
lib_board_support: XMOS board support

Publication Date: 2024/11/8
Document Number: XM-015142-UG v1.1.1

lib_board_support: XMOS board support

IN THIS DOCUMENT

1 Introduction . 2
2 Supported Boards . 2

2.1 xcore.ai Multi-Channel Audio Board . 2
2.2 xcore-200 Multi-Channel Audio Board . 8
2.3 xcore.ai Evaluation Kit . 10

3 Usage . 12
4 Application Programmer Interface . 12

4.1 Common API . 12
4.2 XK_AUDIO_316_MC_AB API . 13
4.3 XK_AUDIO_216_MC_AB API . 15
4.4 XK_EVK_XU316 API . 17

5 Example Applications . 18
5.1 Simple C Usage . 18
5.2 XC Usage Example . 19
5.3 Building and running . 19

1 Introduction

This repo contains board specific hardware configuration code for various XMOS evalua-
tion and development kits. By keeping the board-specific code in a dedicated repository
various applications need not replicate commonly used code such as initialisation of
on-board peripherals and in addition any updates or fixes can easily be rolled out to all
dependent applications.

2 Supported Boards

The following boards are supported in this repowith interfaces provided in the languages
shown in the table below.

Board Supported Languages

XK_EVK_XU316 XC / C
XK_AUDIO_316_MC_AB XC / C
XK_AUDIO_216_MC_AB XC / C

The following section provides specific details of the features for each of the boards
supported by this library.

2.1 xcore.ai Multi-Channel Audio Board

TheXMOSxcore.aiMultichannel Audio Board (XK-AUDIO-316-MC) is a complete hardware
and software reference platform targeted at up to 32-channel USB audio applications,
such as DJ decks, mixers and other musical instrument interfaces. The board can also
be used to prototype products with reduced feature sets or HiFi style products.

The XK-AUDIO-316-MC is based around the XU316-1024-TQ128-C24multicoremicrocon-
troller; a dual-tile xcore.ai device with an integrated High Speed USB 2.0 PHY and 16 logi-
cal cores delivering up to 2400MIPS of deterministic and responsive processing power.

Exploiting the flexible programmability of the xcore.ai architecture, the XK-AUDIO-316-MC
supports a USB audio source, streaming 8 analogue input and 8 analogue output audio
channels simultaneously - at up to 192kHz. It also supports digital input/output streams

2

lib_board_support: XMOS board support

(S/PDIF and ADAT) and MIDI. Ideal for consumer and professional USB audio interfaces.
The board can also be used for testing general purpose audio DSP activities - mixing,
filtering, etc.

For full details regarding the hardware please refer to xcore.ai Multichannel Audio Plat-
form Hardware Manual.

3

https://www.xmos.com/download/XCORE_AI-Multichannel-Audio-Platform-1V1-Hardware-Manual(1V1).pdf
https://www.xmos.com/download/XCORE_AI-Multichannel-Audio-Platform-1V1-Hardware-Manual(1V1).pdf

lib_board_support: XMOS board support

Hardware Features

The location of the various features of the xcore.ai Multichannel Audio Board (XK-AUDIO-
316-MC) is shown in Fig. 1.

Fig. 1: xcore.ai Multichannel Audio Board hardware features

It includes the following features:

· A: xcore.ai (XU316-1024-TQ128-C24) device

· B: 8 line level analog inputs (3.5mm stereo jacks)

· C: 8 line level analog outputs (3.5mm stereo jacks)

· D: 384kHz 24 bit audio DACs

· E: 192kHz 24 bit audio ADCs

· F: Optical connections for digital interface (e.g. S/PDIF and ADAT)

· G: Coaxial connections for digital interfaces (e.g. S/PDIF)

· H: MIDI in and out connections

· I: Flexible audio master clock generation

· J: USB 2.0 micro-B jacks

· L: 4 general purpose LEDs

4

lib_board_support: XMOS board support

· M: 3 general purpose buttons

· O: Flexible I²S/TDM input data routing

· P: Flexible I²S/TDM output data routing

· Q: Integrated power supply

· R: Quad-SPI boot ROM

· S: 24MHz Crystal

· T: Integrated XTAG4 debugger

Analogue Input & Output

A total of eight single-ended analog input channels are provided via 3.5mm stereo jacks.
These inputs feed into a pair of quad-channel PCM1865 ADCs from Texas Instruments.

