
AN02015: Run-time DSP control in a USB Audio Ap-
plication
Release: 1.0.0
Publication Date: 2024/08/08
Document Number: XM-015114-AN

Table of Contents

1 Introduction 1

2 Getting Started 2
2.1 Requirements . 2
2.2 Running the example . 2

3 Application Overview 5

4 Creating the Control and GPIO Threads 7
4.1 The GPIO Thread . 7
4.2 The DSP Control Thread . 7

4.2.1 Overview of control features . 7
4.2.2 Bass Boost . 9
4.2.3 Volume Control . 9
4.2.4 VU Levels . 10

5 References 11

6 Support 12

iiiiii

1 Introduction

This application note is complementary to “AN02014: Integrating a Generated Audio DSP Pipeline into a USB
Audio Application”. The goal is to show how to read and write the DSP configuration at run-time; building
dynamic features into the application. The application associated with this note makes use of the buttons
and LEDs on the XK-AUDIO-316-MC-AB to implement an active speaker application with volume control and
bass boost. The DSP pipeline also computes the RMS power of the signal and displays this on the 4 LEDs to
provide a simple VU meter.

111

https://www.xmos.com/xk-audio-316-mc-ab

2 Getting Started

2.1 Requirements
Before running this application note ensure the following applications are installed on your system:

• XTC 15.3.0

• CMake >= 3.21.0

• Python 3.12

• Graphviz, ensuring the dot executable available on your PATH.

The following hardware is required:

• XK-AUDIO-316-MC-AB

• 2 Micro-USB cables

• An audio device with a 3.5 mm jack (e.g. speakers or headphones)

2.2 Running the example
First, connect the XK-AUDIO-316-MC-AB to your computer with both the “DEBUG” and “USB DEVICE” Micro-
USB ports as shown in Fig. 2.1.

Fig. 2.1: XK-AUDIO-316-MC-AB with both USB cables connected and a pair of speakers connect to OUT 1/2

Once connected follow these steps:

1. Open a terminal and activate the XTC enviroment (see XTC getting started). Optionally, create a Python
virtual environment and activate it.

2. Get the source code for this app note from https://www.xmos.com/application-notes/

3. Navigate to the root directory of this app note and install the Python requirements:

pip install -Ur requirements.txt

222

https://www.xmos.com/software-tools/
https://cmake.org/download/
https://www.python.org/
https://graphviz.org/download/
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/software-tools/
https://www.xmos.com/xtc-install-guide
https://docs.python.org/3/library/venv.html#venv-def
https://docs.python.org/3/library/venv.html#venv-def
https://www.xmos.com/application-notes/
https://www.python.org/

4. Start the Jupyter notebook from the app_dsp_and_usb directory. Jupyter Notebook is an interactive
Python editor which was installed via the pip command in the previous step.

cd app_dsp_and_usb
jupyter notebook

5. If this does not automatically open a browser window, then copy the URL from the output of jupyter
that starts with http://127.0.0.1 and navigate to it in your web browser.

6. Open “dsp.ipynb” on the web interface by double-clicking on the file name.

7. Execute all the cells in the notebook by selecting “Run all cells” from the “Run” menu.

This final stepwill display a diagram that represents the provided simple DSP pipeline. It will then generate the
xcore source code, build the application, and run it on the connected device. A screenshot of the notebook
after successful completion is shown in Fig. 2.2. The device will appear on the connected computer as a
stereo USB audio device named “XMOS xCORE.ai MC (UAC2.0)”, supporting recording and playback.

When audio is played to the USB device from the host PC, the output can be heard by connecting a speaker
or headphones to the “OUT 1/2” jack on the XK-AUDIO-316-MC-AB. Button 0 will toggle bass boost; button 1
increases the volume; button 2 decreases the volume. The LEDs will show the signal power level, when no
audio is playing all the LEDs will be off.

Caution: To get all 4 LEDs to illuminate the signal will have to be very loud! Take special care when
connecting headphones to the XK-AUDIO-316-MC-AB.

333

https://jupyter.org/
https://jupyter.org/
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/xk-audio-316-mc-ab

Fig. 2.2: The notebook after running successfully

444

3 Application Overview

The application accompanying this note is largely the same as that in AN02014. It is an sw_usb_audio ap-
plication with a DSP pipeline generated using the generation tools from lib_audio_dsp. The DSP pipeline and
I2S both run on tile 1. On the XK-AUDIO-316-MC-AB the buttons and LEDs are connected to ports 4E and
4F respectively, both on tile 0. The run-time control guide associated with lib_audio_dsp describes the DSP
control interface that can be used to modify the DSP configuration. The main constraint is that this must be
done from the same tile as the DSP threads. Accessing the ports for the buttons and LEDs must be done the
tile that they are connected to, tile 0. Hence, this application required an additional 2 threads compared to the
base application from AN02014. These threads are show in Fig. 3.1.

Fig. 3.1: System thread diagram

The DSP pipeline for this application is shown in Fig. 3.2. It contains the following stages, all of which are
stereo:

• Volume control (vol_ctl): Adjust the volume of the input signal.

