
lib_sw_pll: Software PLL library

Publication Date: 2024/10/18
Document Number: XM-015179-UG v2.3.1

lib_sw_pll: Software PLL library

IN THIS DOCUMENT

1 Introduction . 2
2 How the Software PLL works . 2

2.1 PLLs . 2
2.2 LUT based DCO . 3
2.3 SDM Based DCO . 6
2.4 Phase Frequency Detector . 9
2.5 Proportional Integral Controller . 9

3 Simulation Model . 10
3.1 Contents . 10
3.2 Running the PI simulation and LUT generation script 10

4 Tuning the Software PLL . 12
4.1 LUT based PLL Tuning . 12
4.2 SDM based PLL tuning . 14

5 Example application resource setup . 14
5.1 Simple example resource setup . 14
5.2 I²S slave example resource setup . 15

6 Software PLL API . 16
6.1 LUT Based PLL API . 16
6.2 SDM Based PLL API . 18
6.3 Common API . 21

7 Building and running the examples . 21

1 Introduction

lib_sw_pll provides software that, together with the xcore.ai application PLL, provides
a PLL that will generate a clock that is phase-locked to an input clock.

lib_sw_pll is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

2 How the Software PLL works

2.1 PLLs

A Phase Locked Loop (PLL) is a normally dedicated hardware that allows generation of
a clock which is synchronised to an input reference clock by both phase and frequency.
They consist of a number of sub-components:

· A Phase Frequency Detector (PFD) which measures the difference (error) between a
reference clock and the divided generated clock.

· A control loop, typically a Proportional Integral (PI) controller to close the loop and zero
the error.

· A Digitally Controlled Oscillator (DCO) which converts a control signal into a clock fre-
quency.

Fig. 1 depicts a block diagram of a basic PLL.

xcore.ai devices have on-chip a secondary PLL sometimes known as the Application PLL.
This PLL multiplies the clock from the on-board crystal source and has a fractional reg-
ister allowing very fine control over the multiplication and division ratios from software.

However, it does not support an external reference clock input and so cannot natively
track and lock to an external clock reference. This software PLL module provides a set

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_sw_pll: Software PLL library

Fig. 1: Basic PLL Block Diagram

of scripts and firmware which enables the provision of an input reference clock which,
along with a control loop, allows tracking of the external reference over a certain range.
It also provides a lower level API to allow tracking of virtual clocks rather than physical
signals such as when receiving digital samples from another device or packets over a
network.

There are two types of PLL, or specifically Digitally Controlled Oscillators (DCO), sup-
ported in this library; Look-up Table (LUT) and Sigma-delta Modulator (SDM). There are
trade-offs between the two types of DCO, which are summarised in Table 1.

Table 1: LUT vs SDM DCO trade-offs

Comparison
item

LUT DCO SDM DCO

Jitter Low, 1-2 ns Very Low, 10-50 ps
Memory Us-
age

Low, ~2.5 kB Low, ~2 kB

MIPS Usage Low - ~1 High - ~50
Lock Range
PPM

Moderate, 100-1000 Wide, 1500-3000

Note: Jitter is measured using a frequency mask of 100 Hz to 40 kHz as specified by
AES-12id-2006.

A fixed (non phase-locked) PLL setup API is also available which assumes a 24 MHz
XTAL frequency and provides output frequencies of 11.2896 MHz, 12.288 MHz, 22.5792
MHz, 24.576 MHz, 45.1584 MHz or 49.152 MHz. Output jitter for fixed clocks using a 100
Hz to 40 kHz mask is typically less than 8 ps. See the Common API section.

2.2 LUT based DCO

The LUT basedDCOallows a discrete set of fractional settings resulting in a fixed number
of frequency steps. The LUT is pre-computed table which provides a set of monotoni-
cally increasing frequency register settings. The LUT based DCO requires very low com-
pute allowing it to be run in a sample-based loop at audio frequencies such as 48kHz or

3

lib_sw_pll: Software PLL library

44.1kHz. It required two bytes per LUT entry and provides reasonable jitter performance
suitable for voice or entry level Hi-Fi. Fig. 2 depicts a LUT DCO based PLL

Fig. 2: LUT DCO based PLL

The range is governed by the look up table (LUT) which has a finite number of entries and
consequently has a frequency step size. This affects the output jitter performance when
the controller oscillates between two settings once locked. Note that the actual range
and number of steps is highly configurable. Fig. 3 shows an example of LUT discrete
output frequencies.

