
AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

Publication Date: 2024/12/13
Document Number: XM-015226-AN v1.0.0

IN THIS DOCUMENT

1 Introduction . 1
2 Application examples . 3
3 DFU using the Thesycon TL-USBDFU loader . 7
4 DFU using the xmosdfu loader . 10
5 DFU using the dfu-util loader . 12
6 Frequently Asked Questions . 14

1 Introduction

This application note describes the Device Firmware Upgrade (DFU) process for a USB
Audio application based on the XMOS USB Audio Reference Design. DFU is a protocol
defined by the USB Implementers Forum that allows for the upgrading of firmware of a
USB device without the need for specialised programming hardware. This ensures that
USB devices can receive updates and improvements after their initial deployment.
The DFU implementation in the XMOS USB Audio Reference Design is compliant with ver-
sion 1.1 of Universal Serial Bus Device Class Specification for Device Firmware Upgrade.

Note: This application note replaces the document DFU loader for XMOS USB AUDIO
devices (XM000524A)

1.1 Host options

Since the device DFU implementation is compliant to the USB DFU Specification, any
host implementing a compliant host-side protocol can be used. There are, however, three
recommended and tested implementations:
· TL-USBDFU by Thesycon
· xmosdfu
· dfu-util

TL-USBDFU

Provided by Thesycon, TL-USBDFU is a cross-platformDFU solutionwhichworks onWin-
dows and macOS.
Thesycon is an official driver partner of XMOS. Due to their experience and the quality
level of their product and support their solutions form the recommended approach.
When licensing the Thesycon TUSBAudio driver for Windows then TL-USBDFU is the nat-
ural choice.

Note: The DFU instructions using the Thesycon TL-USBDFU solution are only valid for
Thesycon driver package version 5.70.0 and above.

1

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.thesycon.de
https://www.thesycon.de/eng/usb_audiodriver.shtml

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

xmosdfu

XMOS provides a simple C++ program providing an example of how to interact with the
DFU interface. It uses libusb for low level communications with the USB device. It is not
intended that this should be used “as is” in a production environment, but rather intended
that developers use this code as starting point for integrating into custom host control
panel GUI applications.

A build flow is provided for macOS (ARM64, x86, x64), Linux, Windows & Raspberry Pi.

xmosdfu is licensed under the very permissive XMOS Public Licence, developers are free
to produce and distribute derivative works without restriction.

dfu-util

dfu-util is an open source host side implementation of the USB DFU 1.0 and DFU 1.1
specifications and has been tested with many different devices.

dfu-util is licensed under the GPL version 2.

dfu-util is available via various software package managers. Whilst every effort is ex-
erted to ensure correct operation, dfu-util is an open-source project that XMOS has no
influence on. A product developer must weigh up the risks of using this 3rd party ap-
plication without taking appropriate precautions regarding stability, availability and GPL
licence obligations.

1.2 General operation

Fig. 1 depicts the general flash format as supported by xflash and associated flash li-
braries bundled in the XMOS XTC tools.

Fig. 1: xcore flash format

DFU support in the XMOS USB Audio Reference Design is limited to a single upgrade
image - in practice this is adequate for almost all designs.

Separate images are provided for “factory” and “upgrade” in order to guard against cor-
rupted or interrupted upgrade via unexpected power outages etc.

If a valid “upgrade” image is present, it is booted, if not the “factory” image is booted.
Image integrity is assured via CRC based checks.

It is intended that a product be shipped fromamanufacturing facility with a valid “factory”
image only. The DFU functionality intentionally does not include the facility for updating
the “factory” image to protect from accidental or malicious damage.

Initial in-field upgrade writes to the “upgrade” image slot. Subsequent upgrades over-
write this upgrade image.

XMOS supplied libraries (libquadflash and libflash) facilitate reading and writing
image data.

Currently a solution for upgrading items in the optional “data partition” is not provided.

2

https://www.xmos.com/license-agreements/
https://dfu-util.sourceforge.net
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

1.3 Supported DFU operations

The USB Audio DFU implementation supports the standard DFU Download and Upload
operations as described in the DFU version 1.1 specification. Additionally, it also supports
a proprietary method of reverting to the factory image.

