
lib_qadc: XMOS QADC Library

Publication Date: 2024/11/26
Document Number: XM-015184-UG v1.0.0

lib_qadc: XMOS QADC Library

IN THIS DOCUMENT

1 Introduction . 3
1.1 Rheostat Reader . 5
1.2 Potential Reader . 6

2 Post Processing . 9
2.1 Moving Average Filter . 9
2.2 Scaling . 9
2.3 Hysteresis . 9

3 Comparing the Effect of Passive Component Tolerance on Both Schemes 10
4 Passive Component Selection . 12
5 QADC Tuning . 13

5.1 How to set auto_scale . 13
5.2 How to set convert_interval_ticks . 13

6 QADC Usage . 15
6.1 Continuous Modes . 15
6.2 Single Shot Mode . 15

7 QADC API . 16
7.1 Common API . 16
7.2 QADC Rheostat API . 17
7.3 QADC Potentiometer API . 18

8 Building and running the examples . 21
9 Hardware Characterisation of QADC Potentiometer Transfer Curve 23

2

lib_qadc: XMOS QADC Library

1 Introduction

Xcore.ai devices offer an inexpensive way to read the value of a variable resistor (rheo-
stat) or a potentiometer without the need for a dedicated external ADC component. The
performance may be suitable for applications such as reading the position of an analog
slider can may then be converted in to a gain control. Resolutions in excess of eight bits
can be achieved which is adequate for many control applications.

The Quasi ADC (QADC) relies on the fact that the input threshold for the xcore.ai IO is very
stable at around 1.15 V for a Vddio of 3.3 V. By charging a capacitor to the full rail and
discharging it through a resistor, the RC time constant can be determined. If you know
the value of C, then you can read R by timing the transition. As long as VDDIO remains
constant between the charge and discharge cycles then the IO voltage component will
cancel out.

The xcore offers precise timing of transitions of IO using port logic (in this case 10 ns
resolution) so a reasonable accuracy ADC can be implemented using just a couple of
additional passive components and some software.

Two schemes are offered which have different pros and cons depending on the applica-
tion. The table below summarises the approaches.

Table 1: QADC Comparison

Item Rheostat reader Potential reader

Minimum scale 0% + small dead zone 0% + small dead zone
Maximum scale Dependent on end to end

track tolerance
100% + small dead zone

Possible discontinu-
ity or dead zone mid-
way

No Yes at 35% travel if tolerance
of components poor

Typical max counts ~10000 ~10000
Required VDDIO tol-
erance

5% 5%

Typical minimum
conversion time per
channel

~0.2 - 0.5 milliseconds ~0.2 - 0.5 milliseconds

Supported port
widths

1 bit ports only Any port width. Arrays of
ports must be of same type.

Number of channels Limited by port count only Limited by port count only
Typical ENOBs post
filtering

8+ 8+

Requires 5 % capaci-
tor (eg C0G)

Yes Yes

Requires calibration Yes, if passive components
worse than 10 % tolerance.
Will improve full scale esti-
mated position.

Normally OK up to around 20
% passive tolerance. 10% will
improve linearity.

Linearity Good Reasonable, depending on
passive tolerance

Monotonic Yes Yes
Memory usage (8 bit,
two channels)

3 kB 5 kB

3

lib_qadc: XMOS QADC Library

Noise is always a concern in the analog domain and the QADC is no different. In particu-
lar power supply stability and coupled signals (such as running the QADC input close to
a digital IO) should be considered when designing the circuitry. Since the QADC relies on
continuously charging and discharging a capacitor it is also recommended that any ana-
log supplies on the board are separated from the xcore digital supply to avoid any noise
from the QADC conversion process being coupled to places where it would unwelcome.

4

lib_qadc: XMOS QADC Library

1.1 Rheostat Reader

The rheostat reader uses just two terminals of a potentiometer and treats it as variable
resistor (rheostat). The scheme works as follows:

· Charge capacitor via the port by driving a one and waiting for at least 5 maximum RC
charge periods.

