
lib_audio_dsp: Audio DSP Library

Publication Date: 2024/11/15
Document Number: XM-015103-UG v1.2.0

lib_audio_dsp: Audio DSP Library

IN THIS DOCUMENT

1 Tool User Guide . 3
1.1 Setup . 3
1.2 Using the Tool . 6
1.3 Pipeline Design API . 10

2 Design Guide . 31
2.1 Summary of the xcore.ai architecture . 32
2.2 The Architecture of the Generated Pipeline . 32
2.3 Resource usage of the Generated Pipeline . 33
2.4 Troubleshooting resource issues . 36
2.5 Exchanging audio with the DSP pipeline blocks for too long 36

3 DSP Components . 37
3.1 DSP Stages . 37
3.2 DSP Modules . 75
3.3 Precision . 130
3.4 Latency . 130

4 Run-Time Control User Guide . 131
4.1 Control Interface Walkthrough . 131
4.2 Run-Time Control Helper Functions . 134

Introduction

lib_audio_dsp is a DSP library for the XMOS xcore architecture. It facilitates the creation
of multithreaded audio DSP pipelines that efficiently utilise the xcore architecture.

The library is built around a set of DSP function blocks, referred to in the documentation
as “Stages” , which have a consistent API and can be combined to create many different
designs.

A tool for easily combining stages into a custom DSP pipeline is provided. DSP pipeline
parameters can be adjusted and tuned on the fly via a PC based tuning interface, and
utilities for hardware controls are also provided.

lib_audio_dsp includes common signal processing functions optimised for the xcore,
such as:

· biquads and FIR filters.

· compressors, limiters, noise gates and envelope detectors.

· adders, subtractors, gains, volume controls and mixers.

· delays and reverb.

These can be combined together to make complex audio pipelines for many different
applications, such as home audio, music production, voice processing, and AI feature
extraction.

This document covers the following topics:

1. Tool User Guide: A Beginner’s Guide to installing and using the DSP design and gen-
eration Python library.

2. Design Guide: Advanced guidance on designing and debugging generated DSP
pipelines.

3. DSP Components: Details all DSP components provided by this library.

2

lib_audio_dsp: Audio DSP Library

4. Run-Time Control User Guide: How to add run time control to a DSP application.

The subsequent sections provide comprehensive insights into the functionalities and
applications of lib_audio_dsp, detailing how to leverage its features for efficient audio
signal processing.

1 Tool User Guide

This guide introduces the audio_dsp Python library, and how to use it to generate multi-
threaded DSP pipelines for the xcore.

The following sections provide guidance on preparing the environment for the library,
building a pipeline, and exploring the API documentation.

1.1 Setup

This section describes the requirements and the steps to run a basic pipeline. This doc-
ument lists the necessary steps for both Windows and Linux/macOS. This section uses
the app_simple_audio_dsp_integration example found within this repository. The steps
will be broadly similar for any user-created project.

Note: Copying multiple lines into the console may not work as expected on Windows.
To avoid issues, copy and execute each line individually.

Hardware Requirements

· xcore.ai evaluation board (XK-EVK-XU316 or XK-316-AUDIO-MC-AB)

· xTag debugger and cable

· 2x Micro USB cable (one for power supply and one for the xTag)

Software Requirements

· Graphviz: this softwaremust installed and the dot executable must be on the system
path.

· XTC 15.3.0

· Python 3.10

· Jupyter 7.2.1

· CMake 3.21

Additionally, on Windows the following is required:

· ninja-build

Setup Steps

Note: All the steps below are executed from the sandbox folder created in the second
step.

1. Prepare the development environment

3

https://www.xmos.com/xk-evk-xu316
https://www.xmos.com/xk-audio-316-mc-ab
https://graphviz.org/download/#windows
https://www.xmos.com/software-tools/
https://www.python.org/downloads/
https://jupyter.org/install
https://cmake.org/download/
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages#user-content-windows

lib_audio_dsp: Audio DSP Library

On Windows:
1. Open the Command Prompt or other terminal application of choice
2. Activate the XTC environment:

call "C:\Program Files\XMOS\XTC\15.3.0\SetEnv.bat"

On Linux and macOS:
1. Open a terminal
2. Activate the XTC environment using SetEnv

2. Create a sandbox folder with the command below:

mkdir lib_audio_dsp_sandbox

3. Clone the library inside lib_audio_dsp_sandbox:

git clone git@github.com:xmos/lib_audio_dsp.git

4. Get the sandbox inside lib_audio_dsp_sandbox. This step can take several minutes.
On Windows:

cd lib_audio_dsp/examples/app_simple_audio_dsp_integration
cmake -B build -G Ninja
cd ../../..

On Linux and macOS:

cd lib_audio_dsp/examples/app_simple_audio_dsp_integration
cmake -B build
cd ../../..

5. Create a requirements file inside lib_audio_dsp_sandbox.
On Windows:

echo -e lib_audio_dsp/python > requirements.txt
echo notebook >> requirements.txt

On Linux or macOS:

echo "-e lib_audio_dsp/python" > requirements.txt
echo notebook >> requirements.txt
chmod 644 requirements.txt

6. Create a Python virtualenv inside lib_audio_dsp_sandbox.
On Windows:

python -m venv .venv
call .venv/Scripts/activate.bat
pip install -Ur requirements.txt
cd ..