The index into the LUT is controlled by a PI controller which multiplies the error input
and integral error input by the supplied loop constants. An integrated wind up limiter
for the integral term is nominally set at 2x the maximum LUT index deviation to prevent
excessive overshoot where the starting input error is high. A double integrator term is
also available to help zero phase error.

Fig. 4 shows a time domain plot of how the controller (typically running at around 100
Hz) selects between adjacent LUT entries. Fig. 5 shows the consequential frequency
modulation effect.

4

lib_sw_pll: Software PLL library

Fig. 3: Example of LUT discrete output frequencies

Fig. 4: LUT selection when tracking a constant input frequency

5

lib_sw_pll: Software PLL library

Fig. 5: LUT noise plot when when tracking a constant input frequency

2.3 SDM Based DCO

The SDM based DCO provides a fixed number (9 in this case) of frequency steps which
are jumped between at a high rate (eg. 1 MHz) but requires a dedicated logical core to
run the SDM algorithm and update the PLL fractional register. The SDM is third order.

The SDM typically provides better audio quality by pushing the noise floor up into the
inaudible part of the spectrum. A fixed set of SDM coefficients and loop filters are pro-
vided which have been hand tuned to provide either 24.576 MHz or 22.5792 MHz low
jitter clocks and are suitable for Hi-Fi and professional audio applications. Fig. 6 depicts
a SDM DCO based PLL.

The steps for the SDM output are quite large which means a wide range is typically avail-
able. Fig. 7 shows SDM discrete output frequencies.

Fig. 8 shows a time domain plot of how the Sigma Delta Modulator jumps rapidly be-
tween multiple frequencies. Fig. 9 shows the consequential spread of the noise floor.

6

lib_sw_pll: Software PLL library

Fig. 6: SDM DCO based PLL

Fig. 7: SDM discrete output frequencies

7

lib_sw_pll: Software PLL library

Fig. 8: SDM frequency selection when tracking a constant input frequency

Fig. 9: SDM noise plot when when tracking a constant input frequency

8

lib_sw_pll: Software PLL library

2.4 Phase Frequency Detector

The Software PLL Phase FrequencyDetector (PFD) detects frequency by counting clocks
over a specific time period. The clock counted is the output from the PLL and the time
period over which the count happens is a multiple of the input reference clock. This way
the frequency difference between the input and output clock can be directlymeasured by
comparing the read count increment with the expected count increment for the nominal
case where the input and output are locked.

The PFD cannot directly measure phase, however, by taking the time integral of the fre-
quency we can derive the phase which can be done by the PI controller.

The PFD uses three chip resources:

· A one bit port to capture the PLL output clock (always Port 1D on Tile[1] of xcore.ai)

· A clock block to turn the captured PLL output clock into a signal which can be dis-
tributed across the xcore tile

· An input port (either one already in use or an unconnected dummy port such as Port
32A) clocked from the above clock block. The in-built counter of this port can then be
read and provides a count of the PLL output clock.

Two diagrams showing practical xcore resource setups are shown in the Example appli-
cation resource setup section.

The port timers are 16 bits and so the PFDmust account for wrapping because the over-
flow period at, for example, 24.576 MHz is 2.67 milliseconds and a typical control period
is in the order 10 milliseconds.

There may be cases where the port timer sampling time cannot be guaranteed to be
fully isochronous, such as when a significant number of instructions exist between a
hardware event occur between the reference clock transition and the port timer sampling.
In these cases an optional input jitter reduction scheme is provided to allow scaling of the
read port timer value. This scheme is used in the i2s_slave_lut example where the
port timer read is precisely delayed until the transition of the next BCLK which removes
the instruction timing jitter that would otherwise be present. The cost is 1/64th of LR
clock time of lost processing in the I²S callbacks but the benefit is the jitter caused by
variable instruction timing to be eliminated.

2.5 Proportional Integral Controller

The PI controller uses fixed point (15Q16) types and 64 bit intermediate terms to calculate
the error and accumulated error which are summed to produce the output. In addition a
double integral term is included to allow calculation of the integral term of phase error,
which itself is the integral of the frequency error which is the output from the PFD.

Wind-up protection is included in the PI controller which clips the integral and double
integral accumulator terms and is nominally set to LUT size for the LUT based DCO and
the control range for the SDM based DCO.

The SDM controller also includes a low-pass filter for additional error input jitter reduc-
tion.