· Make IO open circuit which initiates the discharge. Take the port timer at this point.
Setup a pinseq(0) event on the port to capture the transition to zero.

· Wait for transition to a read zero and take the stop timestamp.

· Set the port to high impedance because there is no point in fully discharging the ca-
pacitor.

· Calculate difference the difference in time.

· Post process value to reduce noise and improve linearity.

The rheostat reader currently supports only arrays of 1 bit ports.

Fig. 1: QADC Rheostat Circuit

The rheostat reader offers excellent linearity however it suffers from full scale setting
accuracy if the passive components have large tolerances. This may result, for example
with 20% tolerances, in full scale being read at 80% (and beyond) of the travel or only 80%
being registered at the end of the travel. See the effect of passive components section
for more details.

Note: If the QADC input pin is left disconnected you will see a full scale output.

5

lib_qadc: XMOS QADC Library

Fig. 2: QADC Rheostat Timer Ticks vs Position

1.2 Potential Reader

The potential reader uses all three terminals of a potentiometer where the track end ter-
minals are connected between ground and Vddio. Depending on the initial reading of the
IO pin, the QADC either charges the capacitor to Vddio or discharges it ground and then
times the transition through the threshold point to the potential set by the potentiome-
ter, via the equivalent resistance of the potentiometer. The equivalent resistance of the
potentiometer is the parallel of the upper and lower sections between the wiper and the
end terminals.

Due to the reasonably complex calculation required to determine the estimated position
from the transition time, which includes several precision multiplies, divides and a loga-
rithm, a look up table (LUT) is pre-calculated at initialisation to make the conversion step
more CPU efficient.

The scheme works as follows:

· Read the current port value to see if voltage of the potentiometer is above or below
threshold.

· Set the inverse port value and wait to charge capacitor fully to the opposite supply rail.

· Set the port to high impedance and take a timestamp.

· Take a timestamp when voltage crosses threshold.

· Use the lookup table to calculate the start voltage.

· Post process value to reduce noise and improve linearity.

The rheostat reader currently supports arrays of any port width with the proviso that all
ports are the same width.

6

lib_qadc: XMOS QADC Library

Fig. 3: QADC Potentiometer Timer Ticks vs Position

Fig. 4: QADC Potentiometer Equivalent Resistance vs Position for 25 kOhm Component

7

lib_qadc: XMOS QADC Library

The potential reader offers good performance and is less susceptible to component tol-
erances due to the mathematics of using a parallel resistor network and the logarithm
used. It will always achieve zero and full scale however if tolerances are too large then it
may showworse non-linearity than the rheostat reader and, in particular, around the 35%
setting point which corresponds the threshold voltage of the IO. It does however always
remain monotonic in operation. See the effect of passive components section for more
details.

A small amount of noise is present when taking readings close to the threshold point. A
moving average filter is typically used and so these non-linearities are reduced in practice
and more than eight bits of resolution can easily be achieved.

Fig. 5: QADC Potentiometer Circuit

Fig. 6: QADC Potentiometer Equivalent Circuit

Note: If the QADC input pin is left disconnected you will likely see a value of 35 % of full
scale for the 1b port version and a value of close to zero for the wide port version.

8

lib_qadc: XMOS QADC Library

2 Post Processing

Both QADC schemes benefit from post processing of the raw measured transition time
to improve performance.

Fig. 7: QADC Post Processing Steps

The included post processing steps are as follows:

2.1 Moving Average Filter

The moving average filter (sometimes know as a Boxcar FIR) helps filter out noise from
the raw signal. It uses the conversion of history and takes the average value of the con-
version and effectively low-pass filters the signal. One filter is provided per channel and
the depth of the filter is configurable. A typical depth of 32 has been found to provide a
good performance. Due to the low pass effect very long filters will reduce the response
time of the QADC.

2.2 Scaling

Scaling typically means reducing the raw resolution of the ADC from 12 - 13 bits and
quantising it to a typical bit resolution such at 8, 9 or 10 bits. This provides a signal
which has a know range, for example, 0 - 511 for the 9 bit case. This step also offers the
possibility of calibration where the tolerance of the passive components may affect the
estimated position of the input.