On Linux or macOS:

python -m venv .venv
source .venv/bin/activate
pip install -Ur requirements.txt
cd ..

7. Connect an XCORE-AI-EXPLORER using both USB ports

4

lib_audio_dsp: Audio DSP Library

8. Open the notebook by running from lib_audio_dsp_sandbox the following command:

jupyter notebook lib_audio_dsp/examples/app_simple_audio_dsp_integration/dsp_design.ipynb

If a blank screen appears or nothing opens, then copy the link starting with “http://
127.0.0.1/” from the terminal into the browser. The following page should open:

Fig. 1: Top-level page of the Jupyter Notebook

9. Run all the cells from the browser. From the menu at the top of the page click Run ->
Run all cells:

Fig. 2: Run menu of the Jupyter Notebook

This creates the pipeline and builds the app. Wait for all the cells to finish
Any configuration or compilation errors will be displayed in the notebook in the Build
and run cell, as in the example below:

10. Update and run Pipeline design stage to add the desired audio processing blocks. A
diagram will be generated showing the pipeline IO mapping.
A simple pipeline example is shown in Fig. 4:

5

http://127.0.0.1/
http://127.0.0.1/

lib_audio_dsp: Audio DSP Library

Fig. 3: Run error of the Jupyter Notebook

See the top of the notebook for more information about this stage.

11. Update and run the Tuning Stage cell to change the parameters before building. See
the top of the notebook for more information about this stage.

Running a notebook after the first installation

If running the notebook after the initial configuration, the following steps are required:

1. Configure the settings below, using the instructions in the Setup Steps section:
· Enable the XTC tools: the installation can be tested by running the command xrun
--version from the terminal. If the command is not found, the XTC tools are not
installed correctly.

· Enable the Python Virtual Environment: this is checked by running the command
echo %VIRTUAL_ENV% on Windows, or echo $VIRTUAL_ENV on Linux or ma-
cOS. The path should have been set.

2. Open the notebook by running jupyter notebook lib_audio_dsp/
examples/app_simple_audio_dsp_integration/dsp_design.ipynb
from lib_audio_dsp_sandbox, as described in the Setup Steps section.

1.2 Using the Tool

In this section the basic operation of the tools provided by lib_audio_dsp is described.

This document takes the user through three scenarios, illustrated by way of the included
example app_simple_audio_dsp_integration, which may be found in the examples direc-
tory in lib_audio_dsp.

These scenarios are:

· Creating a pipeline

· Tuning and simulating a pipeline

· Deploying pipeline code onto the xcore.

The steps in this guide should be executed in a Jupyter Notebook.

6

https://jupyter.org/

lib_audio_dsp: Audio DSP Library

Fig. 4: Diagram of a simple audio pipeline

Creating a Pipeline

A simple yet useful DSP pipeline that could bemade is a bass and treble control with out-
put limiter. In this design the product will stream real time audio boosting or suppressing
the treble and bass and then limiting the output amplitude to protect the output device.

The DSP pipeline will perform the following processes:

The first step is to create an instance of the Pipeline class. This is the top level class
which will be used to create and tune the pipeline. On creation the number of inputs and
sample rate must be specified.
from audio_dsp.design.pipeline import Pipeline

pipeline, inputs = Pipeline.begin(
1, # Number of pipeline inputs.

(continues on next page)

7

lib_audio_dsp: Audio DSP Library

Fig. 5: The target pipeline

(continued from previous page)
fs=48000 # Sample rate.

)

The pipeline object can now be used to add DSP stages. For high shelf and low shelf use
Biquad and for the limiter use LimiterPeak.
from audio_dsp.design.pipeline import Pipeline
from audio_dsp.stages import *

p, inputs = Pipeline.begin(1, fs=48000)

i is a list of pipeline inputs. "lowshelf" is a label for this instance of Biquad.
The new variable x is the output of the lowshelf Biquad
x = p.stage(Biquad, inputs, "lowshelf")

The output of lowshelf "x" is passed as the input to the
highshelf. The variable x is reassigned to the outputs of the new Biquad.
x = p.stage(Biquad, x, "highshelf")

Connect highshelf to the limiter. Labels are optional, however they are required
if the stage will be tuned later.
x = p.stage(LimiterPeak, x)

Finally connect to the output of the pipeline.
p.set_outputs(x)

p.draw()

When running the above snippet in a Jupyter Notebook it will output the following image
which illustrates the pipeline which has been designed:

Tuning and simulating a pipeline

Each stage contains a number of designer methods which can be identified as they have
the make_ prefix. These can be used to configure the stages. The stages also provide
a plot_frequency_response()method which shows the magnitude and phase re-
sponse of the stage with its current configuration. The two biquads created above will
have a flat frequency response until they are tuned. The code below shows how to use
the designer methods to convert them into the low shelf and high shelf that is desired.
The individual stages are accessed using the labels that were assigned to them when
the stage was added to the pipeline.
Make a low shelf with a centre frequency of 200 Hz, q of 0.7 and gain of +6 dB
p["lowshelf"].make_lowshelf(200, 0.7, 6)
p["lowshelf"].plot_frequency_response()

Make a high shelf with a centre frequency of 4000 Hz, q of 0.7 and gain of +6 dB
p["highshelf"].make_highshelf(4000, 0.7, 6)
p["highshelf"].plot_frequency_response()

For this tutorial the default settings for the limiter will provide adequate performance.