A total of eight single-ended analog output channels are provided. These are fed from
four PCM5122 stereo DAC’s from Texas instruments.

All ADC’s and DAC’s are configured via an I²C bus. Due to an clash of device addresses
a I²C multiplexor is used.

The four digital I²S/TDM input and output channels are mapped to the xCORE input/out-
puts through a header array. These jumpers allow channel selection when the ADCs/-
DACs are used in TDM mode.

Digital Input & Output

Optical and coaxial digital audio transmitters are used to provide digital audio input out-
put in formats such as IEC60958 consumer mode (S/PDIF) and ADAT. The output data
streams from the xcore are re-clocked using the externalmaster clock to synchronise the
data into the audio clock domain. This is achieved using simple external D-type flip-flops.

MIDI

MIDI input and output is provided on the board via standard 5-pin DIN connectors compli-
ant to the MIDI specification. The signals are buffered using 5V line drivers and are then
connected ports on the xCORE, via a 5V to 3.3V buffer. A 1-bit port is used for receive
and a 4-bit port is used for transmit. A pull-up resistor on the MIDI output ensures there
is no MIDI output when the xcore device is not actively driving the output.

Audio Clocking

In order to accommodate a multitude of clocking options a flexible clocking scheme is
provided for the audio subsystem.

Three methods of generating an audio master clock are provided on the board:

· A Cirrus Logic CS2100-CP PLL device. The CS2100 features both a clock generator
and clockmultiplier/jitter reduced clock frequency synthesizer (clean up) and can gen-
erate a low jitter audio clock based on a synchronisation signal provided by the xcore

· ASkyworks Si5351B PLL device. The Si5351 is an I²C configurable clock generator that
is suited for replacing crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs),
and fanout buffers.

5

lib_board_support: XMOS board support

· xcore.ai devices are equippedwith a secondary (or application) PLL which can be used
to generate audio clocks.

Selecting between thesemethods is done via writing to bits 6 and 7 of PORT 8D on tile[0].
See Control I/O.

Note: lib_board_support currently only supports the xcore.ai secondary PLL and
CS2100 device

Control I/O

4 bits of PORT 8C are used to control external hardware on the board. This is described
in PORT 8C functionality.

Table 1: PORT 8C functionality

Bit(s) Functionality 0 1

[0:3] Unused
4 Enable 3v3 power for digital (inverted) Enabled Disabled
5 Enable 3v3 power for analogue Disabled Enabled
6 PLL Select CS2100 Si5351B
7 Master clock direction Output Input

Note: To use the xcore application PLL bit 7 should be set to 0. To use one of the external
PLL’s bit 7 should be set to 1.

LEDs, Buttons and Other IO

All programmable I/O on the board is configured for 3.3 volts.

Four green LED’s and three push buttons are provided for general purpose user interfac-
ing.

The LEDs are connected to PORT 4F and the buttons are connected to bits [0:2] of PORT
4E, both on tile 0. Bit 3 of this port is connected to the (currently unused) ADC interrupt
line.

The board also includes support for an AES11 format Word Clock input via 75 ohm BNC.
The software does not currently support any functionality related to this and it is provided
for future expansion.

All spare I/O is brought out and made available on 0.1” headers for easy connection of
expansion boards etc.

Power

The board is capable of acting as a USB2.0 self or bus powered device. If bus powered,
the board takes power from the USB DEVICE connector (micro-B receptacle). If self
powered, board takes power from EXTERNAL POWER input (micro-B receptacle).

A power source select jumper (marked PWR SRC) is used to select between bus and
self-powered configuration.

6

lib_board_support: XMOS board support

Note: To remain USB compliant the software should be properly configured for bus vs
self powered operation

Debug

For convenience the board includes anon-board xTAG4 for debugging via JTAG/xSCOPE.
This is accessed via the USB (micro-B) receptacle marked DEBUG.