DFU Download

DFU download is the process through which the host downloads an upgrade image into
the device. To do this, the host application detaches the device in DFU mode, issues
DFU_DNLOAD commands to send the upgrade image to the device and detaches the
device back into runtime mode, causing it to boot from the upgrade image.

DFU Upload

DFU upload is the process through which the host reads back the upgrade image from
the device. To do this, the host application detaches the device in DFU mode, reads the
upgrade image by sending DFU_UPLOAD commands to the device, and detaches the
device back to runtime mode. The upgrade image read from the device is saved as a
binary file on the host.

Revert to factory

When the device boots, the upgrade image is always loaded if valid and present. Only
when the upgrade image is invalid (or missing), the factory image is loaded. This means
that even after updating the factory image by re-flashing the device using xflash, the
device would still boot from the upgrade and not the factory image.

There are two options for reverting to the factory image via the DFU system:

· Download an invalid upgrade image to the device. For example, DFU download a bi-
nary file containing the word 0xFFFFFFFF to the device.

· The XMOS DFU implementation supports a custom DFU command
XMOS_DFU_REVERTFACTORY. XMOS_DFU_REVERTFACTORY, the value for
which is defined as 0xf1, is expected as a USB Host to Device Vendor request
on the DFU interface by the device, with the bRequest for the request being
XMOS_DFU_REVERTFACTORY. The device, on receiving this request erases the
upgrade image from flash so that it boots from the factory image on subsequent
reboots.

Note: The support for reverting to factory using the XMOS_DFU_REVERTFACTORY
command is only available in the TL-USBDFU and xmosdfu host applications.

Alternatively, if the xTag interface is accessible, the entire flash could be erased before
flashing a new factory image. i This would ensure that the device boots from the newly
flashed factory image. For example:

xflash --erase-all --target-file=./app_an02019/src/core/xk-audio-316-mc.xn

2 Application examples

The sample application provided alongside this application note is calledapp_an02019.
It has two build configurations for building two application binaries, a factory firmware
application and an upgrade firmware application. Both the factory and upgrade applica-
tions are USB audio applications capable of performing a DFU over USB. The device is
flashed with the factory firmware to begin with, and the upgrade image generated from
the upgrade firmware is used for the DFU operation.

3

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

Both the applications are based on the XMOS USB Audio reference design which uses
lib_xua and associated XK-AUDIO-316-MC hardware. The applications are the iden-
tical except for the bcdDevice version number that they enumerate with. Having different
versions enables the user to verify the success of the upgrade process by checking the
bcdDevice version number of the device enumerated post DFU.
The table Table 1 describes the application builds.

Table 1: Example Application Builds

Build bcdDevice ver-
sion

Vendor ID Runtime Prod-
uct ID

DFUmode Prod-
uct ID

fac-
tory

0x1000 0x20b1 0x0016 0xd016

up-
grade

0x9901 0x20b1 0x0016 0xd016

The DFU device interface is enabled by default in the XMOS USB Audio Reference Design
software (See the XUA_DFU_EN define in lib_xua)

2.1 Building the examples

The following section assumes you have downloaded and installed the XMOS XTC tools
(see README for required version). Installation instructions can be found here. Be sure
to pay attention to the section Installation of required third-party tools.
The application uses the xcommon-cmake build system as bundled with the XTC tools.
The an02019 software zip-file should be downloaded and unzipped into a chosen direc-
tory.
The file CMakeLists.txt contains build configurations named factory and upgrade.
To configure the build run the following from an XTC command prompt:
cd an02019
cd app_an02019
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software download, however, if any are
missing it is at this configure step that they will be downloaded by the build system.
Finally, the application binaries can be built using xmake:
xmake -j -C build

This will create the two application binaries, one for each build configu-
ration: bin\factory\app_an02019_factory.xe and bin\upgrade\
app_an02019_upgrade.xe.

2.2 Installing the factory image to the device

Before verifying the DFU operation, the device needs to be flashed with the factory
firmware. Before doing this, ensure that there are USB cables connecting both the USB
and DEBUG ports on the XK-AUDIO-316-MC to the host computer. To flash the factory
firmware, from the app_an02019 directory, run:
xflash --factory bin\factory\app_an02019_factory.xe

This programs the factory firmware image into the flash device over the xTag debug
adapter. The device is now ready to receive firmware updates via the DFU mechanism.
The USB cable connecting the DEBUG port of the XK-AUDIO-316-MC to the host can now

4

https://github.com/xmos/lib_xua/blob/develop/lib_xua/api/xua_conf_default.h
https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

be disconnected. Updates to the device can now happen over USB. Make sure that the
USB port on the XK-AUDIO-316-MC remains connected to the host computer.