2.3 Hysteresis

Even after filtering it may still be possible to see some small noise signal depending on
configuration. This may also be exaggerated due to the natural quantisation to a digital
value by the QADC, particularly if the setting is close to a transition point. By adding a
small hysteresis (say a value of one or two) additional stability can be achieved at the cost
of a very small dead zone at the last position. This may desirable if the QADC output is
controlling a parameter thatmay be noticeable if it hunts between one ormore positions.
The hysteresis is configurable andmay be removed completely if needed by setting to 0.

9

lib_qadc: XMOS QADC Library

3 Comparing the Effect of Passive Component Tolerance on
Both Schemes

Both schemes offeredwill work very well when the overall passive component tolerances
are good (e.g. 5%). However typical variable resistors/potentiometers are designed to
produce good relative resistances rather than absolute resistances and often the end-
to-end resistance tolerance can be as high as 20%. The QADC relies more on absolute
resistances, particularly the rheostat approach.

When passive component tolerances are poor we see differing effects on the real-life
transfer curves of actual position versus estimated position depending on
the scheme used.

For the Rheostat approach we see the good linearity and zero scale performance is al-
ways retained however full scale is directly affected. For example, if the resistor tolerance
is 20% too low then the time constant will be smaller than expected and the maximum
setting that can be achieved is 80% even at full travel (orange curve). This can be seen in
the rheostat transfer curve. If the resistor tolerance is 20% too high then full scale will be
achieved at 80% travel and the last 20% of travel will give the same reading of full scale
(green curve).

The small step close to zero is caused by theQADCnot being able to charge the capacitor
past the threshold voltage at low setting due to the required series resistor.

If a manufacturing test is an option to calibrate the component values then this is likely
the best approach to adopt.

Fig. 8: QADC Rheostat Effect of 20% Tolerance on Transfer Curve

ThePotentiometer approach ismore tolerant to the overall end to end resistance since it’s
operation also relies on the starting potential aswell as the equivalent series resistance at
any given setting, which itself is a function of the end-to-end track resistance. Even when
tolerance is 20% out the end positions will always achieve zero and full scale however
linearity is slightly degraded and a small flat spot or inflection pointmaybe seen at around
1/3 of the travel.

10

lib_qadc: XMOS QADC Library

The curve will always remain monotonic increasing however the effect of noise (present
in all ADCs) and the use of post processing (filtering and hysteresis) reduces the real life
affect to a couple of percent of the travel, to a point where it may be unnoticeable.

Where the potentiometer end to end resistance is higher than set in the model, flat spot
effect will be seen due to a higher than expected RC constant when the potentiometer is
near to the GPIO input threshold voltage. Where the potentiometer end to end resistance
is lower than set in themodel, the inflection effect will be see due to the RC time constant
being shorter than expected. This can be seen in the potentiometer transfer curve.

The small steps in the transfer curve close to zero and full scale settings are caused
by the QADC not being able to charge the capacitor past the threshold voltage due to
the potential divider effect of the series resistor and the potentiometer equivalent series
resistance. Increasing the potentiometer value and decreasing the series resistor can
reduce this effect.

Note: Overall, it is recommended to use the Potentiometer approach in cases where the
potentiometer tolerance is between 10% and 20% and including amanufacturing calibra-
tion step is not practical.

Fig. 9: QADC Potentiometer Effect of 20% Tolerance on Transfer Curve

This theoretical behavior has been verified as shown in the Hardware Characterisation
section of this document.

11

lib_qadc: XMOS QADC Library

4 Passive Component Selection

There are three components to consider when building one channel of QADC.

The variable resistor should be typically in the order of 20 - 50 kOhms. A lower value such
as 10 kOhms may be used but it will either reduce the accuracy of the QADC slightly due
to the increasing effect of the (required) series resistor and a reduced count or require
the inclusion a larger capacitor to compensate which will increase power consumption
due to greater charge/discharge amounts. The practical effect of this will also to be to
increase the step sizes seen at the end positions of the transfer curves.