7

lib_board_support: XMOS board support

2.2 xcore-200 Multi-Channel Audio Board

The XMOS xcore-200Multi-channel Audio board (XK-AUDIO-216-MC) is a complete hard-
ware and reference software platform targeted at up to 32-channel USB and networked
audio applications, such as DJ decks and mixers.

The XK-AUDIO-216-MC is based around the XE216-512-TQ128 multicore microcontroller;
an dual-tile xcore-200 device with an integrated High Speed USB 2.0 PHY, RGMII (Gigabit
Ethernet) interface and 16 logical cores delivering up to 2000MIPS of deterministic and
responsive processing power.

Exploiting the flexible programmability of the xcore-200 architecture, the XK-AUDIO-216-
MC supports either USB or network audio source, streaming 8 analogue input and 8
analogue output audio channels simultaneously - at up to 192kHz.

For full details regarding the hardware please refer to xcore-200Multichannel Audio Plat-
form Hardware Manual.

Analogue Input & Output

A total of eight single-ended analog input channels are provided via 3.5mm stereo jacks.
Each is fed into a CirrusLogic CS5368 ADC. Similarly a total of eight single-ended analog
output channels are provided. Each is fed into a CirrusLogic CS4384 DAC.

The four digital I²S/TDM input and output channels are mapped to the xcore input/out-
puts through a header array. This jumper allows channel selection when the ADC/DAC
is used in TDM mode

Digital Input & Output

Optical and coaxial digital audio transmitters are used to provide digital audio input out-
put in formats such as IEC60958 consumer mode (S/PDIF) and ADAT. The output data
streams from the xcore-200 are re-clocked using the external master clock to synchro-
nise the data into the audio clock domain. This is achieved using simple external D-type
flip-flops.

MIDI

MIDI I/O is provided on the board via standard 5-pin DIN connectors. The signals are
buffered using 5V line drivers and are then connected to 1-bit ports on the xcore-200, via
a 5V to 3.3V buffer.

Audio Clocking

A flexible clocking scheme is provided for both audio and other system services. In order
to accommodate amultitude of clocking options, the low-jitter master clock is generated
locally using a frequency multiplier PLL chip. The chip used is a Phaselink PL611-01,
which is pre-programmed to provide a 24MHz clock from its CLK0 output, and either
24.576 MHz or 22.5792MHz from its CLK1 output.

The 24MHz fixed output is provided to the xcore-200 device as themain processor clock.
It also provides the reference clock to a Cirrus Logic CS2100, which provides a very low
jitter audio clock from a synchronisation signal provided from the xcore-200.

Either the locally generated clock (from the PL611) or the recovered low jitter clock (from
the CS2100) may be selected to clock the audio stages; the xcore-200, the ADC/DAC and
Digital output stages. Selection is controlled via an additional I/O, bit 5 of PORT 8C.

8

https://www.xmos.com/support/boards?product=18334
https://www.xmos.com/support/boards?product=18334&component=18687
https://www.xmos.com/support/boards?product=18334&component=18687

lib_board_support: XMOS board support

LEDs, Buttons and Other IO

An array of 4*4 green LEDs, 3 buttons and a switch are provided for general purpose user
interfacing. The LED array is driven by eight signals each controlling one of 4 rows and
4 columns.

A standard XMOS xSYS interface is provided to allow host debug of the board via JTAG.

9

lib_board_support: XMOS board support

2.3 xcore.ai Evaluation Kit

The XMOS xcore.ai Evaluation Kit (XK-EVK-XU316) is an evaluation board for the xcore.ai
multi-core microcontroller from XMOS.

Fig. 2: xcore.ai Evaluation Kit

The XK-EVK-XU316 allows testing in multiple application scenarios and provides a good
general software development board for simple tests and demos. The XK-EVK-XU316
comprises an xcore.ai processor with a set of I/O devices and connectors arranged
around it, as shown in Fig. 3.