Code Generation

With an initial pipeline complete, it is time to generate the xcore source code and run it
on a device. The code can be generated using the generate_dsp_main() function.

8

lib_audio_dsp: Audio DSP Library

Fig. 6: Generated pipeline diagram

Fig. 7: Frequency response of the biquads (low shelf left, high shelf right)

9

lib_audio_dsp: Audio DSP Library

from audio_dsp.design.pipeline import generate_dsp_main
generate_dsp_main(p)

The reference application should then provide instructions for compiling the application
and running it on the target device.

With that the tuned DSP pipeline will be running on the xcore device and can be used to
stream audio. The next step is to iterate on the design and tune it to perfection. One
option is to repeat the steps described above, regenerating the code with new tuning
values until the performance requirements are satisfied.

Designing Complex Pipelines

The audio dsp library is not limited to the simple linear pipelines shown above. Stages
can scale to take an arbitrary number of inputs, and the outputs of each stage can be
split and joined arbitrarily.

When created, every stage’s initialiser returns an instance of StageOutputList, a con-
tainer of StageOutput. The stage’s outputs can be selected from the StageOutputList
by indexing into it, creating a newStageOutputList, which can be concatenatedwith other
StageOutputList instances using the + operator. When creating a stage, it will require a
StageOutputList as its inputs.

The below shows an example of how this could work with a pipeline with 7 inputs.
split the pipeline inputs
i0 = p.stage(Biquad, i[0:2]) # use the first 2 inputs
i1 = p.stage(Biquad, i[2]) # use the third input (index 2)
i2 = p.stage(Biquad, i[3, 5, 6]) # use the inputs at index 3, 5, and 6
join biquad outputs
i3 = p.stage(Biquad, i0 + i1 + i2[0]) # pass all of i0 and i1, as well as the first channel in i2

p.set_outputs(i3 + i2[1:]) # The pipeline output will be all i3 channels and the 2nd and 3rd channel from i2.

As the pipeline grows it may end up consumingmoreMIPS than are available on a single
xcore thread. The pipeline design interface allows adding additional threads using the
next_thread()methodof thePipeline instance. Each thread in the pipeline represents
an xcore hardware thread. Do not addmore threads than are available in your application.
The maximum number of threads that should be used, if available, is five. This limitation
is due to the architecture of the xcore processor.
thread 0
i = p.stage(Biquad, i)

thread 1
p.next_thread()
i = p.stage(Biquad, i)

thread 2
p.next_thread()
i = p.stage(Biquad, i)

1.3 Pipeline Design API

This page describes the C and Python APIs that will be needed when using the pipeline
design utility.

When designing a pipeline first create an instance of Pipeline, add threads to
it with Pipeline.add_thread(). Then add DSP stages such as Biquad using
CompositeStage.stage(). The pipeline can be visualised in a Jupyter Notebook
using Pipeline.draw() and the xcore source code for the pipeline can be generated
using generate_dsp_main().

Once the code is generated use the functions defined in stages/adsp_pipeline.h to read
and write samples to the pipeline and update configuration fields.

10

https://jupyter.org/

lib_audio_dsp: Audio DSP Library

· C Design API
· stages/adsp_control.h
· stages/adsp_module.h
· stages/adsp_pipeline.h

· Python Design API
· audio_dsp.design.build_utils
· audio_dsp.design.composite_stage
· audio_dsp.design.graph
· audio_dsp.design.parse_config
· audio_dsp.design.pipeline
· audio_dsp.design.pipeline_executor
· audio_dsp.design.plot
· audio_dsp.design.stage
· audio_dsp.design.thread

C Design API

stages/adsp_control.h The control API for the generated DSP.

These functions can be executed on any threadwhich is on the same tile as the generated
DSP threads.

Enums

enum adsp_control_status_t
Control status.
Values:

enumerator ADSP_CONTROL_SUCCESS
Command succesfully executed.

enumerator ADSP_CONTROL_BUSY
Stage has not yet processed the command, call again.

Functions

void adsp_controller_init(adsp_controller_t *ctrl, adsp_pipeline_t *pipeline)
Create a DSP controller instance for a particular pipeline.

Parameters

· ctrl – The controller instance to initialise.
· pipeline – The DSP pipeline that will be controlled with this

controller.

adsp_control_status_t adsp_read_module_config(adsp_controller_t *ctrl,
adsp_stage_control_cmd_t
*cmd)

Initiate a read command by passing in an intialised adsp_stage_control_cmd_t.
Must be called repeatedly with the same cmd until ADSP_CONTROL_SUCCESS is
returned. If the caller abandons the attempt to read before SUCCESS is returned
then this will leave the stage in a state where it can never be read from again.

11

lib_audio_dsp: Audio DSP Library

Parameters

· ctrl – An instance of adsp_controller_t which has been ini-
tialised to control the DSP pipeline.

· cmd – An initialised adsp_stage_control_cmd_t.
Returns

adsp_control_status_t

adsp_control_status_t adsp_write_module_config(adsp_controller_t *ctrl,
adsp_stage_control_cmd_t
*cmd)

Initiate a write command by passing in an initialised adsp_stage_control_cmd_t.
Must be called repeatedly with the same cmd until ADSP_CONTROL_SUCCESS is
returned.

