
AN02010: XMOS Face Recognition Application Note
Release: 0.1.0
Publication Date: 2024/09/05
Document Number: XM-015121-AN

Table of Contents

1 Introduction 1

2 Face Recognition System Overview 2
2.1 Thread Diagram . 2
2.2 Folder Structure . 3
2.3 Integration . 3
2.4 Features Database . 4
2.5 Image Capture . 5
2.6 Face Detection . 6
2.7 Face Recognition . 8
2.8 UART Communication . 10

3 Build and Run the Application 12

4 Resource Usage 14

5 Performance 15

6 References 17

7 Support 18

iiiiii

1 Introduction

This application note provides a comprehensive guide to developing a face recognition solution for the XCORE.
AI chip. It covers the entire process, from camera acquisition to output interface, specifically UART commu-
nication. The current note and provided code are designed to assist users in designing personalized vision
solutions.

111

2 Face Recognition System Overview

Face recognition is a task that involves identifying or verifying a person from a digital image or video frame.
There are different ways to achieve that. A common approach is to have a two-stage model, where the first
stage is responsible for detecting the face in the image (where is the face) and the second stage is responsible
for recognizing the given face (whose face is this). This Application Note uses amodel for face detection and
anothermodel for face recognition. The face detectionmodel is a Single ShotMultiBox Detector (SSD)model,
and the face recognitionmodel is aMobileNetV2model. This lastmodel is able to generate a 128-dimensional
array that represents the face features. This array is then compared with a database of known feature faces
to identify the person. The application will use the Cosine Distance to compare the arrays and identify the
person.

2.1 Thread Diagram
The application is divided into several threads, each responsible for a specific task. The following diagram
illustrates the thread structure of the application:

Fig. 2.1: Thread diagram

Tile[0] primarily focuses on the model, while Tile[1] covers high-level API, camera, and communication. Tasks
are detailed in the following sections.

222

2.2 Folder Structure
The following is the folder structure of the application:

repository
|
|--- src

|--- mapfile.xc
|--- user_main.c
|--- user_camera.xc
|--- user_gpio.c
|--- model
|--- inference
|--- uart
|--- utils

• src: Contains the source code for the application.

• mapfile.xc: Entry point of the application.

• user_main.c: High-level thread that manages the application.

• user_camera.xc: Handles capturing images from the camera.

• user_gpio.c: Manages the GPIO communication between the XCORE.AI chip and the host.

• inference: Manages the inference process on the XCORE.AI chip, including pre and post-processing of
data.

• model: Stores models (non optimized) for face detection and face recognition. It also includes code
for exporting unoptimized models to the XCORE.AI chip.

• uart: Programs to manage the UART communication between the XCORE.AI chip and the host.

• utils: Provides utility functions to support the application or inference, such as bounding box manipu-
lation.

2.3 Integration
Asmentioned earlier, each thread or group of threads is doing a specific task. Thread communication is done
through channels. The definition of those channels and the initial configuration for of all threads are done in
the mapfile.xc file. It corresponds to the entry point of the application. It is responsible for setting up the
threads and channels. The following is the structure of the mapfile.xc file:

int main(void)
{

// Channel declarations
chan c_xflash[N_NETWORKS]; // flash server <> inference
chan c_recognition; // inference <> recognition post process
chan c_inference; // inference <> user app
chan c_uart; // inferencer_rec <> user uart
chan c_gpio; // inferencer_rec <> gpio task

// Initialize parallel tasks
par{

// flash server has to be tile 0
on tile[FLASH_SERVER_TILE]: {
flash_t headers[N_NETWORKS];
flash_server(c_xflash, headers, N_NETWORKS, qspi, flash_spec, NFLASH_SPECS);

}
// tile 0 : control and inference

(continues on next page)

333

(continued from previous page)

on tile[0]: {unsafe {inferencer(c_inference, c_xflash[0], c_xflash[1], c_recognition);}}
// tile 1 : user app and camera
on tile[1]: user_camera();
on tile[1]: user_app(c_inference);
on tile[1]: inferencer_rec(c_recognition, c_uart, c_gpio);
on tile[1]: user_uart(c_uart);
on tile[1]: user_gpio(c_gpio);

}
return 0;

}

GPIO and Camera are tied to tile 1 due to physical constraints. Therefore, the camera thread runs on tile 1.
On the other hand, the model arena size and post-processing are large enough to fill a tile, leading to their
placement on tile 0. Since the model runs on tile 0, flash communication also operates on this tile. The
remaining tasks, such as the high-level thread, UART communication, and post-process thread, are assigned
to tile 1 due to its greater availability of resources.