See the Tuning the Software PLL section for information about how to optimise the PI
controller.

9

lib_sw_pll: Software PLL library

3 Simulation Model

A complete model of the Software PLL is provided and is written in Python version 3.

3.1 Contents

In the python/sw_pll directory you will find multiple files:
.
��� analysis_tools.py
��� app_pll_model.py
��� controller_model.py
��� dco_model.py
��� pfd_model.py
��� pll_calc.py
��� sw_pll_sim.py

These are all installable as a Python PIP module by running pip install -e . from
the root of the repo.

Typically you do not need to access any file other than sw_pll_sim.py which brings
in the other files as modules when run.

sw_pll_sim.py may be run with the argument LUT or SDM depending on which type
of PLL you wish to simulate.

analysis_tools.py contains audio analysis tools for assessing the frequency mod-
ulation of a tone from the jitter in the recovered clock.

controller_model.pymodels the PI controllers used in the Software PLL system.

dco_model.py contains a model of the LUT and SDM digitally controlled oscillators.

pfd_model.pymodels the Phase Frequency Detector which is used when inputting a
reference clock to the Software PLL.

app_pll_model.pymodels the Application PLL hardware and allows reading/writing
include files suitable for inclusion into xcore firmware projects.

pll_calc.py is the command line script that generates the LUT. It is quite a complex to
use script which requires in depth knowledge of the operation of the App PLL. Instead it
is recommended to use app_pll_model.py which calls pll_calc.py which wraps
the script with sensible defaults, or better, use one of the provided profiles driven by
sw_pll_sim.py.

3.2 Running the PI simulation and LUT generation script

By running sw_pll_sim.py LUT a number of operations will take place:

· Thefractions.h LUT include filewill be generated (LUTPLL only - this is not needed
by SDM)

· The register_setup.h PLL configuration file will be generated for inclusion in your
xcore project.

· A graphical view of the LUT settings showing index vs. output frequency is generated.

· A time domain simulation of the PI loop showing the response to steps and out of
range reference inputs is run.

· A wave file containing a 1 kHz modulated tone for offline analysis.

10

lib_sw_pll: Software PLL library

· A log FFT plot of the 1 kHz tone to see how the PLL frequency steps affect a pure tone.

· A summary report of the PLL range is also printed to the console.

The directory listing following running of sw_pll_sim.py will be added to as follows:
.
��� fractions.h
��� register_setup.h
��� tracking_lut.png
��� tracking_sdm.png
��� modulated_tone_1000Hz_lut.wav
��� modulated_tone_1000Hz_sdm.wav
��� modulated_fft_lut.png
��� modulated_fft_sdm.png

Fig. 10 shows the step response of the control loopwhen the target frequency is changed
during the simulation. You can see it track smaller step changes but for the larger steps
it can be seen to clip and not reach the input step, which is larger than the used LUT size
will allow. The LUT size can be increased if needed to accommodate a wider range.

The step response is quite fast and you can see even a very sharp change in frequency
is accommodated in just a handful of control loop iterations.

Fig. 10: PLL step response

11

lib_sw_pll: Software PLL library

4 Tuning the Software PLL

4.1 LUT based PLL Tuning

4.1.1 PI controller

Typically the PID loop tuning should start with 0 Kp term and a small (e.g. 1.0) Ki term.

· Decreasing the ref_to_loop_call_rate parameter will cause the control loop to execute
more frequently and larger constants will be needed.

· Try tuning Ki value until the desired response curve (settling time, overshoot etc.) is
achieved in the tracking_xxx.png output.

· Kp can normally remain zero, but you may wish to add a small value to improve step
response

Note: After changing the configuration, ensure you delete fractions.h otherwise the
script will re-use the last calculated values. This is done to speed execution time of the
script by avoiding the generation step.

A double integral term is supported in the PI loop because the clock counting PFD in-
cluded measures the frequency error. The phase error is the integral of the frequency
error and hence if phase locking is required as well as frequency locking then we need
to support the integral of the integral of the frequency error. Changing the Kp, Ki and Kii
constants and observing the simulated (or hardware response) to a reference change is
all that is needed in this case.

Note: In the python simulation file sw_pll_sim.py, the PI constants Kp, Ki and op-
tionally Kii can be found in the functions run_lut_sw_pll_sim() and run_sd_sw_pll_sim().

Typically a small Kii term is used, if needed, because it accumulates very quickly.

4.1.2 LUT example configurations

The LUT implementation requires an offline generation stage which has many possibili-
ties for customisation.