Parameters

· ctrl – An instance of adsp_controller_t which has been ini-
tialised to control the DSP pipeline.

· cmd – An initialised adsp_stage_control_cmd_t.
Returns

adsp_control_status_t

void adsp_control_xscope_register_probe()
Default xscope setup function.
Sets up a single xscope probe with name ADSP, type XSCOPE_CONTINUOUS, and
datatype XSCOPE_UINT. Should be called within xscope_user_init().

chanend_t adsp_control_xscope_init()
Creates an xscope chanend and connects it to the host. Must be called on the
same tile as the DSP pipeline.

Returns
chanend_t

adsp_control_status_t adsp_control_xscope_process(chanend_t c_xscope,
adsp_controller_t *ctrl)

Process an xscope chanend containing a control command from the host.

Parameters

· c_xscope – A chanend which has been connected to the host.
· ctrl – An instance of adsp_controller_t which has been ini-

tialised to control the DSP pipeline.
Returns

adsp_control_status_t

void adsp_control_xscope(adsp_pipeline_t *adsp)
Creates an xscope handler thread for ADSP control.
Handles all xscope traffic and calls to adsp_read_module_config and
adsp_write_module_config. If the application already uses xscope, do not
call this function; instead, identify host-to-device packets by the ADSP header and
pass them to adsp_control_xscope_processmanually.

Parameters

12

lib_audio_dsp: Audio DSP Library

· adsp – The DSP pipeline that will be controlled with this xscope
thread.

struct adsp_stage_control_cmd_t
#include <adsp_control.h> The command to execute. Specifies which stage, what
command and contains the buffer to read from or write to.

Public Members

uint8_t instance_id
The ID of the stage to target. Consider setting the label parameter in the
pipeline definition to ensure that a usable identifier gets generated for using
with control.

uint8_t cmd_id
“See the generated cmds.h for the available commands. Make sure to use a
command which is supported for the target stage.

uint16_t payload_len
Length of the command in bytes.

void *payload
The buffer. Must be set to a valid array of size payload_len before calling the
read or write functions.

struct adsp_controller_t
#include <adsp_control.h> Object used to control a DSP pipeline.
As there may be multiple threads attempting to interact with the DSP pipeline at
the same time, a separate instance of adsp_controller_t must be used by each to
ensure that control can proceed safely.
Initialise each instance of adsp_controller_t with adsp_controller_init.

Private Members

module_instance_t *modules

size_t num_modules

stages/adsp_module.h Defines the generic structs that will hold the state and control
configuration for each stage.

Enums

enum config_rw_state_t
Control states, used to communicate between DSP and control threads to notify
when control needs processing.
Values:

enumerator config_read_pending
Control waiting to read the updated config from DSP.

13

lib_audio_dsp: Audio DSP Library

enumerator config_write_pending
Config written by control and waiting for DSP to update.

enumerator config_read_updated
Stage has succesfully consumed a read command.

enumerator config_none_pending
All done. Control and DSP not waiting on anything.

struct module_control_t
#include <adsp_module.h> Control related information shared between control
thread and DSP.

Public Members

void *config
Pointer to a stage-specific config struct which is used by the control thread.

uint32_t id
Unique module identifier assigned by the host.

uint32_t num_control_commands
The number of control commands for this stage.

uint8_t module_type
Identifies the stage type. Each type of stage has a unique identifier.

uint8_t cmd_id
Is set to the current command being processed.

config_rw_state_t config_rw_state

intptr_t current_controller
id of the current control object that requested a read, do not modify.

swlock_t lock
lock used by controlling threads to manage access

struct module_instance_t
#include <adsp_module.h> The entire state of a stage in the pipeline.

Public Members

void *state
Pointer to the module’s state memory.

module_control_t control
Module’s control state.

void *constants

14

lib_audio_dsp: Audio DSP Library

stages/adsp_pipeline.h Generated pipeline interface. Use the source and sink func-
tions defined here to send samples to the generated DSP and receive processed samples
back.

Functions

static inline void adsp_pipeline_source(adsp_pipeline_t *adsp, int32_t **data)
Pass samples into the DSP pipeline.
These samples are sent by value to the other thread, therefore the data buffer can
be reused immediately after this function returns.

Parameters

· adsp – The initialised pipeline.
· data–Anarray of arrays of samples. The length of the array shall

be the number of pipeline input channels. Each array contained
within shall be contain a frame of samples large enough to pass
to the stage that it is connected to.

static inline void adsp_pipeline_sink(adsp_pipeline_t *adsp, int32_t **data)
Receive samples from the DSP pipeline.

Parameters

· adsp – The initialised pipeline.
· data – An array of arrays that will be filled with processed sam-

ples from the pipeline. The length of the array shall be the num-
ber of pipeline input channels. Each array contained within shall
be contain a frame of samples large enough to pass to the stage
that it is connected to.

static inline bool adsp_pipeline_sink_nowait(adsp_pipeline_t *adsp, int32_t
**data)

Non-blocking receive from the pipeline. It is risky to use this API in an isochronous
application as the sink thread can lose synchronisation with the source thread
which can cause the source thread to block.

Parameters

· adsp – The initialised pipeline.
· data–See adsp_pipeline_sink for details of same named param.

Return values

· true – The data buffer has been filled with new values from the
pipeline.