2.4 Features Database
The face recognition model is based on an Arcface Model (Arcface_Paper) with a MobileNetV2 backbone.
Trained on a vast dataset of 10 million faces, this model can generate a 128-dimensional vector representing
facial features. These features are optimized to minimize intraclass differences while maximizing interclass
disparities, crucial for a robust face recognition model.

The subsequent steps involve collecting faces that we want to identify and running them through the model
to generate the base features. For instance, if there are 10 individuals to detect, 10 images are collected and
passed through the model, resulting in 10 arrays of 128 features. A Python script facilitates this process.
For further details, refer to the generate_features.py script and the generate_features.rst in the python
folder.

The mentioned script generates arrays in a standardized structure, intended for use by the XCORE.AI chip to
compare features and identify individuals. The structure is as follows:

// Define the person_t struct
typedef struct {

std::string name;
std::vector<float> embeddings;

} person_t;

The person_t struct contains the name of the person and the 128-dimensional feature vector. Therefore, the
database is an array of person_t structs. The XCORE.AI chip compares the features of the detected face with
the features in the database to identify the person. It utilizes logic to threshold the cosine distance and also
incorporates averaging of previous detections to enhance accuracy.

As an alternative to the previous method, it is also possible to add a new person to the database at runtime
by pressing the hardware button on the vision board. When this button is pressed, the user_gpio thread
detects the event. It then communicates with the face_recognition_thread to include the new person in
the database for future detections. Once the person is successfully added, the face_recognition_thread
notifies the gpio_thread. As a visual confirmation, the gpio_thread makes an LED blink and turn green for 2
seconds. If a person is added using this method, they will be named person_, followed by the current size of
the database.

The following is the main logic of the user_gpio.c program:

SELECT_RES(
CASE_THEN(button_port, on_button_change))

{
(continues on next page)

444

https://arxiv.org/abs/1801.07698

(continued from previous page)

on_button_change: {
p_button_state = button_state;
button_state = port_in(button_port);

// rising edge
rising_edge = p_button_state == BTN_NO_PRESSED && button_state == BTN_PRESSED;
if (rising_edge) {

// if a button is pressed, inform the inference thread
chan_out_byte(c_gpio, 1);
// wait for response
if (chan_in_byte(c_gpio)){

gpio_led_activity();
}

}

// here reset the condition before leaving
port_set_trigger_in_not_equal(button_port, button_state);
SELECT_CONTINUE_NO_RESET;

When we detect a rising edge in the button, we send the information, and once we receive the response, we
perform the blink sequence.

2.5 Image Capture
Image capture involves acquiring images from the camera and sending them to the XCORE.AI chip for pro-
cessing. The camera thread is responsible for this task. It captures images from the camera and sends them
to the inference thread for processing. The camera thread is implemented in the user_camera.xc file. The
following is the structure of the user_camera.xc file:

void user_camera()
{

streaming chan c_pkt;
streaming chan c_ctrl;
chan c_isp;
chan c_control;

camera_mipi_init(
p_mipi_clk,
p_mipi_rxa,
p_mipi_rxv,
p_mipi_rxd,
clk_mipi);

par{
MipiPacketRx(p_mipi_rxd, p_mipi_rxa, c_pkt, c_ctrl);
mipi_packet_handler(c_pkt, c_ctrl, c_isp);
isp_thread(c_isp, c_control);
sensor_control(c_control);
}

}

The camera is connected to the MIPI interface, the first thread is responsible for receiving packets from the
camera. The second thread handles the packets and forwards them to the ISP. A third thread is dedicated to
image processing, while a fourth thread manages sensor control. Users are not required to modify this code.

The high-level api camera_capture is used to capture images from the camera. This function is called in
the user_main.c file. The capture involves by default a downsample, debayer, AWB and AE processes. The
capture has to wait for the last image when the function is called, so it might take some time to return if the
call is made at the start of frame.