Note: Using the xflash command as described above will allocate the entire flash for
the bootloader, factory image and any upgrade images. If the flash is to be used for
other purposes, for example, storing data, a portion of the flash can be allocated to boot
images using the switch --boot-partition-size.

Enumerating as a WinUSB device on Windows

The application firmware supports extraMicrosoft operating system (MSOS) descriptors
that allow the device to enumerate as aWinUSB device onWindows. TheMSOS descrip-
tors report the compatible ID asWINUSBwhich enables Windows to load Winusb.sys as
the device’s function driver without a custom INF file. This means that when the device
is connected, the DFU interface shows up as WinUSB compatible automatically, without
requiring the user to manually load a driver for it using a utility like Zadig. This can be
verified by opening the Device Manager and verifying that XMOS DFU shows up under
Universal Serial Bus Devices.

On double clicking the XMOS DFU and navigating to the driver tab, the driver can be seen
as USB\MS_COMP_WINUSB which is the generic WinUSB driver on Windows.

The MSOS descriptors, in addition to specifying WinUSB compatibility, also specify the
device interface GUID. The GUID is required to access the device’s DFU interface from a
user application such as dfu-util or the Thesycon DFU driver running on Windows.

Note: The MSOS descriptors for reporting WinUSB compatibility are only relevant for
Windows. Other OSs can access the interface without the need to install a driver.

5

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

2.3 Creating the Upgrade Image

Create an upgrade image from the bin\upgrade\app_an02019_upgrade1.xe
firmware executable. To do this, from the app_an02019 directory run:
xflash --factory-version 15.3 --upgrade 1 bin\upgrade\app_an02019_upgrade1.xe -o bin\upgrade\app_an02019_
↪→upgrade1.bin

This will create the upgrade image bin\upgrade\app_an02019_upgrade1.bin
that can be downloaded into the device using the DFU download operation.

6

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

3 DFU using the Thesycon TL-USBDFU loader

To perform DFU using the TL-USBDFU loader, install the evaluation version of the Thesy-
con DFU solution v5.70.0 from the xmos website. Run the Thesycon Evaluation
Driver DSK.exe. This will extract the Thesycon Evaluation Driver DSK on the host
machine. <Path to DSK>\DfuCons\x64\tlusbdfucons.exe is the command
line DFU host application.

After the device is flashed with the factory firmware, check that it is seen as a valid DFU
device by running the tlusbdfucons devinfo command:
tlusbdfucons devinfo VendorID:RuntimeProducID,VendorID:DfuProductID

tlusbdfucons devinfo 0x20b1:0x0016,0x20b1:0xd016

This should result in an output containing:
Enumerate available devices...
Found 1 device(s).
Open device...
Device information:
Vendor ID: 0x20B1
Product ID: 0x0016
BcdDevice: 0x1000
Manufacturer: 'XMOS'
Product: 'USB Audio DFU'
Serial number: ''
Device Instance ID: 'USB\VID_20B1&PID_0016&MI_03\6&35B1C28E&3D&0003'
Physical Device ID: '{8B088D61-691D-11EF-86E5-9CB6D08CA822}'
Current run mode: APP (application)

3.1 Download upgrade image into the device

The upgrade image can be downloaded into the device by running the tlusbdfucons
upgrade command. The upgrade command is of the form:
tlusbdfucons upgrade VendorID:RuntimeProducID,VendorID:DfuProductID <upgrade image>

To do DFU download, run the following from the directory containing tlusbdfucons.exe:
tlusbdfucons.exe upgrade 0x20b1:0x0016,0x20b1:0xd016 <path to the app_an02019_upgrade.bin file>

Running this would generate a console output similar to:
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode APP (application).
Rebooting device to switch to run mode DFU (bootloader).
Waiting until device is gone...
The device has disconnected itself from USB.
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode DFU (bootloader).
Downloading to target 0, press any key to abort...
State = Finished : 69632 bytes of 69632 bytes transferred (100 %)
Upgrade successfully finished (took 7.875 seconds).
Rebooting device to switch to run mode APP (application).
Firmware upgrade finished. The device should start in application mode now.

