AN02005: XMOS Logo Detector Application Note

Release: 0.1.0
Publication Date: 2024/09/14
Document Number: XM-015116-AN

AMOS

Table of Contents

1 Introduction

2 XMOS Logo Detector Overview
271 Thread Diagram
2.2 Software Application Structure
2.3 Model Preparation
24 Toplevel Main
2.5 MainProgram
2.6 Userinferencing Thread
27 CameraThread
28 GPIOThread

3 Building and Running the Application
4 Resource Usage

5 Performance

6 References

7 Support

10
1
12
13

T Introduction

This application note provides an example of how to connect a camera, a small ai-model and a GPIO on an
XCORE.Al processor. The model is purposely small in order to show how a model can run efficiently using
just RAM memory.

The modelis a multi-stage CNN with a sigmoid output that can recognize the XMOS logo. The modelis trained
on a small dataset of images of the XMOS logo. The model is trained using the TensorFlow Lite framework
and is converted to an XCORE optimised model using the xmos_ai_tools.

The application illuminates a green LED if the logo is detected. If the logo is not detected, the LED is red. The
application also prints the probability of the logo being seen (as output by the sigmoid) if connected via DEBUG
Micro USB port to a host.

https://github.com/xmos/ai_tools

2 XMOS Logo Detector Overview

The structure of the application follows a multi-threading approach where each thread is focused on doing
a specific task. Threads communicate through channels. The threads are distributed across two tiles (each
has its own 512 kByte of memory): the NN model executes on tile[0], and the main program and camera
interface execute on tile[1]. Allocating a whole tile to the NN model enables us to run the biggest model
possible. Hence, we have allocated a specific tile to the model and run all other components on the other tile.

One thread is dedicated to running the main program that interacts with the camera, GPIO and inferencer.
This thread asks the camera thread for the latest image available and subsequently sends that image to the
NN model. The NN-model thread receives the image, and runs an inference on the image, whereupon it sends
the result back to the main program. The main thread then calls the GPIO thread to turn on the LED if the logo
is detected. This partitioning of tasks allows the NN model to execute in parallel with the main program and
camera library, so the main program can get the latest image whilst the model is running an inference.

MainThread CameraThread NMMode(Thread GPIOThread
Request latest image
—,
Send latest image
Send image for inference
Inference result
alt [Logo detected]
Turn on green LED
[Mo logo detected]
Turn on red LED
>
MainThread CameraThread NMMode(Thread GPIOThread

Fig. 2.1: High-Level Sequence Diagram

In the next section, the structure of the application and how the model is imported into the application will be
discussed.

2.1 Thread Diagram

The following shows the thread diagram of the application.

main

inference
Qead

Camera
Sensor

~ »| GPIO

Tile [0] Tile [1]

Fig. 2.2: Thread diagram

This application uses two tiles. Inferencing takes place on tile[0]. Tile[1] includes the main, camera and GPIO
threads. The user application tasks the camera thread to take a picture, sends it to the inference thread, and
instructs the GPIO task to control the LED.

2.2 Software Application Structure

The application source code is stored in the src folder, while the model and model scripts are located in the
model folder. The src folder contains all necessary source files to run the application, which is mostly code
that can be modified by the user to achieve a different behavior before or after the inference. The model folder
contains the model and all the utilities to run the model. This code is generated and is not usually modified
by the user.

The following is the folder structure of the application:

repository
\
|--- model
|--- model_unoptimized.tflite
|--- convert.py
|--- convert.yaml
|--- model.utils.cpp
|=== SFEG
|--- mapfile.xc
|--- user_main.c
|--- user_inference.cpp
| --- user_camera.xc
|--- user_gpio.c
|--- CMakelLists.txt

2.3 Model Preparation

This section contains the model and the utilities to export the model. The model is trained using the
Tflite_micro framework, and is converted to an XCORE optimised model using the xmos_ai_tools.

Unoptimized model

This is the TensorFlow Lite model after int8 post-training-quantization. This model is not optimized for the
XCORE architecture and will be converted to an XCORE model in the next stage.

For more information regarding model quantization, please refer to TensorFlow post-training quantization
documentation tf-pt-quantization.

Model export

In order to convert the unoptimised TensorFlow Lite model to an XCORE model, the xcore-opt tool will be
used. To simplify the conversion a Python script is provided (convert.py). This script takes the unoptimized
TensorFlow Lite model and optimizes it to run on an XCORE. This script reads a configuration file convert.
yaml, and generates a .cpp file that will be compiled by the tool chain to provide an inference function to the
programmer. The script also produces the headers for the model and the optimised TensorFlow Lite model.

Model utils

These are utilities for both treating the input and output of the model, and checking the size of both the input
and output tensor of the model.

This example collects all output information of the model in different formats. It encapsulates this output in
the following structure.

// Struct containing all the outputs of the model
typedef struct

{
int8_t output_int8;
float output_float;
uint8_t output_label; // this one is computed
float output_probability; // this one is computed
} model_output_t;

The int8_t output does not have a meaningful value by itself, it is the output of the model. The final layer
of the model utilizes a sigmoid function, which is designed to map the probabilities of a binary class into a
range between 0.0 and 1.0 (float32 output). The conversion between int and float is done by a dequantization
process. The label ID is the class that the model predicts the input belongs to. The probability output reports
the probability of the input belonging to the class. The calculation of the probability is done using a threshold
value, which is 0.5 by default.