555

// init data
const size_t img_data_size = H * W * CH * sizeof(int8_t);
int8_t img_data[H][W][CH] = {{{0}}};

// grab a frame
printstr("Requesting image...\n");
assert(camera_capture_image(img_data) == 0);
printstr("Image captured...\n");

2.6 Face Detection
Once we have the features database and we captured an image, the next step is to locate where the face
is located in the image, if any. For this task, we use a Single Shot MultiBox Detector (SSD) model based on
a YunNet model (Yunet_Paper). The output of the Yunet model, like other SSD models, typically consists of
bounding boxes for detected objects, such as faces, and confidence scores for each detected object.

Each bounding box is represented by a set of coordinates that specify the location of the detected face in the
input image. The confidence score indicates the model’s certainty that the detected object is indeed a face.

The detection model and the recognition model share the same arena size in RAM as they are executed
sequentially. This means that the detection model is executed first, followed by the recognition model. The
inferencer.cpp file is responsible for running the inference on the XCORE.AI chip. Depending on what the
main thread asks, it will run either the detectionmodel or the recognitionmodel. The following is the structure
of the inferencer.cpp file:

// ------------------ Detection ------------------
// Init the model
model1_init((void *)flash1);

// sizes
const size_t input_size = model1_input_size(0);
// const size_t output_size = model1_output_size(0);

// Receive image size
size_t chan_in_size = chan_in_word(c_inference);
assert(chan_in_size == input_size);

// Receive the image
int8_t *inputs1 = (int8_t *)model1_input_ptr(0);
chan_in_buf_byte(c_inference, (uint8_t *)inputs1, input_size);

// Run the model
model1_invoke_decorator();

// Retrieve output
int8_t *conf_int8 = model1_output(0)->data.int8;
int8_t *loc_int8 = model1_output(1)->data.int8;
int8_t *iou_int8 = model1_output(2)->data.int8;

// Retrieve quant params
quant_params_t params_det[3];
for (uint8_t i = 0; i < 3; i++)
{
params_det[i].scale = model1_output(i)->params.scale;
params_det[i].zero_point = model1_output(i)->params.zero_point;
params_det[i].out_size = (size_t)model1_output_size(i);

(continues on next page)

666

https://link.springer.com/article/10.1007/s11633-023-1423-y

(continued from previous page)

}

// Pass to the post process
bbox_t result = face_det_post_process(

conf_int8,
loc_int8,
iou_int8,
params_det);

// return the result
model_chan_out_bbox(&result, c_inference);

The pipeline consists of setting the input, running the model and applying a post-process to the output.

The postprocess stage, implemented in the postprocess_det.cpp file, filters the bounding boxes generated
by the model and returns the most accurate one. This unique box indicates the location of the face in the
image along with its corresponding score.

The outputs of the model or the inputs to the post-process stage are the following:

• conf_int8 : Confidence score of the detected faces (normalized).

• loc_int8 : Bounding boxes of the detected face (normalized).

• iou_int8 : Intersection over Union of the detected faces (normalized).

The post-process stage will first dequantize each array, average the IOU and the confidence score, and then
filter the bounding boxes applying Non-Maximum Suppression (NMS). The output of the post-process stage
is a single bounding box that indicates where the face is located in the image and its score.

bbox_t face_det_post_process(
int8_t *conf_int8,
int8_t *loc_int8,
int8_t *iou_int8,
const quant_params_t (¶ms)[3]

)
{

// Get the scores
get_scores(

conf,
iou,
params[2].out_size);

// Transform bboxes
transform_priors_in_bboxes(

loc,
priors,
scores,
bboxes);

// Do NMS
nms(bboxes, nms_th, nms_iou_th);

// Do some checks to filter bboxes
filter_bboxes(bboxes);

// return the first bbox
return bboxes[0];

777

2.7 Face Recognition
Face recognition is the process of identifying or verifying a person from a digital image or video frame. As
mentioned earlier, the face recognition model is based on an Arcface Model (Arcface_Paper) with a Mo-
bileNetV2 backbone. This model generates a 128-dimensional vector representing facial features. These
features are compared against the mentioned database to identify the person.

After a face is detected by the first model and post-processed, we may have a candidate (bounding box) face
to be identified. The next step is to crop the image to extract only the face region. This is accomplished by a
wrapper function that takes the bounding box as input and uses the isp_crop function from the lib_camera
library.