Run the tlusbdfucons devinfo command to verify that the device is running the
upgrade image
tlusbdfucons devinfo 0x20b1:0x0016,0x20b1:0xd016

Enumerate available devices...
Found 1 device(s).
Open device...
Device information:
Vendor ID: 0x20B1
Product ID: 0x0016
BcdDevice: 0x9901
Manufacturer: 'XMOS'
Product: 'USB Audio DFU'

(continues on next page)

7

https://www.xmos.com/file/usb-audio-class-20-evaluation-driver-windows

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

(continued from previous page)
Serial number: ''
Device Instance ID: 'USB\VID_20B1&PID_0016&MI_03\6&35B1C28E&3D&0003'
Physical Device ID: '{8B088D61-691D-11EF-86E5-9CB6D08CA822}'
Current run mode: APP (application)

Found Runtime: [20b1:0016] ver=9901, devnum=33, cfg=1, intf=3, path="1-1", alt=0, name="XMOS DFU", serial=
↪→"UNKNOWN"

Note how BcdDevice: 0x9901 now shows the bcdDevice version 0x9901 of the
upgrade image. This indicates a successful DFU download operation.

3.2 Upload upgrade image from the device

The upgrade image that is downloaded in the device can be read back and saved on the
host by using the tlusbdfucons readout command. The readout command is of
the form:
tlusbdfucons readout VendorID:RuntimeProducID,VendorID:DfuProductID <upload bin file name>

Run the following from the directory containing tlusbdfucons.exe:
tlusbdfucons.exe readout 0x20b1:0x0016,0x20b1:0xd016 app.bin

Running this should generate a console output similar to:
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode APP (application).
Rebooting device to switch to run mode DFU (bootloader).
Waiting until device is gone...
The device has disconnected itself from USB.
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode DFU (bootloader).
Uploading from target 0, press any key to abort...
State = Finished : 69120 bytes transferred
Readout successfully finished (took 0.156 seconds).
Firmware image successfully stored in app.bin. Image type is RawBinary.
Rebooting device to switch to run mode APP (application).
Firmware readout finished. The device should start in application mode now.

The upgrade image read from the device is saved in the app.bin file. This file can be
used as the input file in a subsequent download operation.

3.3 Revert to the factory image

tlusbdfucons supports the proprietary XMOS revert to factory method. To revert to
factory, run the xmosrevertfactory command:
tlusbdfucons.exe xmosrevertfactory 0x20b1:0x0016,0x20b1:0xd016

Running this should generate a console output similar to:
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode APP (application).
Rebooting device to switch to run mode DFU (bootloader).
Waiting until device is gone...
The device has disconnected itself from USB.
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode DFU (bootloader).
Reverting to factory image...
Enumerate available devices...
Found 1 device(s).
Open device...
The device is operating in run mode DFU (bootloader).
Rebooting device to switch to run mode APP (application).
Waiting until device is gone...
The device has disconnected itself from USB.
Operation finished. The device should start in application run mode now.

8

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

Run the devinfo command to verify that the device is now running the factory image:
tlusbdfucons devinfo 0x20b1:0x0016,0x20b1:0xd016

This should result in an output containing:
Enumerate available devices...
Found 1 device(s).
Open device...
Device information:
Vendor ID: 0x20B1
Product ID: 0x0016
BcdDevice: 0x1000
Manufacturer: 'XMOS'
Product: 'USB Audio DFU'
Serial number: ''
Device Instance ID: 'USB\VID_20B1&PID_0016&MI_03\6&35B1C28E&3D&0003'
Physical Device ID: '{8B088D61-691D-11EF-86E5-9CB6D08CA822}'
Current run mode: APP (application)

Note the BcdDevice: 0x1000 now shows the bcdDevice version of the factory
image, indicating the success of the revert to factory operation.

9

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

4 DFU using the xmosdfu loader

The xmosdfu loader is provided as source as part of the USB Audio framework, located
in lib_xua/host/xmosdfu. The loader is compiled using libusb. The code for the loader is
contained in the file xmosdfu.cpp It has support for CMake based compilation.