• 8 band parametric EQ (peq): Configurable PEQ to adjust for the listeners preference or to account for
the speaker response.

• Low pass filter (lpf), fixed gain (bass_boost) and limiter (bass_sw): This path takes the low frequencies
and applies a boost to them. The fixed gain sets themagnitude of the boost. The output limiter reduces
the level of the bass boost for large signals, avoiding overloading the loudspeaker at the output. This
output limiter can be used to adjust the level of the bass boosted signal before it is summed with the
bypass signal. Adjusting the limiter threshold can have the effect of enabling or disabling the bass boost
effect. A low limiter threshold will mean the bass boost path is always held to a small signal level.

555

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://www.xmos.com/xk-audio-316-mc-ab
https://github.com/xmos/lib_audio_dsp

• Adder: combines bass boost signal with bypass signal to create a signal with boosted bass and un-
modified higher frequencies.

• Limiter (lim): Compresses the output of the DSP pipeline to prevent clipping. The limiter computes an
envelope of the signal which can be read out via its envelope parameter. This functionality will be used
to determine which LEDs to light.

Fig. 3.2: DSP graph diagram, stage labels for use in control shown in brackets. Dashed arrows indicate which
stages will be accessed for the user interface

666

4 Creating the Control and GPIO Threads

In this application, the two thread entry functions (see Fig. 3.1) are gpio_task, defined in “gpio_task.c”, and
dsp_control, defined in “app_dsp.c”. Both functions take a chanend as their only parameter which is used to
communicate between the two tiles. To spawn these threads the first step is to define the new channel in
user_main.h, and then to place the gpio function on tile 0, passing it one end of the channel. The other end of
the channel is passed to dsp_thread on tile 1. Below is an excerpt from “user_main.h”:

#define USER_MAIN_DECLARATIONS \
interface i2c_master_if i2c[1];\
chan c_gpio;

#define USER_MAIN_CORES on tile[0]: {\
board_setup();\
xk_audio_316_mc_ab_i2c_master(i2c);\

}\
on tile[0]: gpio_task(c_gpio);\
on tile[1]: {\

{\
unsafe { i_i2c_client = i2c[0]; }\
dsp_thread(c_gpio);\

}\
}

4.1 The GPIO Thread
The GPIO thread, in “gpio_task.c” makes use of lib_xcore to implement some basic button logic. It also uses
a hardware timer to trigger a periodic query of the current signal level to update the LEDs.

4.2 The DSP Control Thread

4.2.1 Overview of control features

The DSP control thread is spawned in parallel with adsp_auto_pipeline_main in the top level DSP function
dsp_thread. dsp_thread is defined in app_dsp.c and shown in the excerpt below. This structure ensures that
the control thread and the DSP thread will always be on the same tile.

void dsp_thread(chanend_t c_gpio) {
// Initialise the DSP instance and launch the generated DSP main function
// as well as the control thread
m_dsp = adsp_auto_pipeline_init();
PAR_JOBS(

PJOB(adsp_auto_pipeline_main, (m_dsp)),
PJOB(dsp_control, (c_gpio))

);
}

The DSP control thread entry function dsp_control, defined in app_dsp.c, is shown below. This function
implements a simple channel based server protocol that interfaceswith the GPIO thread on the other tile. This
means that the thread is idle until it receives a communication from the GPIO thread, then it reads from the
channel to determine what work is required. In this case the GPIO thread chooses from one of 4 operations:

777

https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

1. BASS_BOOST_SW: Toggle the bass boost. The GPIO thread will request this when the bass boost button
is pressed. When this request is received it triggers the DSP control thread to update the threshold in
the bass_sw limiter.

2. VOLUME_UP: Increase the volume. This will be called when the volume up button is pressed. On receiving
this request the DSP control thread will read the current target volume from the DSP volume control
stage. Then the new volume is calculated and written to the DSP stage.

3. VOLUME_DOWN: Decrease the volume. This will be called when the volume down button is pressed. The
logic for volume down is the same as volume up.

4. GET_VU_LEVELS: The GPIO thread uses a hardware timer to call this periodically. On reception the DSP
control thread will read the energy level from the lim limiter and convert this into a port value for the
LEDs. This LED port value is sent back over the channel to the GPIO thread.

void dsp_control(chanend_t c_gpio) {
xassert(NULL != m_dsp);

adsp_controller_t controller;
adsp_controller_init(&controller, m_dsp);

bool bass_boost_status = false;

SELECT_RES(
CASE_THEN(c_gpio, on_c_gpio))

{
on_c_gpio: {

uint8_t ctrl = chan_in_byte(c_gpio);

switch(ctrl) {
case BASS_BOOST_SW: {

do_bass_boost(&controller, &bass_boost_status);
} break;
case VOLUME_UP: {

do_volume_control(&controller, true);
} break;
case VOLUME_DOWN: {

do_volume_control(&controller, false);
} break;
case GET_VU_LEVELS: {

uint8_t led_val = do_get_vu(&controller);
chan_out_byte(c_gpio, led_val);

} break;
default: {

xassert(false);
} break;

}
continue;

}
}

}

The control interfaces used to read and write to the DSP stages are discussed next.