External hardware features board include, four general purpose LEDs, two general pur-
pose push-button switches, a PDM microphone connector, audio codec with line-in and
line-out jack, QSPI flash memory, LPDDR1 external memory 58 GPIO connections from
tile 0 and 1, micro USB for power and host connection, MIPI connector for aMIPI camera,
integrated xTAG debug adapter and a reset switch with LED to indicate running.

For full details regarding the hardware please refer to XK-EVK-XU316 xcore.ai Evaluation
Kit Manual.

10

https://www.xmos.ai/download/xcore.ai-explorer-board-v2.0-hardware-manual(5).pdf
https://www.xmos.ai/download/xcore.ai-explorer-board-v2.0-hardware-manual(5).pdf

lib_board_support: XMOS board support

Fig. 3: xcore.ai Evaluation Kit block diagram

Warning: The xcore.ai Evaluation Kit is a general purpose evaluation platform and
should be considered an “example” rather than a fully fledged reference design.

Analogue Audio Input & Output

A stereo CODEC (TLV320AIC3204), connected to the xcore.ai device via an I²S interface,
provides analogue input/output functionality at line level.

The audio CODEC is are configured by the xcore.ai device via an I²C bus.

Audio Clocking

xcore.ai devices are equipped with a secondary (or application) PLL which is used to
generate the audio clocks for the CODEC.

LEDs, Buttons and Other IO

Four green LED’s and two push buttons are provided for general purpose user interfacing.

The LEDs are connected to PORT 4C and the buttons are connected to bits [0:1] of PORT
4D.

All spare I/O is brought out and made available on 0.1” headers for easy connection of
expansion boards etc.

Power

The XK-EVK-XU316 requires a 5V power source that is normally provided through the
micro-USB cable J3. The voltage is converted by on-board regulators to the 0V9, 1V8
and 3V3 supplies used by the components.

The board should therefore be configured to present itself as a bus powered device when
connected to an active USB host.

11

lib_board_support: XMOS board support

Debug

For convenience the board includes anon-board xTAG4 for debugging via JTAG/xSCOPE.
This is accessed via the USB (micro-B) receptacle marked DEBUG.

3 Usage

This repo supports the XMOS build system; XCommon CMake. To use the li-
brary add lib_board_support to an applications CMakeLists.txt file using the
APP_DEPENDENT_MODULES entry. The application must provide a relevant xn file, al-
though example xn files are provided in alongside this libray (see xn_files directory).

The application must use the APIs for the specific board that it is using. To ensure that
only the correct sources for the board in use get compiled in, it is necessary to set the pre-
processor value BOARD_SUPPORT_BOARD in the project to one of the available boards
listed in api/boards/boards_utils.h. This can be done in the appwith the following snippet
of cmake:
set(APP_COMPILER_FLAGS

-DBOARD_SUPPORT_BOARD=XK_AUDIO_316_MC_AB # Change value to select board, see api/boards/boards_utils.h for�
↪→available boards
)

From the application where board initialisation of configuration is done it is necessary to
include the relevant header file. For example:
#include "xk_audio_316_mc_ab/board.h"

From then onwards the code may call the relevant API functions to setup and configure
the board hardware. Examples are provided in the examples directory of this repo.

Note that in some cases, the xcore tile that calls the configuration function (usually from
I²S initialisation) is different from the tile where I²C master is placed. Since I²C master is
required by most audio CODECs for configuration and xcore tiles can only communicate
with each other via channels, a remote server is needed to provide the I²C setup. This
usually takes the form of a task which is run on a thread placed on the I²C tile and is
controlled via a channel from the other tile where I²S resides. The cross-tile channel
must be declared at the top-level XC main function. The included examples provide a
reference for this using both XC and C.

4 Application Programmer Interface

This section contains the details of the API support by lib_board_support. The API is
broken down into 2 sections:

1. Boards: This includes subdirectories for each supported board which need to be in-
cluded in your application.

2. Drivers: This includes sources for configuring peripheral deviceswhichmay be on one
or more of the supported boards.

4.1 Common API

This section contains the list of supported boards, one of which needs to be globally
defined as BOARD_SUPPORT_BOARD in the project.