4.1 Building the app

To compile, clone lib_xua and run the build commands from the lib_xua/host/
xmosdfu directory.

MacOS or Linux

To compile the xmosdfu application, from the lib_xua/host/xmosdfu, run:
cmake -B build
make -C build

The xmosdfu application is created in the lib_xua/host/xmosdfu/build directory.

Windows

When compiling onWindows, ensure that Visual Studio Build Tools with C++ support are
installed on the machine and the commands for building the xmosdfu application are
run from a Developer Command Prompt.

To compile the xmosdfu application, from lib_xua/host/xmosdfu, run:
cmake -B build -G "NMake Makefiles"
cd build
nmake

The xmosdfu application is created in the lib_xua/host/xmosdfu/build directory.

Once the device is flashed with the factory firmware, to check if it is seen as a valid
DFU capable device, run the following command from the lib_xua/host/xmosdfu/
build directory where xmosdfu is located:
./xmosdfu --listdevices

The device should show up in the list of DFU capable devices.
Found Runtime: [20b1:0016] ver=1000

Note the VendorID, ProductID and bcdVersion of the factory image are displayed.

4.2 Download upgrade image into the device (xmosdfu)

The upgrade image can be downloaded into the device by running the xmosdfu
download command. The download command is of the form:
./xmosdfu VendorID:RuntimeProducID,VendorID:DfuProductID --download <upgrade image>

To do DFU download, run the following from the directory containing xmosdfu:
./xmosdfu 0x20b1:0x0016,0x20b1:0xd016 --download <path to the app_an02019_upgrade.bin file>

Running this would generate a console output similar to:
Found Runtime: [20b1:0016] ver=1000
Opening DFU capable USB device, [20b1:0016], Runtime mode.
XMOS DFU application started - Interface 3 claimed
Detaching device from application mode.
Waiting for device to restart and enter DFU mode...
Found DFU: [20b1:d016] ver=1000

(continues on next page)

10

https://github.com/xmos/lib_xua/tree/develop/lib_xua/host/xmosdfu
https://cmake.org/
https://github.com/xmos/lib_xua/
https://learn.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

(continued from previous page)
Opening DFU capable USB device, [20b1:d016], DFU mode.
... DFU firmware upgrade device opened
... Downloading image (/Users/shuchitak/sandboxes/an02019_sandbox/an02019/app_an02019/bin/upgrade/app_an02019_
↪→upgrade.bin) to device
... Download complete
... Returning device to application mode

Run the xmosdfu listdevices command to verify that the device is running the up-
grade image
./xmosdfu --listdevices

Found Runtime: [20b1:0016] ver=9901

Note the ver=9901 now shows the bcdDevice version 0x9901 of the upgrade image,
indicating success of the DFU Download operation.

4.3 Upload upgrade image from the device (xmosdfu)

The upgrade image that is downloaded in the device can be read back and saved on the
host by using the xmosdfu upload command. The upload command is of the form:
./xmosdfu VendorID:RuntimeProducID,VendorID:DfuProductID --upload <upload bin file name>

Run the following from the directory containing xmosdfu:
./xmosdfu 0x20b1:0x0016,0x20b1:0xd016 --upload app.bin

Running this should generate a console output similar to:
Found Runtime: [20b1:0016] ver=9901
Opening DFU capable USB device, [20b1:0016], Runtime mode.
XMOS DFU application started - Interface 3 claimed
Detaching device from application mode.
Waiting for device to restart and enter DFU mode...
Found DFU: [20b1:d016] ver=9901
Opening DFU capable USB device, [20b1:d016], DFU mode.
... DFU firmware upgrade device opened
... Uploading image (app.bin) from device
... Returning device to application mode

The upgrade image read from the device is saved in the app.bin file. This file can be
used as the input file in a subsequent download operation.