888

4.2.2 Bass Boost

The bass boost functionality is implemented by adjusting the threshold of a limiter which compresses the
bass boosted signal. In this pipeline the bass boost limiter has been given the label “bass_sw” and can be ac-
cessed via the identifier bass_sw_stage_index. The limiter is defined in the Jupyter notebook as an instance
of LimiterPeak. The control commands for a LimiterPeak are documented in the lib_audio_dsp component
guide, they include CMD_LIMITER_PEAK_THRESHOLD.

The excerpt below shows the threshold being toggled between BASS_BOOST_ON and BASS_BOOST_OFF. These
values are examples and can be updated to the preferences of the DSP designer.

The function adsp_write_module_config is used to upate the parameter. Details of how this interface works
can be found in the lib_audio_dsp documentation. In brief, an adsp_stage_control_cmd_t must be filled in
and then adsp_write_module_config must be called until it returns ADSP_CONTROL_SUCCESS.

static void do_bass_boost(adsp_controller_t* controller,
bool* bass_boost_status) {

*bass_boost_status = !*bass_boost_status;
int32_t val = *bass_boost_status? BASS_BOOST_ON : BASS_BOOST_OFF;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = bass_sw_stage_index,

.cmd_id = CMD_LIMITER_PEAK_THRESHOLD
};

// do write until success
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(controller, &cmd));

}

4.2.3 Volume Control

The volume control is implemented via the VolumeControl stage which has a parameter
CMD_VOLUME_CONTROL_TARGET_GAIN. The implementation is more complex than bass boost and takes
the following steps:

1. Read the current target gain from the volume control stage using its label vol_ctl_stage_index and
the function adsp_read_module_config.

2. Apply a precomputed gain to this value for volume up or volume down. In this case the values of
VOLUME_UP_INC and VOLUME_DOWN_INC are +3 dB and -3 dB respectively, converted to linear gain val-
ues in fixed point.

3. Write the new value back to the volume control stage with adsp_write_module_config.

static void do_volume_control(adsp_controller_t* controller,
bool volume_up) {

// Get the current volume
int32_t val;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = vol_ctl_stage_index,

.cmd_id = CMD_VOLUME_CONTROL_TARGET_GAIN
};

// do read until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(controller, &cmd));

// Update the volume
(continues on next page)

999

https://jupyter.org/
https://github.com/xmos/lib_audio_dsp

(continued from previous page)

int32_t mul = (volume_up) ? VOLUME_UP_INC : VOULME_DOWN_INC;
val = adsp_fixed_gain(val, mul); // apply gain
val = (val > UPPER_CAP) ? UPPER_CAP : val;
val = (val < LOWER_CAP) ? LOWER_CAP : val;

// do write until success, cmd can be reused
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(controller, &cmd));

}

4.2.4 VU Levels

The objective of the VU meter (volume unit meter) is to light more LEDs when the signal has more
energy. The desired scale of the VU meter is decibels. To determine the energy of the signal, the
CMD_LIMITER_RMS_ENVELOPE parameter is read from the stage with the label lim. This value is a linear en-
ergy value in fixed point format. The thresholds for each LED are stored in LED0_TH, LED1_TH, LED2_TH, and
LED3_TH which have been computed from the values -40 dB, -30 dB, -20 dB and -10 dB respectively.

uint8_t do_get_vu(adsp_controller_t* controller) {
int32_t val;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = lim_stage_index,

.cmd_id = CMD_LIMITER_RMS_ENVELOPE
};

// do read until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(controller, &cmd));

uint8_t led_val = 0;
led_val = (val > LED0_TH) ? led_val + 1 : led_val;
led_val = (val > LED1_TH) ? led_val + 2 : led_val;
led_val = (val > LED2_TH) ? led_val + 4 : led_val;
led_val = (val > LED3_TH) ? led_val + 8 : led_val;
return led_val;

}

101010

5 References

• sw_usb_audio

• lib_audio_dsp

• lib_xua

• XTC

• XK-AUDIO-316-MC-AB

• XCommon CMake

• Jupyter

• lib_xcore

111111

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://github.com/xmos/lib_xua
https://www.xmos.com/software-tools/
https://www.xmos.com/xk-audio-316-mc-ab
https://github.com/xmos/xcommon_cmake/releases/download/v1.3.0/xcommon_cmake.pdf
https://jupyter.org/
https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

6 Support

For all support issues please visit http://www.xmos.com/support

121212

http://www.xmos.com/support

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

131313

	1 Introduction
	2 Getting Started
	2.1 Requirements
	2.2 Running the example

	3 Application Overview
	4 Creating the Control and GPIO Threads
	4.1 The GPIO Thread
	4.2 The DSP Control Thread
	4.2.1 Overview of control features
	4.2.2 Bass Boost
	4.2.3 Volume Control
	4.2.4 VU Levels

	5 References
	6 Support