· false – The pipeline has not produced any more data. The data
buffer was untouched.

struct adsp_pipeline_t
#include <adsp_pipeline.h> The DSP pipeline.
The generated pipeline will contain an init function that returns a pointer to one
of these. It can be used to send data in and out of the pipeline, and also execute
control commands.

Public Members

15

lib_audio_dsp: Audio DSP Library

module_instance_t *modules
Array of DSP stage states, must be used when calling one of the control func-
tions.

size_t n_modules
Number of modules in the adsp_pipeline_t::modules array.

Private Members

channel_t *p_in

size_t n_in

channel_t *p_out

size_t n_out

channel_t *p_link

size_t n_link

adsp_mux_t input_mux

adsp_mux_t output_mux

Python Design API

audio_dsp.design.build_utils Utility functions for building and running the application
within the Jupyter notebook.

class audio_dsp.design.build_utils.XCommonCMakeHelper(source_dir:
Op-
tional[Union[str,
Path]] =
None,
build_dir:
Op-
tional[Union[str,
Path]] =
None,
bin_dir: Op-
tional[Union[str,
Path]] =
None,
project_name:
Optional[str]
= None, con-
fig_name:
Optional[str]
= None)

This class packages a set of helper utilities for configuring, building, and running
xcore applications using xcommon-cmake within Python.

16

lib_audio_dsp: Audio DSP Library

Parameters

source_dir
[str | pathlib.Path | None] Specify a source directory for this build,
passed as the -S parameter to CMake. If None passed or un-
specified, defaults to the current working directory.

build_dir
[str | pathlib.Path | None] Specify a build directory for this build,
passed as the -B parameter to CMake. If None passed or un-
specified, defaults to “build” within the current working directory.

bin_dir
[str | pathlib.Path | None] Specify a binary output directory for
this build. This should match what is configured to be the out-
put directory from “cmake –build” within the application. If None
passed or unspecified, defaults to “bin” within the current work-
ing directory.

project_name
[str | None] The name of the project() specified in the project’s
CMakeLists.txt. If None or unspecified, defaults to the name of
the current working directory (so if in /app_example_name/, the
project name is assumed to be app_example_name).

config_name
[str | None] The name of the configuration to use from
the project’s CMakeLists.txt. If None or unspecified,
defaults to nothing - therefore the –target option to
CMake will be just the project name, and the output
binary will be assumed to be “<current working direc-
tory>/<bin_dir>/<project_name>.xe”. If specified, the –target
option to CMake will be “<project name>_<config name>”, and
the output binary will be assumed to be “<current working
directory>/<bin_dir>/<config_name>/<project name>_<config
name>.xe”.

build()→ int
Invoke CMake’s build with the options specified in this class instance. Invoka-
tion will be of the form “cmake –build <build_dir> –target <target_name>”,
where the target name is constructed as per this class’ docstring.

Returns

returncode
Return code from the invokation of CMake. 0 if success.

configure()→ int | None
Invoke CMake with the options specified in this class instance. Invokation
will be of the form “cmake -S <source_dir> -B <build_dir>”. On first run, the
invokation will also contain “-G <generator>”, where “generator” will be either
“Ninja” if Ninja is present on the current system or “Unix Makefiles” if it is not.

Returns

returncode
Return code from the invokation of CMake. 0 if success.

configure_build_run(xscope: bool = True)→ None
Run, in order, this class’ .configure(), .build(), and .run() methods. If any return
code from any of the three is nonzero, returns early. Otherwise, sleeps for 5
seconds after the .run() stage and prints “Done!”.

17

lib_audio_dsp: Audio DSP Library

Parameters

xscope
[bool] Passed directly to the call to .run(); determines whether
to start an xscope server or not.

run(xscope: bool = True, hostname: str = ’localhost’, port: str = ’12345’)→ int
Invoke xrun with the options specified in this class instance. Invokation will
be of the form “xrun <binary>”, where the path to the binary is constructed as
per this class’ docstring.

Parameters

xscope
[bool] Specify whether to also pass “–xscope-port {host-
name}:{port} as an option to the call to xrun.

hostname
[str] Hostname to pass to xrun for the xscope server, if xscope
is True

port
[str] Port to pass to xrun for the xscope server, if xscope is True

Returns

returncode
Return code from the invokation of xrun. 0 if success.

audio_dsp.design.composite_stage Contains the higher order stage class Compos-
iteStage.

class audio_dsp.design.composite_stage.CompositeStage(graph:
Graph,
name: str =
”)

This is a higher order stage.
Contains stages as well as other composite stages. A thread will be a composite
stage. Composite stages allow:
· drawing the detail with graphviz
· process
· frequency response
TODO: - Process method on the composite stage will need to know its inputs and
the order of the inputs (which input index corresponds to each input edge). How-
ever a CompositeStage doesn’t know all of its inputs when it is created.

Parameters

graph
[audio_dsp.graph.Graph] instance of graph that all stages in this
composite will be added to.

name
[str] Name of this instance to use when drawing the pipeline, de-
faults to class name.

add_to_dot(dot)
Recursively adds composite stages to a dot diagram which is being con-
structed. Does not add the edges.

18

lib_audio_dsp: Audio DSP Library

Parameters

dot
[graphviz.Diagraph] dot instance to add edges to.

composite_stage(name: str = ”)→ CompositeStage
Create a new composite stage that will be a included in the current composite.
The new stage can have stages added to it dynamically.

contains_stage(stage: Stage)→ bool
Recursively search self for the stage.