4.4 Revert to the factory image (xmosdfu)

xmosdfu supports the custom XMOS revert to factory method. To revert to the factory
image, run:
./xmosdfu 0x20b1:0x0016,0x20b1:0xd016 --revertfactory

Running this should generate a console output similar to:
Found Runtime: [20b1:0016] ver=9901
Opening DFU capable USB device, [20b1:0016], Runtime mode.
XMOS DFU application started - Interface 3 claimed
Detaching device from application mode.
Waiting for device to restart and enter DFU mode...
Found DFU: [20b1:d016] ver=9901
Opening DFU capable USB device, [20b1:d016], DFU mode.
... DFU firmware upgrade device opened
... Reverting device to factory image
... Returning device to application mode

Following this up with ./xmosdfu --listdevices will confirm this:
Found Runtime: [20b1:0016] ver=1000

Note the ver=1000 now shows the bcdDevice version of the factory image, indicating
the success of the revert to factory operation.

11

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

5 DFU using the dfu-util loader

DFU can be performed using the dfu-util utility that implements the DFU host side imple-
mentation of the DFU 1.1 specification. dfu-util installation instructions are available for
various operating systems.

Warning: dfu-util will not work on a Windows machine if the machine also has
the Thesycon USB Audio driver, any version prior to v5.70.0, installed on it. This is
because, prior to v5.70.0, the Thesycon audio driver would take over the entire device,
leaving the device’s DFU interface unavailable for dfu-util to claim. From v5.70.0
onwards, the Thesycon driver installs only on the audio interface leaving the DFU in-
terface available for dfu-util.

After the device is flashed with the factory firmware, check that it is seen as a valid DFU
device by doing:
dfu-util -l

This should result in an output containing:
Found Runtime: [20b1:0016] ver=1000, devnum=30, cfg=1, intf=3, path="1-1", alt=0, name="XMOS DFU", serial=
↪→"UNKNOWN"

Note that 20b1:0016 are the Vendor and Product IDs respectively of the factory firmware,
1000 is the bcdDevice version and intf=3 implies that the interfacewith bInterfaceNumber
3 is seen as DFU compatible and XMOSDFU is the string describing the interface as seen
in the DFU interface’s string descriptor.

5.1 Download Upgrade Image into the Device (dfu-util)

The upgrade image can be downloaded into the device by running the dfu-util down-
load command. The download command is of the form:
dfu-util -d VendorID:RuntimeProducID,VendorID:DfuProductID -D <upgrade image> -R

To do DFU download, run the following from app_an02019 directory:
dfu-util -d 20b1:0016,20b1:d016 -D bin\upgrade\app_an02019_upgrade1.bin -R

Running this would generate a console output similar to:
Opening DFU capable USB device...
Device ID 20b1:0016
Run-Time device DFU version 0110
Claiming USB DFU (Run-Time) Interface...
Setting Alternate Interface zero...
Determining device status...
DFU state(0) = appIDLE, status(0) = No error condition is present
Device really in Run-Time Mode, send DFU detach request...
Device will detach and reattach...
Opening DFU USB Device...
Claiming USB DFU Interface...
Setting Alternate Interface #0 ...
Determining device status...
DFU state(2) = dfuIDLE, status(0) = No error condition is present
DFU mode device DFU version 0110
Device returned transfer size 64
Copying data from PC to DFU device
Download [=========================] 100% 69632 bytes
Download done.
DFU state(2) = dfuIDLE, status(0) = No error condition is present
Done!
Resetting USB to switch back to Run-Time mode

Run dfu-util -l post download to verify that the device is running the upgrade image:
Found Runtime: [20b1:0016] ver=9901, devnum=33, cfg=1, intf=3, path="1-1", alt=0, name="XMOS DFU", serial=
↪→"UNKNOWN"

12

https://dfu-util.sourceforge.net/

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

Note how ver=9901 now shows the bcdDevice version 0x9901 of the upgrade image.
This indicates a successful DFU download operation.