A number of example configurations, which demonstrate the effect on PPM, step size
etc. of changing various parameters, is provided in the sw_pll_sim.py file. Search for
profiles and profile_choice in this file. Change profile choice index to select the
different example profiles and run the python file again.

Table 2: Example LUT DCO configurations

Output fre-
quency MHz

Reference fre-
quency kHz

Range +/-
PPM

Average step
size Hz

LUT size bytes

12.288 48.0 250 29.3 426
12.288 48.0 500 30.4 826
12.288 48.0 1000 31.0 1580
24.576 48.0 500 60.8 826
24.576 48.0 100 9.5 1050
6.144 16.0 150 30.2 166

12

lib_sw_pll: Software PLL library

Note: The physical PLL actuallymultiplies the input crystal, not the reference input clock.
It is the PFD and software control loop that detects the frequency error and controls the
fractional register to make the PLL track the input. A change in the reference input clock
parameter only affects the control loop and its associated constants such as how often
the PI controller is called.

4.1.3 Custom LUT Generation Guidance

The fractions lookup table is a trade-off between PPM range and frequency step size.
Frequency step sizewill affect jitter amplitude as it is the amount that the PLLwill change
frequency when it needs to adjust. Typically, the locked control loop will slowly oscillate
between two values that straddle the target frequency, depending on input frequency.

Small discontinuities in the LUT may be experienced in certain ranges, particularly close
to 0.5 fractional values, so it is preferable to keep in the lower or upper half of the frac-
tional range. However the LUT table is always monotonic and so control instability
will not occur for that reason. The range of the LUT Software PLL can be seen in the
lut_dco_range.png image. It should be a reasonably linear response without signif-
icant discontinuities. If discontinuities are seen, try moving the range towards 0.0 or 1.0
where fewer discontinuities may be observed due the step in the fractions.

4.1.4 Steps to vary the LUT PPM range and frequency step size

1. Ascertain your target PPM range, step size and maximum tolerable table size. Each
lookup value is 16 bits so the total size in bytes is 2 * n.

2. Start with the given example values and run the generator to see if the above three
parameters meet your needs. The values are reported by sw_pll_sim.py.

3. If you need to increase the PPM range, you may either:
· Decrease the min_F to allow the fractional value to have a greater effect. This will

also increase step size. It will not affect the LUT size.
· Increase the range of fracmin and fracmax. Try to keep the range closer to 0 or

1.0. This will decrease step size and increase LUT size.

4. If you need to decrease the step size you may either:
· Increase the min_F to allow the fractional value to have a greater effect. This will

also reduce thePPM range. When the generation script is run the allowable F values
are reported so you can tune the min_F to force use of a higher F value.

· Increase the max_denom beyond 80. This will increase the LUT size (finer step
resolution) but not affect the PPM range. Note this will increase the intrinsic jitter
of the PLL hardware on chip due to the way the fractional divider works. 80 has
been chosen for a reasonable tradeoff between step size and PLL intrinsic jitter
and pushes this jitter beyond 40 kHz which is out of the audio band. The lowest
intrinsic fractional PLL jitter freq is input frequency (normally 24 MHz) / ref divider
/ largest value of n.

5. If the +/-PPM range is not symmetrical and youwish it to be, then adjust the fracmin
and fracmax values around the center point that the PLL finder algorithm has found.
For example if the -PPM range is too great, increase fracmin and if the +PPM range
is too great, decrease the fracmax value.

Note: When the process has completed, inspect the lut_dco_range.png output
figure which shows how the fractional PLL setting affects the output frequency. This

13

lib_sw_pll: Software PLL library

should be monotonic and not contain an significant discontinuities for the control loop
to operate satisfactorily.

4.2 SDM based PLL tuning

4.2.1 SDM available configurations

The SDM implementation only allows tuning of the PI loop; the DCO section is hand op-
timised for the provided profiles shown below. There are two target PLL output frequen-
cies and two options for SDM update rate depending on howmuch performance is avail-
able from the SDM task.

Table 3: SDM DCO configurations

Output fre-
quency MHz

Range +/-
PPM

Jitter ps Noise Floor
dBc

SDM update
rate kHz

24.576 3000 10 -100 1000
22.5792 3300 10 -100 1000
24.576 1500 50 -93 500
22.5792 1500 50 -93 500

The SDMbased DCOSoftware PLL has been pre-tuned and should not needmodification
in normal circumstances. Due to the large control range values needed by the SDM DCO,
a relatively large integral term is used which applies a gain term. If you do need to tune
the SDM DCO PI controller then it is recommended to start with the provided values in
the example in /examples/app_simple_sdm.

