111, 0b1100, and a port can read these in as four
bytes 0xD5, 0x03, OxCF, or it can be programmed to ignore all data up to the 0xD nibble
and just input the last two bytes.

You can use these advanced port operations to implement a wide range of interface
protocols, and process signals without the need for core processor resources.

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015262-AN/html/doc/rst/an03003.html
https://www.xmos.com/documentation/XM-015262-AN/html/doc/rst/an03003.html

ANO03007: XCORE Ports - An Introduction

X0D12: Rx,cu{ﬁ_—l_—l_—l_j_lm

X0D16: RX_DO - Y

X0D17: RX_D1 - e

X0D18: RX_D2 -

XOD1GRX D3 ——— [
X0D13: RX_DV /

Fig. 2: Example signals that XCORE ports can input.

2 System Design Using Ports and Libraries

XCORE ports can implement interface protocols in software. To make this easier for
system designer, XMOS provides a set of software libraries that implement standard
interfaces such as 12C, SPI, 12S, UART, etc. These libraries can be integrated into your
design to implement these interfaces quickly.

You can instantiate one or more of the interfaces; during the instantiation you will set
some of the fixed parameters of the interface, including the ports that should be used
for this interface. You can then simply call the interface functions on this interface in
order to perform high level operations.

You can find a full list of the available libraries on the XMOS library website. Each library
links to a landing page with documentation, source code, and application notes using
the library. As the libraries are normally distributed in source code form, you can take a
library and modify the code in order to implement a special requirement.

3 Example Applications Using Ports

Toillustrate the use of ports, we have several example applications that show how to use
ports to implement a range of functions. These application notes are available from the
XMOS application note website and you can use these as starting points for your own
designs. All examples below show how to use ports - they deliberately do not instantiate
libraries so that they can better illustrate the fundamental port features.

The classic example in embedded programming is to make an LED flash. This is the
subject matter of AN02036: Making an LED glow using a simple PDM modulator which
explores various ways to make a LED flash or glow with different brightnesses.

The Universal Asynchronous Receiver/Transmitter (UART) is a simple serial interface
that is used to communicate with other devices. AN0O3000: XCORE Input and Output
ends with a tutorial example showing how to implement a simple UART interface using
the XCORE port I/0 instructions.

The last section of ANO30071: XCORE Clocked Input and Output contains an example of
how to drive an LCD screen using the XCORE ports. This example illustrates the use of
clocked ports to drive a high speed parallel interface to a screen,

Many other examples are available from the XMOS website that show how to use ports
to implement a wide range of interfaces. These examples can be used as a starting point
for your own designs and can be modified to suit your requirements.

https://www.xmos.com/libraries/
https://www.xmos.com/application-notes/
https://www.xmos.com/documentation/XM-000000-AN/html/doc/rst/an02036.html
https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html

ANO03007: XCORE Ports - An Introduction

»MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

4 Y,

	Ports and How to Programme Them
	System Design Using Ports and Libraries
	Example Applications Using Ports