The cropping process extracts the specified region of interest from the image, resulting in a new image con-
taining only the face. Subsequently, this cropped face is resized to fit the input dimensions of the second
model, which are 64x64x3 pixels. Again, this resizing is facilitated by awrapper function, using the isp_resize
function from the lib_camera library.

Below are both function wrappers:

void img_crop_int8(
int8_t * img,
const unsigned in_width,
const unsigned in_height,
bbox_t * bbox)

{
unsigned xu1 = (unsigned)bbox[0].x1;
unsigned yu1 = (unsigned)bbox[0].y1;
unsigned xu2 = (unsigned)bbox[0].x2;
unsigned yu2 = (unsigned)bbox[0].y2;
isp_crop_int8(img, in_width, in_height, xu1, yu1, xu2, yu2);

}

void img_bilinear_resize_int8(
bbox_t * bbox,
int8_t * img,
const uint16_t out_width,
const uint16_t out_height,
int8_t * out_img)

{
unsigned in_width = (unsigned)bbox[0].x2 - (unsigned)bbox[0].x1;
unsigned in_height = (unsigned)bbox[0].y2 - (unsigned)bbox[0].y1;
isp_resize_int8(img, in_width, in_height, out_img, out_width, out_height);

}

Then similarly to the first model, the pipeline consists of setting the input, running the model and applying a
post-process to the output.

In this case, the stage that changes is the post-process, which takes the output and compares against the
database. This operation is performed in the postprocess_rec.cpp file. For convenience this task is living in
its own thread, to offload resources from tile 0.

The following is the main function of the postprocess_rec.cpp file:

void compare_against_database(
std::vector<person_t>& database,
std::vector<float> &output_float,
rec_result_t &recognition_result)

{
const float SIM_TH = 0.35;
float max_similarity = -1.0;
int max_index = 0;

(continues on next page)

888

https://arxiv.org/abs/1801.07698

(continued from previous page)

// initialize index to -1
recognition_result.index = -1;

static std::vector<float> means(database.size(), 0.0f);
// char buff[32];
//snprintf(buff, sizeof(buff), "database size: %d\n", database.size()); printstr(buff);
//snprintf(buff, sizeof(buff), "output size: %d\n", output_float.size()); printstr(buff);
for (unsigned person = 0; person < database.size(); person++)
{

// check size
xassert(database[person].embeddings.size() == output_float.size() && \
ERROR_MSG_SIZE_MISMATCH);

// compute similarity
float similarity = compute_cosine_similarity(

database[person].embeddings.data(),
output_float.data(),
output_float.size());

// filter
means[person] = (means[person] + similarity) / 2.0f;
similarity = means[person];

// update max
if (similarity > max_similarity)
{

max_similarity = similarity;
max_index = person;

}

#if PRINT_RESULT_COMPARISONS
printf("Similarity with [%s]:\t%f\n",

database[person].name.c_str(),
similarity);

#endif
}

if (max_similarity > SIM_TH){
recognition_result.name = database[max_index].name;
recognition_result.similarity = max_similarity;
recognition_result.index = max_index;
print_identified(recognition_result);

}
else{

recognition_result.name = "unknown";
recognition_result.similarity = 0.0f;

}
}

This function takes the database and the output of themodel, gets the cosine similarity and returns the name
of the person that has the highest similarity. There is an average with the previous detection and a threshold
to avoid false positives.

The result is stored in the result_t struct, which is then sent to the main thread to be displayed on the UART
interface.

// Define the rec_result_t struct
(continues on next page)

999

(continued from previous page)

typedef struct {
std::string name;
int index;
float similarity;

} rec_result_t;

// Database definition
extern std::vector<person_t> database;

2.8 UART Communication
UART stands for Universal Asynchronous Receiver Transmitter, which is a protocol that allows serial commu-
nication between devices. It is commonly used for transmitting and receiving data betweenmicrocontrollers,
sensors, and other peripheral devices.

The UART task consists of two main parts:

1. the device thread, that waits to receive data and sends it through UART. The data sent is the person
identified by the system.

2. the host app, that receives andprints in the console the detected person, which could enable for example
another board to start a process of opening a gate or personalizing information for that user.

Both programs are located in the uart folder, the device program is called user_uart.cpp with its headers,
and the host program is called host.py.

Note: If the user needs to update any UART initialization values, such as baud rate and stop bit, the same
values must be used on the device and host side.