Transferring the results to C Once the LUT has been generated or SDMprofile selected
and has simulated in Python, the values can be transferred to the firmware application.
Control loop constants can be directly transferred to the init() functions and the generated
.h files can be copied directly into the source directory of your project.

For further information, either consult the sw_pll.h API file (included at the end of this
document) or follow one of the examples in the /examples directory.

5 Example application resource setup

The xcore.ai device has a number of resources on chip which can be connected together
to manage signals and application clocks. In the provided examples both clock blocks
and ports are connected together to provide an input to the PFD which calculates fre-
quency error. Resources additionally provide an optional prescaled output clock for com-
parison with the input reference.

5.1 Simple example resource setup

The output from the PLL is counted using a port timer via the clk_mclk clock block.

In addition, a precise timing barrier is implemented by clocking a dummy port from the
clock block clocked by the reference clock input. This provides a precise sampling point
of the PLL output clock count.

The resource setup code is contained in resource_setup.h and resource_setup.
c using intrinsic functions in lib_xcore. To help visualise how these resources work
together, see Fig. 11.

14

lib_sw_pll: Software PLL library

Fig. 11: Use of Ports and Clock Blocks in the simple examples

5.2 I²S slave example resource setup

The I²S slave component already uses a clock block which captures the bit clock input.
In addition to this, the PLL output is used to clock a dummy port’s counter which is used
as the input to the PFD.

Since the precise sampling time of the PLL output clock count is variable due to instruc-
tion timing between the I²S LRCLK transition and the capture of the PLL output clock
count in the I²S callback, an additional dummy port is used. This precisely synchronises
the capture of the PLL output clock count relative to the BCLK transition and the rela-
tionship between these is used to reconstruct the absolute frequency difference with
minimal input jitter.

Fig. 12 shows the resource arrangement of the I2S slave example.

Fig. 12: Use of Ports and Clock Blocks in the I²S slave example

15

lib_sw_pll: Software PLL library

6 Software PLL API

The Application Programmer Interface (API) for the Software PLL is shown below. It is
split into items specific to LUT and SDM DCOs .

In addition to the standard API which takes a clock counting input (implements the PFD),
for applicationswhere thePLL is to be controlled using an alternatively derived error input,
a low-level API is also provided. This low-level API allows the Software PLL to track an
arbitrary clock source which is calculated by other means such as timing of received
packets over a communications interface.

6.1 LUT Based PLL API

The LUT based API are functions designed to be called from an audio loop. Typically the
functions can take up to 210 instruction cycles when control occurs and just a few 10s
of cycles when control does not occur. If run at a rate of 48 kHz then it will consume
approximately 1 MIPS on average.

void sw_pll_lut_init(sw_pll_state_t *const sw_pll, const sw_pll_15q16_t Kp, const
sw_pll_15q16_t Ki, const sw_pll_15q16_t Kii, const size_t
loop_rate_count, const size_t pll_ratio, const uint32_t
ref_clk_expected_inc, const int16_t *const lut_table_base,
const size_t num_lut_entries, const uint32_t
app_pll_ctl_reg_val, const uint32_t app_pll_div_reg_val, const
unsigned nominal_lut_idx, const unsigned ppm_range)

sw_lut_pll initialisation function.
This must be called before use of sw_pll_lut_do_control. Call this passing a pointer
to the sw_pll_state_t stuct declared locally.

Parameters

· sw_pll – Pointer to the struct to be initialised.
· Kp – Proportional PI constant. Use SW_PLL_15Q16() to convert

from a float.
· Ki – Integral PI constant. Use SW_PLL_15Q16() to convert from

a float.
· Kii – Double integral PI constant. Use SW_PLL_15Q16() to con-

vert from a float.
· loop_rate_count – How many counts of the call to

sw_pll_lut_do_control before control is done. Note this is only
used by sw_pll_lut_do_control. sw_pll_lut_do_control_from_error
calls the control loop every time so this is ignored.

· pll_ratio– Integer ratio between input reference clock and the
PLL output. Only used by sw_pll_lut_do_control for the PFD. Don’t
care otherwise. Used to calculate the expected port timer incre-
ment when control is called.