Choosing a value significantly of 100 kOhms or above may also decrease performance
due to PCB parasitics or IO input leakage affecting the accuracy.

The capacitor value should by typically around 2 - 5 nF with the same trade-offs being
seen as that of the variable resistor. A larger value is acceptable but it will increase the
conversion time. A smaller value will increase noise and the effects of PCB stray capac-
itance may start to emerge. A 5 % tolerance C0G or similar capacitor is recommended
although any type with good voltage vs. capacitance characteristics and 5 % tolerance is
acceptable. Typical X7R decoupling capacitors are not ideal due to their negative voltage
coefficient of capacitance which means the capacitance varies based on voltage.

The series resistor value is a compromise. Ideally it would set to a low value to reduce
the small step effects in the transfer curve however this increases the current draw on
the IO pin when the slider is close to end settings, which is undesirable and may cause
noise. Typically a value of 1 % of the variable resistor value maximum is applicable with
a minimum being around 330 ohms to limit the inrush current to the capacitor. Smaller
values may cause unwanted EMI when the IO pin charges the capacitor although the IO
drive settings are set to the minimum of 2 mA in QADC to minimise this effect.

Typical values recommended are:

Table 2: Recommended passive values for QADC

Capacitor
value

Potentiometer
value

Series resistor value Conversion cycle
time

2200 pF 5% 47 - 100 kOhms, 20
% or better (10 %
ideally)

470 Ohms, 5 % or
better

1 millisecond (=
100,000 10 MHz
timer ticks)

12

lib_qadc: XMOS QADC Library

5 QADC Tuning

Once the passive components have been selected then you can configure your QADC.
Both schemes share a common configuration of type qadc_config_t as shown in the
API section.

Note: It is highly recommended to prototype the values and test the configuration before
deployment. There are natural sources of error in any analog scheme and these should
be evaluated by the user.

The qadc_config_t configuration can be initialised (using C in this example rather
than XC) as follows:

const qadc_config_t adc_config = { .capacitor_pf = 2000,
.potentiometer_ohms = 47000,
.resistor_series_ohms = 470,
.v_rail = 3.3,
.v_thresh = 1.15,
.auto_scale = 0,
.convert_interval_ticks = 1 * XS1_TIMER_KHZ};

The passive component selection should be directly inputted into the structure and nom-
inal values of 3.3 and 1.15 used for the IO voltage and threshold voltage. If the IO volt-
age is known to be say 5 % lower than 3.3 then please scale both values accordingly (e.g.
3.135 and 1.0925).

The final three settings require some thought and are described below.

5.1 How to set auto_scale

Autoscale works by measuring the time taken to reach the conversion result. If it takes
longer than expected (full scale for rheostat or 35% setting for potentiometer) then it
trims the max value so that the reading can be mademore accurate during the following
runtime of the QADC (until reset).

It can help caseswhere the RC constant is larger than expected however it is not possible
to detect where the RC constant is smaller than expected because this is indistiguishable
from a normal lower setting.

It may be helpful to use this setting if you choose to set the RC settings in the code a
little lower than nominal to achieve better range. However it must be noted that the first
full transition of QADC must complete before the new max is learnt and so will behave
slightly differently to subsequent transitions.

Set this value to 0 by default.

5.2 How to set convert_interval_ticks

This parameter is only relevant to continuous mode where a task cycles through the
QADCs. It sets the total period per conversion which includes charging the capacitor,
measuring the discharge periods and an idle time at the end to allow the capacitor to
reach it’s natural voltage governed by the external passives.

The QADC will check the set values and automatically assert if the following condition is
not met:
convert_interval_ticks > (max_charge_period_ticks + max_disch_ticks * 2)

13

lib_qadc: XMOS QADC Library

The max_charge_period_ticks is nominally 5 times the RC constant and
max_disch_ticks is calculated by the code as themaximum time to reach the thresh-
old voltagewhen the IO goes high impedance. This is doubled to allow for some idle time
and provides a safe setting. A typical setting will be in the region of one millisecond, de-
pending on passive value selection.