5.2 Upload upgrade image from the device (dfu-util)

The upgrade image that is downloaded in the device can be read back and saved on the
host by using the dfu-util upload command. The upload command is of the form:
dfu-util -d VendorID:RuntimeProducID,VendorID:DfuProductID -U <upload bin file name> -R

Run the following:
dfu-util -d 20b1:0016,20b1:d016 -U app.bin -R

Running this should generate a console output similar to:
Opening DFU capable USB device...
Device ID 20b1:0016
Run-Time device DFU version 0110
Claiming USB DFU (Run-Time) Interface...
Setting Alternate Interface zero...
Determining device status...
DFU state(0) = appIDLE, status(0) = No error condition is present
Device really in Run-Time Mode, send DFU detach request...
Device will detach and reattach...
Opening DFU USB Device...
Claiming USB DFU Interface...
Setting Alternate Interface #0 ...
Determining device status...
DFU state(2) = dfuIDLE, status(0) = No error condition is present
DFU mode device DFU version 0110
Device returned transfer size 64
Copying data from DFU device to PC
Upload [=========================] 100% 69120 bytes
Upload done.
Received a total of 69120 bytes
Resetting USB to switch back to Run-Time mode

The upgrade image read from the device is saved in the app.bin file. This file can be
used as the input file in a subsequent download operation.

13

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

6 Frequently Asked Questions

The flashed device when connected to Windows host does not appear as a DFU capa-
ble device when running tlusbdfucons devinfo or dfu-util -l. How do I fix this?
Windows caches the USB device details by storing information about the USB devices
in its registry. This can cause driver changes or other changes made in the device inter-
faces to not take effect till the registry is cleared. Effect of the cached registry can show
up as the DFU interface not being reported asWinUSB compatible if there was previously
a driver installed manually for it. Caching would also lead to a change in the device in-
terface GUID to not take effect. To clear the registry cache, use a third party tools like
USBDeview. Uninstall the USB device drivers by using USBDeview GUI, or by typing from
a command line with Administrator rights the lines below:
USBDeview.exe /RunAsAdmin /remove_by_pid 20b1;0016
USBDeview.exe /RunAsAdmin /remove_by_pid 20b1;d016

where 20b1 is the USB VendorID, 0016 is the USB Product ID in runtime mode and d016
is the USB product ID in DFUmode as specified in the application built as part of this app
note.
How do I change the Product IDs used in the application?
The application has two Product IDs, the runtime product ID and the DFU mode prod-
uct ID. The runtime Product ID can be changed by changing the PID_AUDIO_2 de-
fine and the DFU mode Product ID can be changed by changing the DFU_PID define
in xua_conf.h.

#define PID_AUDIO_2 (0x0016)
#define DFU_PID (0xd000 + PID_AUDIO_2)

If changing the Product IDs, make sure to modify the DFU commands described in the
previous sections to use the new Product IDs.

Warning: If using the Thesycon Evaluation Driver tlusbdfucons host app, the sup-
portedProduct IDs are hardcodedwithin the driver’stlusbdfuapi.dll.license.
ini file. The driver uses this list to identify devices for DFU purposes. Changing the
Product IDs to something not present in the supported Product IDs list will make DFU
operations fail when using the tlusbdfucons host application.

How do I change the device interface GUID?
The default GUID is specified in the WINUSB_DEVICE_INTERFACE_GUID
define in xua_conf_default.h This can be overriden by redefining
WINUSB_DEVICE_INTERFACE_GUID in the application’s xua_conf.h. A utility
like guidgenerator can be used for generating a GUID.

Warning: If using the Thesycon Evaluation Driver tlusbdfucons host app, the de-
vice interfaceGUID that thetlusbdfucons applications looks for is hardcoded in the
driver’s tlusbdfuapi.dll.config.ini file and is the same as the GUID defined
in xua_conf_default.h. If the device runs with a different GUID, the tlusbdfucons
driver would not be able to locate the WinUSB interface created by the XMOS device
and DFU operations will fail.

Why might I need to create a new device interface GUID?
On Windows, the device interface GUID is the link between the product and product spe-
cific apps. When using default apps/utilities, it’s okay to stick to the predefined GUID.

14

https://www.nirsoft.net/utils/usb_devices_view.html
https://github.com/xmos/lib_xua/blob/develop/lib_xua/api/xua_conf_default.h
https://guidgenerator.com/
https://github.com/xmos/lib_xua/blob/develop/lib_xua/api/xua_conf_default.h

AN02019: Using Device Firmware Upgrade (DFU) in USB Audio

However, when developing custom applications, it’s better to assign a fresh GUID so it
can be ensured that the apps talk to their products only.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

15

	Introduction
	Application examples
	DFU using the Thesycon TL-USBDFU loader
	DFU using the xmosdfu loader
	DFU using the dfu-util loader
	Frequently Asked Questions