NULL_BOARD
Define representing Null board i.e. no board in use

12

lib_board_support: XMOS board support

XK_AUDIO_216_MC_AB
Define representing XK-AUDIO-216-MC Board

XK_AUDIO_316_MC_AB
Define representing XK-AUDIO-316-MC Board

XK_EVK_XU316
Define representing XK-EVK-XU316 board

BOARD_SUPPORT_N_BOARDS
Total number of boards supported by the library

BOARD_SUPPORT_BOARD
Define that should be set to the current board type in use
Default value: NULL_BOARD

4.2 XK_AUDIO_316_MC_AB API

struct xk_audio_316_mc_ab_config_t
Configuration struct type for setting the hardware profile.

Public Members

xk_audio_316_mc_ab_mclk_modes_t clk_mode
See xk_audio_316_mc_ab_mclk_modes_t for available clock mode options.

char dac_is_clock_master
Boolean setting for whether the DAC or the xcore.ai is I2S clock master. Set
to 0 to make the xcore.ai master.

unsigned default_mclk
Nominal clock frequency in MHz. Standard rates are supported between
11.2896 MHz and 49.152 MHz.

unsigned pll_sync_freq
When the CLK_CS2100 is used, this defines the nominal reference clock fre-
quency for multiplication by the PLL. This value is ignored when the CS2100
is not used.

xk_audio_316_mc_ab_pcm_format_t pcm_format
See xk_audio_316_mc_ab_pcm_format_t for available data frame options.

unsigned i2s_n_bits
Number of bits per data frame in I2S.

unsigned i2s_chans_per_frame
This defines the number of audio channels per frame (a frame is a complete
cycle of FSYNC or LRCLK).

13

lib_board_support: XMOS board support

enum xk_audio_316_mc_ab_mclk_modes_t
Type of clock to be instantiated. This may be a fixed clock using the application
PLL, an adjustable clock using the CS2100 external PLL or an adjustable or fixed
clock using the on-chip application PLL.
Values:

enumerator CLK_FIXED

enumerator CLK_CS2100

enumerator CLK_PLL

enum xk_audio_316_mc_ab_pcm_format_t
Formats supported by the DAC and ADC. Either I2S using multiple data lines or
TDM supporting multi-channel using a single data line.
Values:

enumerator AUD_316_PCM_FORMAT_I2S

enumerator AUD_316_PCM_FORMAT_TDM

port p_scl
I2C interface ports

port p_sda

void xk_audio_316_mc_ab_i2c_master(SERVER_INTERFACE(i2c_master_if,
i2c[1]))

Starts an I2C master task. Must be started from tile[0] after
xk_audio_316_mc_ab_board_setup() and before and tile[1] HW calls.

Parameters

· i2c – client side of I2C master interface connection.

void xk_audio_316_mc_ab_board_setup(const REFER-
ENCE_PARAM(xk_audio_316_mc_ab_config_t,
config))

Performs the required port operations to enable and the audio hardware on the
platform. Must be called from tile[0] and before xk_audio_316_mc_ab_AudioHwInit()
is called.

Parameters

· config – Reference to the xk_audio_316_mc_ab_config_t config-
uration struct.

void xk_audio_316_mc_ab_AudioHwInit(CLIENT_INTERFACE(i2c_master_if, i2c),
const REFER-
ENCE_PARAM(xk_audio_316_mc_ab_config_t,
config))

14

lib_board_support: XMOS board support

Initialises the audio hardware ready for a configuration. Must be called once after
xk_audio_316_mc_ab_board_setup().

Parameters

· i2c – Client side of I2C master interface connection.
· config – Reference to the xk_audio_316_mc_ab_config_t hard-

ware configuration struct.

void xk_audio_316_mc_ab_AudioHwConfig(CLIENT_INTERFACE(i2c_master_if,
i2c), const REFER-
ENCE_PARAM(xk_audio_316_mc_ab_config_t,
config), unsigned samFreq, unsigned
mClk, unsigned dsdMode, unsigned
sampRes_DAC, unsigned
sampRes_ADC)

Configures the audio hardware following initialisation. This is typically called each
time a sample rate or stream format change occurs.