In single shotmode the setting is ignored because the API takes the correct amount
of time to account for all required steps and the function returns when the result is ready.

14

lib_qadc: XMOS QADC Library

6 QADC Usage

There are three main modes of operation for the QADC.

6.1 Continuous Modes

Ifmany channels are needed andcontinuous updates are required then it is convenient
to run a taskwhich performsbackground continuous conversion and associated filtering.
This requires a dedicated hardware thread.

The values may then be read by the application either:

· Over a channel (application on same or different tile from the QADC) or

· By shared memory (same tile only) using the adc_xxx_state.results member which is
a pointer to an array of unit16_t result values.

The examples included in the QADC repo under /examples show both continuous
modes in use.

6.2 Single Shot Mode

A single shot API is also available which allows a single conversion to be performed
by calling a function. Note that the function call is blocking and will return only when
the conversion is complete. This will typically take a few hundred microseconds for the
recommended passive component selection.

When infrequent conversions are made using single shotmode it is recommended
to reduce the depth of the moving average filter down to the actual number conversions
performed for each desired QADC value.

The examples included in the QADC repo under /examples show the single shot mode
in use.

15

https://github.com/xmos/lib_qadc
https://github.com/xmos/lib_qadc

lib_qadc: XMOS QADC Library

7 QADC API

7.1 Common API

Common items for both types of QADC are shown here.

Note: Depending on whether QADC is called from an XC program with a par{} or from C
with PAR_JOBS() extra hardware setup may be needed. If using PAR_JOBS() please call
qadc_pre_init_c() before QADC initialisation.

See the QADC Tuning section for more details on setting these values.

struct qadc_config_t
Configuration structure for initialising the QADC. This contains the passive compo-
nent definition, voltages, conversion speed (adc_xxx_task() only) and mode.

Public Members

unsigned capacitor_pf
Capacitor size in picofarads. Should include the stray capacitance of the PCB.

unsigned potentiometer_ohms
Potentiometer value in ohms - nominal maximum value end to end.

unsigned resistor_series_ohms
Series resistor size in ohms.

float v_rail
Voltage of the IO rail used by the QADC port as a float.

float v_thresh
Voltage of the input threshold. This is nominally 1.15 volts for a 3.3 volt rail.

char auto_scale
Boolean setting which allows the largest time seen by the conversion to be
trimmed if it exceeds the expected value. The new end point will be kept until
the task is re-started. It can account for cases where the RC delay constant
is much larger than expected. Note no scheme is available for detecting the
case where the RC constant is shorter than expected.

unsigned convert_interval_ticks

The full conversion cycle time per channel (adc_xxx_task() only). The task will
assert at initialisation if this is too short. This setting is ignored in single-shot
mode.

typedef uint16_t qadc_q3_13_fixed_t
Fixed point type used internally by QADC.

16

lib_qadc: XMOS QADC Library

void qadc_pre_init_c(port p_adc[], size_t num_adc)
Perform xcore resource setup if QADC is to be used from C with lib_xcore
PAR_JOBS(). Because QADC is written in XC it expects ports to be enabled and
an XC timer to be available. This pre-init function meets those needs if using from
a lib_xcore based project

Parameters

· p_adc – An array of ports used for conversion.
· num_adc – The number of QADC channels used

QADC_CMD_READ
Read an ADC channel, arg: channel number in LSB. Please OR the cmd with the
operand.

QADC_CMD_CAL_MODE_START
Start calibration mode. Move the potentiometer end to end to determine limits.

QADC_CMD_CAL_MODE_FINISH
Stop calibration mode and use new observed limits.

QADC_CMD_POT_GET_DIR

Read the conversion direction. Potentiometer QADC only. (1 = High to low, 0 = Low
to high) of an ADC channel, arg: channel number in LSB. Please OR the cmd with
the operand.

QADC_CMD_STOP_CONV
Temporarily stop conversion.

QADC_CMD_START_CONV
Restart conversion.