· ref_clk_expected_inc – Expected ref clock increment each
time sw_pll_lut_do_control is called. Pass in zero if you are sure
the mclk sampling timing is precise. This will disable the scal-
ing of the mclk count inside sw_pll_lut_do_control. Only used by
sw_pll_lut_do_control. Don’t care otherwise.

· lut_table_base–Pointer to the base of the fractional PLL LUT
used

· num_lut_entries – Number of entries in the LUT (half sizeof
since entries are 16b)

· app_pll_ctl_reg_val–The setting of the app pll control reg-
ister.

16

lib_sw_pll: Software PLL library

· app_pll_div_reg_val – The setting of the app pll divider reg-
ister.

· nominal_lut_idx – The index into the LUT which gives the
nominal output. Normally close to halfway to allow symmetrical
range.

· ppm_range – The pre-calculated PPM range. Used to deter-
mine the maximum deviation of counted mclk before the PLL
resets its state. Note this is only used by sw_pll_lut_do_control.
sw_pll_lut_do_control_from_error calls the control loop every time
so this is ignored.

sw_pll_lock_status_t sw_pll_lut_do_control(sw_pll_state_t *const sw_pll, const
uint16_t mclk_pt, const uint16_t
ref_pt)

sw_pll LUT version control function.
It implements the PFD, controller and DCO output.
This must be called periodically for every reference clock transition. Typically, in
an audio system, this would be at the I2S or reference clock input rate. Eg. 16kHz,
48kHz …
When this is called, the control loop will be executed every n times (set by init) and
the application PLL will be adjusted to minimise the error seen on the mclk count
value.
If the precise sampling point of mclk is not easily controlled (for example in an I2S
callback) then an additional timer countmay be passed in which will scale themclk
count. See i2s_slave example to show how this is done. This will help reduce input
jitter which, in turn, relates to reduced output jitter.

Parameters

· sw_pll – Pointer to the sw_pll state struct.
· mclk_pt– The 16b port timer count ofmclk at the time of calling

sw_pll_lut_do_control.
· ref_pt – The 16b port timer ref ount at the time of calling

sw_pll_lut_do_control. This value is ignored when the pll is ini-
tialised with a zero ref_clk_expected_inc and the control loop will
assume that mclk_pt sample timing is precise.

Returns
The lock status of the PLL. Locked or unlocked high/low. Note that
this value is only updated when the control loop has run. The type is
sw_pll_lock_status_t.

sw_pll_lock_status_t sw_pll_lut_do_control_from_error(sw_pll_state_t
*const sw_pll,
int16_t error)

low level sw_pll control function for use as pure PLL control loop.
This must be called periodically.
When this is called, the control loop will be executed every time and the application
PLL will be adjusted to minimise the error seen on the input error value.

Parameters

· sw_pll – Pointer to the sw_pll state struct.
· error – 16b signed input error value

Returns
The lock status of the PLL. Locked or unlocked high/low. Note that

17

lib_sw_pll: Software PLL library

this value is only updated when the control loop is running. The type
is sw_pll_lock_status_t.

static inline void sw_pll_lut_reset(sw_pll_state_t *sw_pll, sw_pll_15q16_t Kp,
sw_pll_15q16_t Ki, sw_pll_15q16_t Kii, size_t
num_lut_entries)

Helper to do a partial init of the PI controller at runtime without setting the physical
PLL and LUT settings.
Sets Kp, Ki and the windup limits. Note this resets the PFD accumulators too and
so PI controller state is reset.

Parameters

· sw_pll – Pointer to the state struct to be reset.
· Kp – New Kp in sw_pll_15q16_t format.
· Ki – New Ki in sw_pll_15q16_t format.
· Kii – New Kii in sw_pll_15q16_t format.
· num_lut_entries–The number of elements in the sw_pll LUT.

6.2 SDM Based PLL API

All SDM API items are function calls. The SDM API requires a dedicated logical core to
perform the SDM calculation and periodic register write and it is expected that the user
provide the fork (par) and call to the SDM.

A typical design idiom is to have the task running in a loopwith a timing barrier (either 1 us
or 2 us depending on profile used) and a non-blocking channel poll which allows newDCO
control values to be received as needed at the control loop rate. The SDMcalculation and
register write takes 45 instruction cycles and so with the overheads of the timing barrier
and the non-blocking channel receive poll, a minimum 60 MHz logical core should be
set aside for the SDM task running at 1 us period. This can be approximately halved it
running at 2 us SDM period.