Parameters

· i2c – Client side of I2C master interface connection.
· config – Reference to the xk_audio_316_mc_ab_config_t hard-

ware configuration struct.
· samFreq – The sample rate in Hertz.
· mClk – The master clock rate in Hertz.
· dsdMode – Controls whether the DAC is to be set into DSDmode

(1) or PCM mode (0).
· sampRes_DAC–The sample resolution of the DAC output in bits.

Typically 16, 24 or 32.
· sampRes_ADC – The sample resolution of the ADC input in bits.

Typically 16, 24 or 32.

void xk_audio_316_mc_ab_i2c_master_exit(CLIENT_INTERFACE(i2c_master_if,
i2c))

Causes the tile[0] to exit, freeing up a thread. Must be called from tile[1]. Once
called, HW config calls from tile[1] will block forever. It is possible to re-start
xk_audio_316_mc_ab_i2c_master() on tile[0] if needed to re-enable this service.

Parameters

· i2c – Client side of I2C master interface connection.

4.3 XK_AUDIO_216_MC_AB API

struct xk_audio_216_mc_ab_config_t
Configuration struct type for setting the hardware profile.

Public Members

xk_audio_216_mc_ab_clk_mode_t clk_mode
See xk_audio_216_mc_ab_clk_mode_t for clock mode available options.

char codec_is_clk_master

15

lib_board_support: XMOS board support

Boolean setting for whether the DAC or the xcore-200 is I2S clockmaster. Set
to 0 to make the xcore-200 master.

xk_audio_216_mc_ab_usb_sel_t usb_sel
USB port slection - see xk_audio_216_mc_ab_usb_sel_t for options.

xk_audio_216_mc_ab_pcm_format_t pcm_format
See xk_audio_216_mc_ab_pcm_format_t for available pmc_format options.

unsigned pll_sync_freq
When the external PLL is used, this defines the nominal reference clock fre-
quency for multiplication by the PLL.

enum xk_audio_216_mc_ab_clk_mode_t
Type of clock to be instantiated. This may be a fixed clock using an external gener-
ator or an adjustable clock using an external PLL (CS2100) in either digital Rx clock
recovery or USB clock recovery using synchronous mode.
Values:

enumerator AUD_216_CLK_FIXED

enumerator AUD_216_CLK_EXTERNAL_PLL

enumerator AUD_216_CLK_EXTERNAL_PLL_USB

enum xk_audio_216_mc_ab_pcm_format_t
Formats supported by the DAC and ADC. Either I2S using multiple data lines or
TDM supporting multi-channel using a single data line.
Values:

enumerator AUD_216_PCM_FORMAT_I2S

enumerator AUD_216_PCM_FORMAT_TDM

enum xk_audio_216_mc_ab_usb_sel_t
Selects which USB port to use - either type A or type B.
Values:

enumerator AUD_216_USB_A

enumerator AUD_216_USB_B

void xk_audio_216_mc_ab_AudioHwInit(const REFER-
ENCE_PARAM(xk_audio_216_mc_ab_config_t,
config))

Initialises the audio hardware ready for a configuration. Must be called once after
xk_audio_316_mc_ab_board_setup().

16

lib_board_support: XMOS board support

Parameters

· config – Reference to the xk_audio_216_mc_ab_config_t hard-
ware configuration struct.

void xk_audio_216_mc_ab_AudioHwConfig(const REFER-
ENCE_PARAM(xk_audio_216_mc_ab_config_t,
config), unsigned samFreq, unsigned
mClk, unsigned dsdMode, unsigned
sampRes_DAC, unsigned
sampRes_ADC)

Configures the audio hardware following initialisation. This is typically called each
time a sample rate or stream format change occurs.

Parameters

· config – Reference to the xk_audio_216_mc_ab_config_t hard-
ware configuration struct.

· samFreq – The sample rate in Hertz.
· mClk – The master clock rate in Hertz.
· dsdMode – Controls whether the DAC is to be set into DSDmode

(1) or PCM mode (0).
· sampRes_DAC–The sample resolution of the DAC output in bits.

Typically 16, 24 or 32.
· sampRes_ADC – The sample resolution of the ADC input in bits.

Typically 16, 24 or 32.