For example if the model produces a sigmoid output of 0.039, this means the model estimates a 3.9% chance
of the input belonging to class 1 and a 96.1% chance of it belonging to class 0. Given a threshold of 0.5 for
classification, we calculate the deviation as 0.5 minus the sigmoid output. Thus, the deviation is 0.5 - 0.039
= 0.461. The Certainty Percentage is then computed as (0.461/ 0.5) x 100% = 92%. This indicates that the
model is 92% confident that the input belongs to class 0.

This information is collected in a single structure so that all the data can be easily transmitted between
threads.

void model_chan_out_result(
model_output_t* output,
streaming_chanend_t c_inference) {
s_chan_out_buf_byte(c_inference, (uint8_t*)output, sizeof(model_output_t));

}

model_output_t model_chan_in_result(
streaming_chanend_t c_inference) {
model_output_t result;
s_chan_in_buf_byte(c_inference, (uint8_t*)&result, sizeof(model_output_t));
(continues on next page)

4 Y,

https://www.tensorflow.org/lite/microcontrollers
https://github.com/xmos/ai_tools
https://www.tensorflow.org/lite/performance/post_training_quantization

(continued from previous page)

return result;

}

To ensure structured and controlled communication of information across cores, a similar approach is taken
for the model size, even though it may seem excessive. This approach serves to illustrate a general method
for handling information in a systematic manner.

2.4 Top level Main

The top level main program is stored in a file mapfile.xc which serves as the entry point of the application.
It declares the channels and starts the threads. As stated earlier, the model runs on tile[0], and the high-level
application runs on tile[1].

int main(void)

{
// Channel declarations
streaming chan c_inference;
chan c_gpio;

par{

on tile[@]: user_inference(c_inference); // Run the model on tile[@]

on tile[1]: user_gpio(c_gpio); // Run the GPIO on tile[71]

on tile[1]: user_camera(); // Run the camera on tile[1]

on tile[1]: user_main(c_inference, c_gpio); // Run the high level app on tile[T]
¥
return 0;

In this code there are 2 channels declared:

+ c_inference: This streaming channel is used to send the image to the model and receive the result. The
use of a streaming channel allows the model to continue processing the data without waiting for the
entire image to be received. This approach prioritizes faster processing over waiting for data transmis-
sion.

+ c_gpio: This channel is used by the high-level application to send the LED value to the GPIO thread.

Now each thread will be explained in more detail.

2.5 Main Program

The main program is stored in user_main.c This is the previously mentioned high-level API, that will interact
with the camera and the GPIO.

// init data
const size_t image_size = H * W * CH * sizeof(int8_t);
int8_t img_data[H][W][CH] = {{{@}}};

// get model size (input/output)
model_size_check_t model_size = model_chan_in_size(c_inference);
size_print(&model_size);

// assert all sizes match
assert(model_size.input_size == image_size);
assert(model_size.output_size == EXPECTED_OUTPUT_SIZE);
(continues on next page)

° Y,

(continued from previous page)

// initialize camera
camera_init();

The code above allocates memory for the image first, it gets the model size, and checks if the input size

matches the image size. It finally initializes the camera.

{
// grab a frame
printf("Requesting image...\n");
assert(camera_capture_image(img_data) == 0);

// Update LED state
output_status = led_values[result.output_label];

// set output
chan_out_word(c_gpio, output_status);

This part will capture an image from the camera, and send it to the model. After computing the result, it will

send the result to the GPIO thread.

2.6 User Inferencing Thread

The code for the user inferencing thread is stored in user_inference.cpp

This thread is responsible for running the NN model. The code snippet below represents a while loop that
waits for an image to be sent to the model and then runs the model. After running the model, it computes the

result, and sends it back to the high-level application.

// model initialization
printf("Model init\n");
model_init((void *)nullptr);
while(1)
{
if(s_chan_in_byte(c_inference))
{
// Receive the image
s_chan_in_buf_byte(c_inference, (uint8_t *)data_ptr, model_size.input_size);

// Run the model
printf("Model invoke\n");
model_invoke();

// Compute the output
TfLiteTensor* output = model_output(9);
model_output_t result = model_output_map_binary(output, ©.5);

// Return the result
model_chan_out_result(&result, c_inference);

Note that the model is initialized before the while loop. The model is initialized with a nullptr because the
model does not need to read the weights from flash. Besides, data_ptr is the pointer to the input tensor of
the model. The model_invoke () function will run the model, and store the result in the output tensor.