The control part of the SDMSWPLL takes 75 instruction cycles when active and a few 10
s of cycles when inactive so you will need to budget around 1 MIPS for this when being
called at 48 kHz with a control rate of one in every 512 cycles.

An example of how to implement the threading, timing barrier and non-blocking chan-
nel poll can be found in examples/simple_sdm/simple_sw_pll_sdm.c. A thread
diagram of how this can look is shown below.

Fig. 13: Example Thread Diagram of SDM SW PLL

18

lib_sw_pll: Software PLL library

void sw_pll_sdm_init(sw_pll_state_t *const sw_pll, const sw_pll_15q16_t Kp, const
sw_pll_15q16_t Ki, const sw_pll_15q16_t Kii, const size_t
loop_rate_count, const size_t pll_ratio, const uint32_t
ref_clk_expected_inc, const uint32_t app_pll_ctl_reg_val,
const uint32_t app_pll_div_reg_val, const uint32_t
app_pll_frac_reg_val, const int32_t ctrl_mid_point, const
unsigned ppm_range)

sw_pll_sdm initialisation function.
This must be called before use of sw_pll_sdm_do_control or
sw_pll_sdm_do_control_from_error. Call this passing a pointer to the sw_pll_state_t
stuct declared locally.

Parameters

· sw_pll – Pointer to the struct to be initialised.
· Kp – Proportional PI constant. Use SW_PLL_15Q16() to convert

from a float.
· Ki – Integral PI constant. Use SW_PLL_15Q16() to convert from

a float.
· Kii – Double integral PI constant. Use SW_PLL_15Q16() to con-

vert from a float.
· loop_rate_count – How many counts of the call

to sw_pll_sdm_do_control before control is done.
Note this is only used by sw_pll_sdm_do_control.
sw_pll_sdm_do_control_from_error calls the control loop ev-
ery time so this is ignored.

· pll_ratio – Integer ratio between input reference clock and
the PLL output. Only used by sw_pll_sdm_do_control in the PFD.
Don’t care otherwise. Used to calculate the expected port timer
increment when control is called.

· ref_clk_expected_inc – Expected ref clock increment each
time sw_pll_sdm_do_control is called. Pass in zero if you are sure
the mclk sampling timing is precise. This will disable the scaling
of the mclk count inside sw_pll_sdm_do_control. Only used by
sw_pll_sdm_do_control. Don’t care otherwise.

· app_pll_ctl_reg_val–The setting of the app pll control reg-
ister.

· app_pll_div_reg_val – The setting of the app pll divider reg-
ister.

· app_pll_frac_reg_val–The initial setting of the apppll frac-
tional register.

· ctrl_mid_point – The nominal control value for the Sigma
Delta Modulator output. Normally close to halfway to allow sym-
metrical range.

· ppm_range – The pre-calculated PPM range. Used to deter-
mine the maximum deviation of counted mclk before the PLL re-
sets its state. Note this is only used by sw_pll_sdm_do_control.
sw_pll_sdm_do_control_from_error calls the control loop every
time so this is ignored.

bool sw_pll_sdm_do_control(sw_pll_state_t *const sw_pll, const uint16_t mclk_pt,
const uint16_t ref_pt)

sw_pll_sdm_do_control control function.
It implements the PFD and controller and generates a DCO control value for the
SDM.

19

lib_sw_pll: Software PLL library

This must be called periodically for every reference clock transition. Typically, in
an audio system, this would be at the I2S or reference clock input rate. Eg. 16kHz,
48kHz …
When this is called, the control loop will be executed every n times (set by init) and
the Sigma Delta Modulator control value will be set according the error seen on the
mclk count value.
If control is executed, TRUE is returned from the function and the value can be sent
to the SDM. The most recent calculated control output value can be found written
to sw_pll->sdm_state.current_ctrl_val.
If the precise sampling point of mclk is not easily controlled (for example in an I2S
callback) then an additional timer countmay be passed in which will scale themclk
count. See i2s_slave example to show how this is done. This will help reduce input
jitter which, in turn, relates to reduced output jitter.

Parameters

· sw_pll – Pointer to the sw_pll state struct.
· mclk_pt– The 16b port timer count ofmclk at the time of calling

sw_pll_sdm_do_control.
· ref_pt – The 16b port timer ref ount at the time of calling

sw_pll_sdm_do_control. This value is ignored when the pll is ini-
tialised with a zero ref_clk_expected_inc and the control loop will
assume that mclk_pt sample timing is precise.