4.4 XK_EVK_XU316 API

struct xk_evk_xu316_config_t

Public Members

unsigned default_mclk
xk_audio_316_mc_ab_config_t::clk_modeSee xk_audio_316_mc_ab_mclk_modes_t
for available clock mode options.

enum audioHwCmd_t
Command enumeration for channel based commands to I2C master server on
other tile.
Values:

enumerator AUDIOHW_CMD_REGWR

enumerator AUDIOHW_CMD_REGRD

enumerator AUDIOHW_CMD_EXIT

void xk_evk_xu316_AudioHwRemote(chanend c)
Starts an I2C master server task. Must be started before the tile[1]
xk_evk_xu316_AudioHwInit calls. In the background this also starts a combinable
channel to interface translation task so the API may be used over a channel end
however it still only occupies one thread. May be exited after config by sending
AUDIOHW_CMD_EXIT if dynamic configuration is not required.

17

lib_board_support: XMOS board support

Parameters

· c – Server side of channel connecting I2C master server and HW
config functions.

void xk_evk_xu316_AudioHwChanInit(chanend c)
Initialises the client side channel for remote communications with I2C. Must be
called on tile[1] before xk_evk_xu316_AudioHwInit().

Parameters

· c – Client side of channel connecting I2C master server and HW
config functions.

void xk_evk_xu316_AudioHwInit(const
REFERENCE_PARAM(xk_evk_xu316_config_t,
config))

Initialises the audio hardware ready for a configuration. Must be called once after
xk_evk_xu316_AudioHwRemote() and xk_evk_xu316_AudioHwChanInit().

Parameters

· config – Reference to the xk_audio_316_mc_ab_config_t hard-
ware configuration struct.

void xk_evk_xu316_AudioHwConfig(unsigned samFreq, unsigned mClk, unsigned
dsdMode, unsigned sampRes_DAC,
unsigned sampRes_ADC)

Configures the audio hardware following initialisation. This is typically called each
time a sample rate or stream format change occurs.

Parameters

· samFreq – The sample rate in Hertz.
· mClk – The master clock rate in Hertz.
· dsdMode – Controls whether the DAC is to be set into DSDmode

(1) or PCM mode (0).
· sampRes_DAC–The sample resolution of the DAC output in bits.

Typically 16, 24 or 32.
· sampRes_ADC – The sample resolution of the ADC input in bits.

Typically 16, 24 or 32.

5 Example Applications

Some simple example applications are provided in order to show how to use
lib_board_support.

5.1 Simple C Usage

The applications app_evk_316_simple_c and app_xk_audio_316_mc_simple_c provide a
bare-bones application where the hardware setup is called from C.

These applications run on the XK-EVK-XU316 and XK-AUDIO-316-MC boards respectively.

They show how to use the cross-tile communications in conjunction with the I²C master
server. The applications only setup the hardware and then exit the I²C server.

18

lib_board_support: XMOS board support

5.2 XC Usage Example

The application app_xk_audio_316_mc_simple_xc demonstrates calling the hardware
setup API from C. It runs on the XK-AUDIO-316-MC board.

5.3 Building and running

To build and run an example, run the following from an XTC tools terminal to configure
the build:
cd examples/<app_name>
cmake -G "Unix Makefiles" -B build

Any missing dependencies will be downloaded by the build system at this point.

The application binaries can be built using xmake:
xmake -C build

To run the application use the following command:
xrun --io bin/<app_name>.xe

For example:
cd examples/app_xk_audio_316_mc_simple_xc
cmake -G "Unix Makefiles" -B build
xmake -C build
xrun --io bin/app_xk_audio_316_mc_simple_xc.xe

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

19

	Introduction
	Supported Boards
	xcore.ai Multi-Channel Audio Board
	xcore-200 Multi-Channel Audio Board
	xcore.ai Evaluation Kit

	Usage
	Application Programmer Interface
	Common API
	XK_AUDIO_316_MC_AB API
	XK_AUDIO_216_MC_AB API
	XK_EVK_XU316 API

	Example Applications
	Simple C Usage
	XC Usage Example
	Building and running