Returns

bool
True if this composite contains the stage else False

draw()
Draws the stages and edges present in this instance of a composite stage.

get_all_stages()→ list[audio_dsp.design.stage.Stage]
Get a flat list of all stages contained within this composite stage and the com-
posite stages within.

Returns

list of stages.

property o: StageOutputList
Outputs of this composite.
Dynamically computed by searching the graph for edges which originate in
this composite and whose destination is outside this composite. Order not
currently specified.

process(data)
Execute the stages in this composite on the host.

Warning: Not implemented.

stage(stage_type: Type[_StageOrComposite], inputs: StageOutputList, label:
Optional[str] = None, **kwargs)→ _StageOrComposite

Create a new stage or composite stage and register it with this composite
stage.

Parameters

stage_type
Must be a subclass of Stage or CompositeStage

inputs
Edges of the pipeline that will be connected to the newly cre-
ated stage.

kwargs
[dict] Additional args are forwarded to the stages constructors
(__init__)

Returns

stage_type
Newly created stage or composite stage.

19

lib_audio_dsp: Audio DSP Library

stages(stage_types: list[Type[_StageOrComposite]], inputs: StageOutputList)→
list[_StageOrComposite]

Iterate through the provided stages and connect them linearly.
Returns a list of the created instances.

audio_dsp.design.graph Basic data structures for managing the pipeline graph.

class audio_dsp.design.graph.Edge
Graph node.

Attributes

id
[uuid.UUID4] A unique identifier for this node.

source
[Node | None]

dest
[Node | None] source and dest are the graph nodes that this edge
connects between.

set_dest(node: Node)
Set the dest node of this edge.

Parameters

node
The instance to set as the dest.

set_source(node: Node)
Set the source node of this edge.

Parameters

node
The instance to set as the source.

class audio_dsp.design.graph.Graph
A container of nodes and edges.

Attributes

nodes
A list of the nodes in this graph.

edges
A list of the edges in this graph.

add_edge(edge)→ None
Append an edge to this graph.

add_node(node: NodeSubClass)→ None
Append a node to this graph.
The node’s index attribute is set here and therefore the node may not coexist
in multiple graphs.

get_dependency_dict()→ dict[NodeSubClass, set[NodeSubClass]]
Return a mapping of nodes to their dependencies ready for use with the
graphlib utilities.

20

lib_audio_dsp: Audio DSP Library

get_view(nodes: list[NodeSubClass])→ Graph[NodeSubClass]
Get a filtered view of the graph, including only the provided nodes and the
edges which connect to them.

lock()
Lock the graph. Adding nodes or edges to a locked graph will cause a runtime
exception. The graph is locked once the pipeline checksum is computed.

sort()→ tuple[NodeSubClass, ...]
Sort the nodes in the graph based on the order they should be executed. This
is determined by looking at the edges in the graph and resolving the order.

Returns

tuple[Node]
Ordered list of nodes

class audio_dsp.design.graph.Node
Graph node.

Attributes

id
[uuid.UUID4] A unique identifier for this node.

index
[None | int] node index in the graph. This is set by Graph when it
is added to the graph.

audio_dsp.design.parse_config Script for use at build time to generate header files.

Use as:
python -m audio_dsp.design.parse_config -c CONFIG_DIR -o OUTPUT_DIR

audio_dsp.design.parse_config.main(args)
Use the mako templates to build the autogenerated files.

audio_dsp.design.pipeline Top level pipeline design class and code generation func-
tions.

class audio_dsp.design.pipeline.Pipeline(n_in, identifier=’auto’,
frame_size=1, fs=48000,
generate_xscope_task=False)

Top level class which is a container for a list of threads that are connected in series.

Parameters

n_in
[int] Number of input channels into the pipeline

identifier: string
Unique identifier for this pipeline. This identifier
will be included in the generated header file name
(as “adsp_generated_<identifier>.h”), the generated
source file name (as “adsp_generated_<identifier>.c”),
and the pipeline’s generated initialisation and main
functions (as “adsp_<identifier>_pipeline_init” and
“adsp_<identifier>_pipeline_main”)

21

lib_audio_dsp: Audio DSP Library

frame_size
[int] Size of the input frame of all input channels

fs
[int] Sample rate of the input channels

generate_xscope_task
[bool] Determines whether the generated pipeline automatically
instantiates a task to handle tuning over xscope. False by de-
fault. If False, the application code will need to explicitly call the
“adsp_control_xscope_*” functions defined in adsp_control.h in
order to handle tuning over xscope, such as that undertaken by
the XScopeTransport() class.

Attributes

i
[list(StageOutput)] The inputs to the pipeline should be passed
as the inputs to the first stages in the pipeline

threads
[list(Thread)] List of all the threads in the pipeline

pipeline_stage
[PipelineStage | None] Stage corresponding to the pipeline.
Needed for handling pipeline level control commands

add_pipeline_stage(thread)
Add a PipelineStage stage for the pipeline.

static begin(n_in, identifier=’auto’, frame_size=1, fs=48000)
Create a new Pipeline and get the attributes required for design.