Returns
Whether or not control was executed (controoled by
loop_rate_count)

sw_pll_lock_status_t sw_pll_sdm_do_control_from_error(sw_pll_state_t
*const sw_pll,
int16_t error)

low level sw_pll_sdm control function for use as pure PLL control loop.
This must be called periodically.
Takes the raw error input and applies the PI controller algorithm. The
most recent calculated control output value can be found written to sw_pll-
>sdm_state.current_ctrl_val.

Parameters

· sw_pll – Pointer to the sw_pll state struct.
· error – 16b signed input error value

Returns
The controller lock status

void sw_pll_init_sigma_delta(sw_pll_sdm_state_t *sdm_state)
Use to initialise the core sigma delta modulator. Broken out as seperate API as the
SDM is usually run in a dedicated thread which could be on a remote tile.

Parameters

· sw_pll – Pointer to the SDM state struct.

static inline void sw_pll_do_sigma_delta(sw_pll_sdm_state_t *sdm_state, tileref_t
this_tile, int32_t sdm_control_in)

Performs the Sigma Delta Modulation from a control input. It performs the SDM
algorithm, converts the output to a fractional register setting and then writes the
value to the PLL fractional register. Is typically called in a constant period fast loop
and run from a dedicated thread which could be on a remote tile.

20

lib_sw_pll: Software PLL library

NOTE: Attempting to write the PLL fractional register from more than one logical
core at the same time may result in channel lock-up. Please ensure the that PLL
initiaisation has completed before the SDM taskwrites to the register. The provided
simple_sdm example implements a method for doing this.

Parameters

· sw_pll – Pointer to the SDM state struct.
· this_tile – The ID of the xcore tile that is doing the write. Use

get_local_tile_id() to obtain this.
· sdm_control_in – Current control value.

6.3 Common API

inline void sw_pll_reset_pi_state(sw_pll_state_t *const sw_pll)
Resets PI controller state

Parameters

· sw_pll – Pointer to the Software PLL state.

void sw_pll_fixed_clock(const unsigned frequency)
Output a fixed (not phase locked) clock between 11.2896 MHz and 49.152 MHz.
Assumes a 24 MHz XTAL.

Parameters

· frequency – Frequency in Hz. An incorrect value will assert.

7 Building and running the examples

This section assumes you have downloaded and installed the XMOS XTC tools (see
README for required version). Installation instructions can be found here.

Particular attention should be paid to the section Installation of required third-party tools.

The application examples uses the xcommon-cmake build system as bundled with the
XTC tools.

To build the applications, from an XTC command prompt run the following commands
in the lib_sw_pll/examples directory:
cmake -B build -G "Unix Makefiles"
xmake -C build

To run the firmware, first connect LRCLK and BCLK (connects the test clock output to
the PLL reference input) and run one of the following commands. app_simple_lut or
app_simple_sdm runs on the XK-EVK-XU316 board, app_i2s_slave_lut requires the XK-
VOICE-SQ66 board:
xrun --xscope app_simple_lut/bin/app_simple_lut.xe
xrun --xscope app_simple_sdm/bin/app_simple_sdm.xe
xrun --xscope app_i2s_slave_lut/bin/app_i2s_slave_lut.xe

For app_simple_lut.xe and app_simple_sdm.xe, to see the PLL lock, put a oscilloscope
probe on either LRCLK/BCLK (reference input) and another on PORT_I2S_DAC_DATA to
see the recovered clock which has been hardware divided back down to the same rate
as the input reference clock.

For i2s_slave_lut.xe you will need to connect a 48 kHz I²S master to the LRCLK, BCLK
pins. You may then observe the I²S input data being looped back to the output and the

21

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_sw_pll: Software PLL library

MCLK being generated. A divided version of MCLK is output on PORT_I2S_DATA2 which
allows direct comparison of the input reference (LRCLK) with the recovered clock at the
same, and locked, frequency.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

22

	Introduction
	How the Software PLL works
	PLLs
	LUT based DCO
	SDM Based DCO
	Phase Frequency Detector
	Proportional Integral Controller

	Simulation Model
	Contents
	Running the PI simulation and LUT generation script

	Tuning the Software PLL
	LUT based PLL Tuning
	SDM based PLL tuning

	Example application resource setup
	Simple example resource setup
	I²S slave example resource setup

	Software PLL API
	LUT Based PLL API
	SDM Based PLL API
	Common API

	Building and running the examples