QADC_CMD_EXIT

Exit the qadc_pot_task().

QADC_CMD_MASK
Mask word used for building commands.

QADC_Q_3_13_SHIFT
The shift value needed to work with qadc_q3_13_fixed_t.

7.2 QADC Rheostat API

Specific items for the Rheostat QADC are shown here.

struct qadc_rheo_state_t
Internal state for each QADC instance. These should not be accessed directly and
instead be initialised by a call to adc_rheo_init().

17

lib_qadc: XMOS QADC Library

void qadc_rheo_init(port p_adc[], size_t num_adc, size_t adc_steps, size_t
filter_depth, unsigned result_hysteresis, uint16_t *state_buffer,
qadc_config_t adc_config,
REFERENCE_PARAM(qadc_rheo_state_t, adc_rheo_state))

Initialise a QADC rheostate reader instance and initialise the qadc_rheo_state
structure. This generates the look up table, initialises the state and sets up
the ports used by the QADC. Must be called before either qadc_rheo_single() or
qadc_rheo_task().
IF CALLING FROM C WITH lib_xcore’s PAR_JOBS() TO START THE THREADS,
PLEASE CALL qadc_c_pre_init() FIRST.

Parameters

· p_adc – An array of 1 bit ports used for conversion.
· num_adc – The number of 1 bit ports (QADC channels) used.
· adc_steps – The number of discrete conversion possible val-

ues. Also sets the output result full scale value to lut_size - 1.
· filter_depth – The size of the moving average filter used to

average each conversion result.
· state_buffer – pointer to the state buffer used of type

uint16_t. Please use the ADC_POT_STATE_SIZEmacro to size the
declaration of the state buffer.

· adc_config – A struct of type qadc_config_t containing the pa-
rameters of the QADC external components and conversion rate /
mode. This must be initialised before passing to qadc_rheo_init().

· adc_rheo_state – Reference to the qadc_rheo_state_t struct
which contains internal state for the QADC. This does not need to
be initialised before hand since this function does that.

uint16_t qadc_rheo_single(port p_adc[], unsigned adc_idx,
REFERENCE_PARAM(qadc_rheo_state_t,
adc_rheo_state))

Perform a single ADC conversion on a specific channel. In this mode the QADC
does not require a dedicated task (hardware thread) to perform conversion. Note
that this is a blocking call which will return only when the conversion is complete.
Typically it may take a few hundredmicroseconds (depending on the RC constants
chosen) but it’s execution time is variable. It will take longest when the rheostate
is set to maximum and shortest at zero. Use this API when infrequent readings are
needed and the callee can accept a blocking call. qadc_rheo_init() must be called
before this function.

Parameters

· p_adc – An array of 1 bit ports used for conversion.
· adc_idx – The QADC channel to read.
· adc_rheo_state – Reference to the adc_rheo_state_t struct

which contains internal state for the QADC.

void qadc_rheo_task(NULLABLE_RESOURCE(chanend, c_adc), port p_adc[],
REFERENCE_PARAM(qadc_rheo_state_t, adc_rheo_state))

QADC_RHEO_STATE_SIZE(num_adc, filter_depth)

7.3 QADC Potentiometer API

Specific items for the Potentiometer QADC are shown here.

18

lib_qadc: XMOS QADC Library

struct qadc_pot_state_t
Internal state for each QADC instance. These should not be accessed directly and
instead be initialised by a call to adc_pot_init().

void qadc_pot_init(port p_adc[], size_t num_adc, size_t lut_size, size_t filter_depth,
unsigned result_hysteresis, uint16_t *state_buffer,
qadc_config_t adc_config,
REFERENCE_PARAM(qadc_pot_state_t, adc_pot_state))

Initialise a QADC potentiometer reader instance and initialise the qadc_pot_state
structure. This generates the look up table, initialises the state and sets up
the ports used by the QADC. Must be called before either qadc_pot_single() or
qadc_pot_task().
IF CALLING FROM C WITH lib_xcore’s PAR_JOBS() TO START THE THREADS,
PLEASE CALL qadc_c_pre_init() FIRST.