Here below the device side:

static void user_uart_cpp(chanend_t c_uart) {
uart_tx_t uart;
port_t p_uart_tx = USER_UART_PORT;
hwtimer_t tmr = hwtimer_alloc();

// Initialize the UART Tx
uart_tx_blocking_init(&uart, p_uart_tx, USER_BAUD_RATE, 8, UART_PARITY_NONE, 1, tmr);

// Send hello message
send_string_uart(&uart, "Hello from user_uart\n");

// Receive from app and send to uart
while (1) {

// convert index in name
uint8_t person_index = chan_in_byte(c_uart);
std::string name = database[person_index].name;
send_string_uart(&uart, name);

}
xassert(0 && "This should never be reached");

And here the host side:

import serial
from time import sleep

print("Initializing serial communication...")
(continues on next page)

101010

(continued from previous page)

try:
ser = serial.Serial("/dev/ttyS0", timeout=1) # Open port with baud rate and timeout
ser.baudrate = 115200 # Set Baud rate
ser.bytesize = 8 # Number of data bits = 8
ser.parity = serial.PARITY_NONE # No parity
ser.stopbits = 1 # Number of Stop bits = 1
print("Serial communication initialized.")

while True:
received_data = ser.read_all() # read all available serial data
if received_data:

data = received_data.decode('utf-8')
print("RX:", data) # print received data as UTF-8 decoded string

sleep(0.1)

except serial.SerialException as e:
print("Serial communication error:", e)

finally:
if ser.is_open:

ser.close() # Close serial port
print("Serial port closed.")

111111

3 Build and Run the Application

This section describes how to setup and run the current application.

This example can be run both only using xrun or with a Python GUI interface.

Please refer to the Application Note AN02017 regarding Software and Hardware requirements, as well as how
to get started and connect the XCORE.AI Vision Development Kit to the host computer.

Once, the XMOS tools environment is set, set up the Python environment by running the following commands
from the top-level directory:

Create a Python venv
python -m venv .venv
Activate venv (Windows)
call .venv/Scripts/activate.bat
Activate venv (Mac OS, Linux)
source .venv/bin/activate
Install Python Requirements
cd an02010
pip install -r requirements.txt

In the same terminal, run the following commands to build the application and flash the models:

build
cmake -G "Unix Makefiles" -B build
xmake -C build
flash model weights
xflash --target-file XCORE-VISION-EXPLORER.xn --data src/model/xcore_flash_binary.out

The application can be run either using just the console:

run (xrun option)
xrun --xscope bin/app_face_identification_uart.xe

or using the Python GUI:

run (python GUI option)
python python/faceident.py

Note: In order to achieve optimal performance, the camera must be in a fixed position.

After running the application, the device will do the following:

1. Capture an image and process it.

2. Detect faces on the frame.

3. If a face is detected, see if the person is in the database.

It is worth mentioning that the image never leaves the chip, all process is done locally, so we keep the privacy
of the captured face. The device will only provide information about coordinates and names.

The terminal outputs the following information:

Image captured...
Box: [x1:10.832067,y1:60.337509,x2:54.573555,y2:109.986816], score: 1.360449}
Requesting image...
Identified: [alberto], similarity:0.542654

121212

The device provides information when an image is requested or captured, including the face location and a
score. The score, ranging from -1.5 to 1.5, reflects how confident the model is that the detected class is a
face.

If the face is in the database, it prints the identified person with a similarity score. This similarity score goes
from -1 to 1 and represents the cosine distance between the features in the database and the features of the
current picture.

The Python GUI is a frontend that displays this information in a more user-friendly manner. The GUI is split
vertically into two sections. The right side is dedicated to face detection; if a face is in the frame, it will track
the eyes. The left side represents the Face ID section; if a person is detected and identified, the frame turns
blue, otherwise, it remains grey.

Warning: To exit the GUI, use the ctrl+c command in the terminal. Closing the GUI window will not stop
the application.

An example of a detected person is presented below:

Fig. 3.1: Person Detected

An example of an identified person is presented below:

Fig. 3.2: Person Identified

131313

4 Resource Usage

Thread Usage: The XCORE.AI chip offers 8 threads per tile. Below is the application thread usage:

• Tile[0]: 2/8 threads used.

• Tile[1]: 7/8 threads used.