Returns

Pipeline, Thread, StageOutputList
The pipeline instance, the initial thread and the pipeline input
edges.

draw(path: Optional[Path] = None)
Render a dot diagram of this pipeline.
If path is not none then the image will be saved to the named file instead of
drawing to the jupyter notebook.

executor()→ PipelineExecutor
Create an executor instance which can be used to simulate the pipeline.

generate_pipeline_hash(threads: list, edges: list)
Generate a hash unique to the pipeline and save it in the ‘checksum’ control
field of the pipeline stage.

Parameters

“threads”: list of [[(stage index, stage type name), …], …] for all
threads in the pipeline
“edges”: list of [[[source stage, source index], [dest stage,
dest index]], …] for all edges in the pipeline

next_thread()→ None
Update the thread which stages will be added to.
This will always create a new thread.

22

lib_audio_dsp: Audio DSP Library

resolve_pipeline()
Generate a dictionary with all of the information about the thread. Actual
stage instances not included.

Returns

dict
‘identifier’: string identifier for the pipeline “threads”: list of
[[(stage index, stage type name, stage memory use), …], …] for
all threads “edges”: list of [[[source stage, source index], [dest
stage, dest index]], …] for all edges “configs”: list of dicts con-
taining stage config for each stage. “modules”: list of stage
yaml configs for all types of stage that are present “labels”: dic-
tionary {label: instance_id} definingmapping between the user
defined stage labels and the index of the stage “xscope”: bool
indicating whether or not to create an xscope task for control

set_outputs(output_edges: StageOutputList)
Set the pipeline outputs, configures the output channel index.

Parameters

output_edges
[Iterable(None | StageOutput)] configure the output channels
and their indices. Outputs of the pipeline will be in the same
indices as the input to this function. To have an empty output
index, pass in None.

stage(stage_type: Type[audio_dsp.design.stage.Stage |
audio_dsp.design.composite_stage.CompositeStage], inputs:
StageOutputList, label: Optional[str] = None, **kwargs)→ StageOutputList

Add a new stage to the pipeline.
Parameters

stage_type
The type of stage to add.

inputs
A StageOutputList containing edges in this pipeline.

label
An optional label that can be used for tuning and will also be
converted into a macro in the generated pipeline. Label must
be set if tuning or run time control is required for this stage.

property stages
Flattened list of all the stages in the pipeline.

validate()
TODO validate pipeline assumptions.
· Thread connections must not lead to a scenario where the pipeline hangs
· Stages must fit on thread
· feedback must be within a thread (future)
· All edges have the same fs and frame_size (until future enhancements)

class audio_dsp.design.pipeline.PipelineStage(**kwargs)
Stage for the pipelne. Does not support processing of data through it. Only used
for pipeline level control commands, for example, querying the pipeline checksum.

23

lib_audio_dsp: Audio DSP Library

add_to_dot(dot)
Override the CompositeStage.add_to_dot() function to ensure PipelineStage
type stages are not added to the dot diagram.

Parameters

dot
[graphviz.Diagraph]

dot instance to add edges to.

audio_dsp.design.pipeline.callonce(f)
Decorate functions to ensure they only execute once despite being called multiple
times.

audio_dsp.design.pipeline.generate_dsp_main(pipeline: Pipeline,
out_dir=’build/dsp_pipeline’)

Generate the source code for adsp_generated_<x>.c.

Parameters

pipeline
[Pipeline] The pipeline to generate code for.

out_dir
[str] Directory to store generated code in.

audio_dsp.design.pipeline_executor Utilities for processing the pipeline on the host
machine.

class audio_dsp.design.pipeline_executor.ExecutionResult(result:
ndarray,
fs:
float)

The result of processing samples through the pipeline.

Parameters

result
The data produced by the pipeline.

fs
sample rate

Attributes

data
ndarray containing the results of the pipeline.

fs
Sample rate.

play(channel: int)
Create a widget in the jupyter notebook to listen to the audio.

Warning: This will not work outside of a jupyter notebook.

Parameters

channel
The channel to listen to.

24

lib_audio_dsp: Audio DSP Library

plot(path: Optional[Union[Path, str]] = None)
Display a time domain plot of the result. Save to file if path is not None.

Parameters

path
If path is not none then the plot will be saved to a file and not
shown.

plot_magnitude_spectrum(path: Optional[Union[Path, str]] = None)
Display a spectrum plot of the result. Save to file if path is not None.

Parameters

path
If path is not none then the plot will be saved to a file and not
shown.

plot_spectrogram(path: Optional[Union[Path, str]] = None)
Display a spectrogram plot of the result. Save to file if path is not None.

Parameters

path
If path is not none then the plot will be saved to a file and not
shown.

to_wav(path: str | pathlib.Path)
Save output to a wav file.

class audio_dsp.design.pipeline_executor.PipelineExecutor(graph:
Graph[Stage],
view_getter:
Callable[[],
PipelineView])

Utility for simulating the pipeline.

Parameters

graph
The pipeline graph to simulate

log_chirp(length_s: float = 0.5, amplitude: float = 1, start: float = 20, stop:
Optional[float] = None)→ ExecutionResult

Generate a logarithmic chirp of constant amplitude and play through the sim-
ulated pipeline.

Parameters

length_s
Length of generated chirp in seconds.

amplitude
Amplitude of the generated chirp, between 0 and 1.

start
Start frequency.

stop
Stop frequency. Nyquist if not set

Returns

ExecutionResult
The output wrapped in a helpful container for viewing, saving,
processing, etc.