2.7 Camera Thread

This thread will be responsible for capturing the image from the camera, and sending it to the high-level
application. It uses 4 threads.

void user_camera()

{
streaming chan c_pkt;
streaming chan c_ctrl;
chan c_isp;
chan c_control;

camera_mipi_init(
p_mipi_clk,
p_mipi_rxa,
p_mipi_rxv,
p_mipi_rxd,
clk_mipi);

par{
MipiPacketRx(p_mipi_rxd, p_mipi_rxa, c_pkt, c_ctrl);
mipi_packet_handler(c_pkt, c_ctrl, c_isp);
isp_thread(c_isp, c_control);
sensor_control(c_control);
}
}

The camera is connected to the MIPI interface, so the first thread will receive the packets from the camera.
The second thread will handle the packets and send them to the ISP. The third thread will process the image,
and the fourth thread will control the sensor. The user does not need to modify this code.

2.8 GPIO Thread

This thread will be responsible for turning on the LED if the logo is detected. The SELECT_RES block will wait
for a value to be sent from the high-level application, and then turn on the LED according to the received value.

void user_gpio(chanend_t c_gpio)

{
// PORT_LED and PORT_BUTTON are defined in the xn file

port_t p_leds = PORT_LED;
uint32_t value = 0;
port_enable(p_leds);

SELECT_RES(
CASE_THEN(c_gpio, led_handler))
{
led_handler:
value = chan_in_word(c_gpio);
printf("Received value: %lu\n", value);
port_out(p_leds, value);
continue;
¥
}

If there is some change in the channel c_gpio, the value will be read, and the LED will be turned on according to
the value. The port corresponding to the LED is defined in the XCORE-VISION-EXPLORER. xn file. The port_out
will output the value to the mentioned port.

Note: Inthis board, PORT_LED is a 32-bit port, so the value will be a 32-bit value. If the user is using different
peripherals, the value may be different. The recommended way in this case would be to read/peek first, modify
the needed value, and then write the port modified values.

3 Building and Running the Application

This section describes how to setup and run the current application.

Please refer to the Application Note AN02017 regarding how to get started using the XCORE.AI Vision
Development Kit and install the required software before proceeding to build the application.

Once, the environment is set, run the following command from the top-level directory:

python regs

note: create and activate venv first

cd an@2005

pip install -r requirements.txt

build

cmake -G "Unix Makefiles" -B build

xmake -C build

run

Xrun --xscope bin/app_xmos_logo_camera.xe

(Optional) The application can also be flashed into memory
xflash --target-file XCORE-VISION-EXPLORER.xn bin/app_xmos_logo_camera.xe

After running the demo, the camera will start capturing images and sending them to the model. If the model
detects the XMOS logo, the LED will turn green, and the probability of the detection will be printed.

Fig. 3.1: Demo output for the XCORE . AT Vision Development Kit, when the logo is shown, built-in LED turns
green.

Console Output example:

Model results:

Raw (int8): -118

Dequant sigmoid prob: 0.039062
Label ID: ©

Probability: 0.92

As mentioned above, when connected to a host, the device prints further information regarding the detection.
It prints the raw output (int8), the dequantized sigmoid probability (float), the label ID, and the output proba-
bility. The printed data match the structure of the model_output_t discussed in the model utils section, and
a more detailed explanation of them can be found in the same section.

In the following section, we will dive into the software components of this application and its performance
metrics.

4 Resource Usage

Thread Usage: The XCORE . AT chip offers 8 threads per tile. Below is the application thread usage:
- Tile[0]: 1/8 threads used.
« Tile[1]: 6/8 threads used.

Memory Usage: The memory usage of the application is as follows:

Table 4.1: Memory Usage of Current Application Note

TileN Available [bytes] Used [bytes] Used [%]

. 524288 476556 91
Tile [0]

. 524288 111744 21
Tile [1]

As we can see the model is using 476556 bytes of memory, and the application is using 7117744 bytes of
memory. That means that the model is almost taking all the memory of tile[0], and the application is taking a
small part of the memory of tile[1].

10 4

5 Performance

Here below is a table with the performance of the camera and the model running on the XCORE . AT Vision
Development Kit.

Function TICKS MS FPS

Capture+ISP 16064737.00 160.65 6.22
Model+Dequant 1643829.00 16.44 60.83
Others 240073.00 2.40 416.54
Total elapsed 17964394.00 179.64 5.57

We can see that the model is taking only 16.44 ms to run. The camera takes 164.78 ms to capture, process
and send the image. The total time is 183.62 ms, which means that the whole application runs at 5.45 FPS.

1 4

6 References

« XMOS XTC Tools User Guide: XTC tools.
+ XMOS XTC Tools Installing Guide: XTC Installing Guide.

12

https://www.xmos.com/view/Tools-15-Documentation
https://xmos.com/xtc-install-guide#TODOremovethislinksafterxmosdocupdate

/ Support

For all support issues please visit XMOS Support.

13

http://www.xmos.com/support#TODOremovethislinksafterxmosdocupdate

AMOS

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and
is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMQOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

14 4

	1 Introduction
	2 XMOS Logo Detector Overview
	2.1 Thread Diagram
	2.2 Software Application Structure
	2.3 Model Preparation
	2.4 Top level Main
	2.5 Main Program
	2.6 User Inferencing Thread
	2.7 Camera Thread
	2.8 GPIO Thread

	3 Building and Running the Application
	4 Resource Usage
	5 Performance
	6 References
	7 Support