Parameters

· p_adc – An array of ports used for conversion. Must all be of
same time (eg. 1b or 4b ports)

· num_adc – The number of ADC channels needed. Where ports
other than 1b ports are used, the lower pins on the port are used
first. Eg. bottom 2 pins of a 4b port are used if num_adc = 2. The
other pins on the port are reserved.

· lut_size – The size of the look up table. Also sets the output
result full scale value to lut_size - 1.

· filter_depth – The size of the moving average filter used to
average each conversion result.

· state_buffer – pointer to the state buffer used of type
uint16_t. Please use the ADC_POT_STATE_SIZEmacro to size the
declaration of this state buffer.

· adc_config – A struct of type qadc_config_t containing the pa-
rameters of the QADC external components and conversion rate
/ mode. Thismust be initialised before passing to qadc_pot_init().

· adc_pot_state – Reference to the qadc_pot_state_t struct
which contains internal state for the QADC. This does not need
to be initialised before hand since this function does that.

uint16_t qadc_pot_single(port p_adc[], unsigned adc_idx,
REFERENCE_PARAM(qadc_pot_state_t,
qadc_pot_state))

Perform a single ADC conversion on a specific channel. In this mode the QADC
does not require a dedicated task (hardware thread) to perform conversion. Note
that this is a blocking call which will return only when the conversion is complete.
Typically it may take a few hundredmicroseconds (depending on the RC constants
chosen) but it’s execution time is variable. It will take longest when the potentiome-
ter is set to roughly 1/3 and shortest as the end positions. Use this API when infre-
quent readings are needed and the callee can accept a blocking call. qadc_pot_init()
must be called before this function.

Parameters

· p_adc – An array of ports used for conversion.
· adc_idx – The QADC channel to read.
· qadc_pot_state – Reference to the qadc_pot_state_t struct

which contains internal state for the QADC.

19

lib_qadc: XMOS QADC Library

void qadc_pot_task(NULLABLE_RESOURCE(chanend, c_adc), port p_adc[],
REFERENCE_PARAM(qadc_pot_state_t, adc_pot_state))

QADC_POT_STATE_SIZE(num_adc, lut_size, filter_depth)
Macro for sizing the state array used by QADC. Please declare a state array (linear
array) of uint16_t sized by this macro for passing to qadc_pot_init().
num_adc - The number of channels.
lut_size - The size of the look up table. Also sets the maximum conversion value to
(lut_size - 1). One LUT is used for all channels.
filter_depth - The depth of the moving average filter (1 to n). Has a large impact on
the memory requirements because each channel requires it’s own filter.

20

lib_qadc: XMOS QADC Library

8 Building and running the examples

The examples are designed to run on the XK-EVK-XU316 (XCORE-AI-EXPLORER) kit
although any xcore.ai hardware will work (please adjust the QADC ports accordingly).

Ensure a correctly configured installation of the XMOS tools and open an XTC command
shell. Please check that the XMOS tools are correctly sourced by running the following
command:
$ xcc
xcc: no input files

Note: Instructions for installing and configuring the XMOS tools appear on the XMOS
web site.

Clone the lib_qadc repository:
git clone git@github.com:xmos/lib_qadc.git
cd lib_qadc

Next ensure you have adjusted the relevant paramters for your design:
#define NUM_ADC 2
#define LUT_SIZE 1024
#define FILTER_DEPTH 16
#define HYSTERESIS 1

// Select your port as required. Either 1b or wide ports may be used.
// on tile[1]: port p_adc[] = {XS1_PORT_1M, XS1_PORT_1O}; // Sets which pins are to be used (channels 0..n)�
↪→X1D36/38

const unsigned capacitor_pf = 8800; // Set the capacitor value here
const unsigned potentiometer_ohms = 10000; // Set the potenitiometer nominal maximum value (end to�

↪→end)
const unsigned resistor_series_ohms = 220; // Set the series resistor value here

const float v_rail = 3.3;
const float v_thresh = 1.15;
const char auto_scale = 0;

const unsigned convert_interval_ticks = (1 * XS1_TIMER_KHZ); // 1 millisecond

Run the following commands in the lib_sw_pll/examples directory to build the firmware:
cmake -B build -G "Unix Makefiles"
xmake -j -C build

To run the example firmware, first connect the required passive circuitry to the QADC
input pins and the run one of the following examples as appropriate:
xrun --xscope pot_reader/bin/SINGLE/qadc_pot_example_SINGLE.xe
xrun --xscope pot_reader/bin/CONTINUOUS_CHAN/qadc_pot_example_CONTINUOUS_CHAN.xe
xrun --xscope pot_reader/bin/CONTINUOUS_MEM/qadc_pot_example_CONTINUOUS_MEM.xe
xrun --xscope rheo_reader/SINGLE/bin/qadc_rheo_example_SINGLE.xe
xrun --xscope rheo_reader/CONTINUOUS_CHAN/bin/qadc_rheo_example_CONTINUOUS_CHAN.xe
xrun --xscope rheo_reader/CONTINUOUS_MEM/bin/qadc_rheo_example_CONTINUOUS_MEM.xe

In each case the converted QADC values will be periodically printed to the console, for
example:
Running QADC in continuous mode using dedicated task!
Read channel ch 0: 558, ch 1: 328,
Read channel ch 0: 558, ch 1: 330,
Read channel ch 0: 558, ch 1: 342,
Read channel ch 0: 536, ch 1: 364,
Read channel ch 0: 488, ch 1: 428,
Read channel ch 0: 420, ch 1: 490,
Read channel ch 0: 373, ch 1: 516,
Read channel ch 0: 337, ch 1: 544,
Read channel ch 0: 305, ch 1: 570,
Read channel ch 0: 277, ch 1: 592,

(continues on next page)

21

https://www.xmos.ai/software-tools/
https://www.xmos.ai/software-tools/

lib_qadc: XMOS QADC Library

(continued from previous page)
Read channel ch 0: 251, ch 1: 610,
Read channel ch 0: 219, ch 1: 634,
...

22

lib_qadc: XMOS QADC Library

9 Hardware Characterisation of QADC Potentiometer Transfer
Curve

A bench characterisation of the QADC potentiometer was conducted to verify themodel.
A 10 bit ADCwas connected to the potentiometer and the voltage reading (reference volt-
age was logged). The QADC was configured to 10 bits then enabled and the estimated
potentiometer setting was logged against the reference.

In this case, less than ideal settings of 10 k for the potentiometer was used (causing a
noticeable step at the end of the transfer curve) however the effect of 0 %, 20 % and -20
% deviation in the specified RC constant against the values used can be seen.

Fig. 10: QADC Potentiometer Transfer curve with 0 % Tolerance RC settings

It can be seen that, although the linearity is affected by +- 20% tolerance, the transfer
curve remains monotonic and the end positions can always be reached. It also confirms
that the model closely matches the practical operation of the QADC.

The pythonmodel of the QADCmay be found in the /design directory of the QADC repo
and is used in the regression test to ensure the embedded version matches.

23

https://github.com/xmos/lib_qadc

lib_qadc: XMOS QADC Library

Fig. 11: QADC Potentiometer Transfer curve with -20 % Tolerance RC settings

Fig. 12: QADC Potentiometer Transfer curve with +20 % Tolerance RC settings

24

lib_qadc: XMOS QADC Library

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

25

	Introduction
	Rheostat Reader
	Potential Reader

	Post Processing
	Moving Average Filter
	Scaling
	Hysteresis

	Comparing the Effect of Passive Component Tolerance on Both Schemes
	Passive Component Selection
	QADC Tuning
	How to set auto_scale
	How to set convert_interval_ticks

	QADC Usage
	Continuous Modes
	Single Shot Mode

	QADC API
	Common API
	QADC Rheostat API
	QADC Potentiometer API

	Building and running the examples
	Hardware Characterisation of QADC Potentiometer Transfer Curve