Memory Usage: The memory usage of the application is as follows:

Table 4.1: Memory Usage of Current Application Note

Tile N Available [bytes] Used [bytes] Used [%]

Tile [0]
524288 465412 89

Tile [1]
524288 149384 29

The application uses 465412 bytes ofmemory on tile 0 and 149384 bytes on tile 1. Thatmeans that themodel
is almost taking all the memory of tile[0], and the application is taking a small part of the memory of tile[1].

141414

5 Performance

Here are the performance metrics of the application running on the XCORE.AI Vision Development Kit:

Function TICKS MS FPS

Total capture 10721405 107.21 9.33
Model A - detect. 7352519 73.53 13.60
Model B - recog. 7440434 74.40 13.44
Models 14792953 147.93 6.76
Others 1043829.00 10.44 95.80
Total 26558187.0 265.58 3.77

We can see that the total time to capture an image, run the detection model, and run the recognition model
is 265.58 ms, which corresponds to 3.77 FPS of global performance. The detection model takes 73.53 ms,
while the recognition model takes 74.40 ms. The total time for both models is 147.93 ms, which corresponds
to 6.76 FPS. The remaining time is spent on other tasks, such as UART communication and post-processing.

Depending on the model used the performance of the inference may vary. Here are the performance metrics
of the application running on the XCORE.AI Vision Development Kit using different models:

Table 5.1: MobileNetV2 Comparison

Model Back-
bone

Input
(H,W,Ch)

Al-
pha

Classes Params
(M)

Time
(ms)

Model
(KB)

Arena
(Bytes)

A Mb-
NetV2

120,160,3 0.5 1000 1.987 96.12 2175 193240

B Mb-
NetV2

120,160,3 0.5 10 0.719 69.9 960 191424

C Mb-
NetV2

200,200,3 0.5 10 0.719 125.14 937 350056

D Mb-
NetV2

120,160,3 0.75 10 1.395 116.19 1679 279872

E Mb-
NetV2

120,160,3 1 10 2.271 136.96 2611 280336

The execution time of amodel is not only determined by the number of parameters it has. Factors such as the
number of operations, compiler optimizations, and conversion tuning impact on performance. For example,
even though model C has fewer parameters than model A (0.7M vs 1.98M), it takes longer to execute (125ms
vs 96ms) due to the input size and hence the number of convolution operations.

Here below is a zoom on the performance of the profiling of model C:

151515

Table 5.2: Detailed Profiling of MobilenetV2 (a=0.5, i=200x200x3)

N Operation Cumulative Time (ms)

15 OP_XC_strided_slice 1.02ms
14 OP_XC_pad_3_to_4 3.12ms
63 OP_XC_pad 4.17ms
59 OP_XC_ld_flash 16.01ms
151 OP_XC_conv2d_v2 98.32ms
16 OP_XC_add 2.05ms
2 OP_CONCATENATION 0.39ms
1 OP_RESHAPE 0.00ms
1 OP_SOFTMAX 0.06ms

Total time invoke() 125.14ms

Note: The model uses 5 threads for the optimised layers. Optimised layers are the ones that start with
OP_XC_. The rest of the operations are executed single-threaded. The parameter to set the number of threads
is in the --xcore-thread-count=5 parameter.

The most time-consuming operation is the convolution operation, which takes 98.32 ms. Note that is also
the one that repeats themost (151 times). The secondmost time-consuming operation is the load from flash,
which takes 16.01 ms. The rest of the operations are not significant in terms of total time.

161616

6 References

• XMOS XTC Tools User Guide: XTC tools.

• XMOS XTC Tools Installing Guide: XTC Installing Guide.

171717

https://www.xmos.com/view/Tools-15-Documentation
https://xmos.com/xtc-install-guide#TODOremovethislinksafterxmosdocupdate

7 Support

For all support issues please visit XMOS Support.

181818

http://www.xmos.com/support#TODOremovethislinksafterxmosdocupdate

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

191919

	1 Introduction
	2 Face Recognition System Overview
	2.1 Thread Diagram
	2.2 Folder Structure
	2.3 Integration
	2.4 Features Database
	2.5 Image Capture
	2.6 Face Detection
	2.7 Face Recognition
	2.8 UART Communication

	3 Build and Run the Application
	4 Resource Usage
	5 Performance
	6 References
	7 Support