25

lib_audio_dsp: Audio DSP Library

process(data: ndarray)→ ExecutionResult
Process the DSP pipeline on the host.

Parameters

data
Pipeline input to process through the pipeline. The shapemust
match the number of channels that the pipeline expects as an
input; if this is 1 then itmay be a 1 dimensional array. Otherwise,
it must have shape (num_samples, num_channels).

Returns

ExecutionResult
A result object that can be used to visualise or save the output.

class audio_dsp.design.pipeline_executor.PipelineView(stages: Op-
tional[list[audio_dsp.design.stage.Stage]],
inputs:
list[audio_dsp.design.stage.StageOutput],
outputs:
list[audio_dsp.design.stage.StageOutput])

A view of the DSP pipeline that is used by PipelineExecutor.
inputs: list[audio_dsp.design.stage.StageOutput]

Alias for field number 1
outputs: list[audio_dsp.design.stage.StageOutput]

Alias for field number 2
stages: Optional[list[audio_dsp.design.stage.Stage]]

Alias for field number 0

audio_dsp.design.plot Helper functions for displaying plots in the jupyter notebook
pipeline design.

audio_dsp.design.plot.plot_frequency_response(f, h, name=”, range=50)
Plot the frequency response.

Parameters

f
[numpy.ndarray] Frequencies (The X axis)

h
[numpy.ndarray] Frequency response at the corresponding fre-
quencies in f

name
[str] String to include in the plot title, if not set there will be no
title.

range
[int | float] Set the Y axis lower limit in dB, upper limit will be the
maximummagnitude.

audio_dsp.design.stage The edges and nodes for a DSP pipeline.

class audio_dsp.design.stage.PropertyControlField(get, set=None)
For stages which have internal state they can register callbacks for getting and
setting control fields.

26

lib_audio_dsp: Audio DSP Library

property value
The current value of this control field.
Determined by executing the getter method.

class audio_dsp.design.stage.Stage(inputs: StageOutputList, config:
Optional[Union[Path, str]] = None, name:
Optional[str] = None, label: Optional[str]
= None)

Base class for stages in the DSP pipeline. Each subclass should have a corre-
sponding C implementation. Enables code generation, tuning and simulation of a
stage.
The stages config can be written and read using square brackets as with a dictio-
nary. This is shown in the below example, note that the config fieldmust have been
declared in the stages yaml file.

self[“config_field”] = 2 assert self[“config_field”] == 2

Parameters

config
[str | Path] Path to yaml file containing the stage definition for
this stage. Config parameters are derived from this config file.

inputs
[Iterable[StageOutput]] Pipeline edges to connect to self

name
[str] Nameof the stage. Passed instead of configwhen the stage
does not have an associated config yaml file

label
[str] User defined label for the stage. Used for autogenerating a
define for accessing the stage’s index in the device code

Attributes

i
[list[StageOutput]] This stages inputs.

fs
[int | None] Sample rate.

frame_size
[int | None] Samples in frame.

name
[str] Stage name determined from config file

yaml_dict
[dict] config parsed from the config file

label
[str] User specified label for the stage

n_in
[int] number of inputs

n_out
[int] number of outputs

details
[dict] Dictionary of descriptive details which can be displayed to
describe current tuning of this stage

27

lib_audio_dsp: Audio DSP Library

dsp_block
[None | audio_dsp.dsp.generic.dsp_block] This will point to a dsp
block class (e.g. biquad etc), to be set by the child class

add_to_dot(dot)
Add this stage to a diagram that is being constructed. Does not add the edges.

Parameters

dot
[graphviz.Diagraph] dot instance to add edges to.

property constants
Get a copy of the constants for this stage.

create_outputs(n_out)
Create this stages outputs.

Parameters

n_out
[int] number of outputs to create.

get_config()
Get a dictionary containing the current value of the control fields which have
been set.

Returns

dict
current control fields

get_frequency_response(nfft=512)→ tuple[numpy.ndarray,
numpy.ndarray]

Return the frequency response of this instance’s dsp_block attribute.
Parameters

nfft
The length of the FFT

Returns

ndarray, ndarray
Frequency values, Frequency response for this stage.

get_required_allocator_size()
Calculate the required statically-allocatedmemory in bytes for this stage. For-
mats this into a compile-time determinable expression.

Returns

compile-time determinable expression of required allocator
size.

property o: StageOutputList
This stage’s outputs. Use this object to connect this stage to the next stage
in the pipeline. Subclass must call self.create_outputs() for this to exist.

plot_frequency_response(nfft=512)
Plot magnitude and phase response of this stage using matplotlib. Will be
displayed inline in a jupyter notebook.

28

lib_audio_dsp: Audio DSP Library

Parameters

nfft
[int] Number of frequency bins to calculate in the fft.

process(in_channels)
Run dsp object on the input channels and return the output.

Args:
in_channels: list of numpy arrays

Returns

list of numpy arrays.

set_constant(field, value, value_type)
Define constant values in the stage. These will be hard coded in the autogen-
erated code and cannot be changed at runtime.

Parameters

field
[str] name of the field

value
[ndarray or int or float or list] value of the constant. This can
be an array or scalar

set_control_field_cb(field, getter, setter=None)
Register callbacks for getting and setting control fields, to be called by classes
which implement stage.

Parameters

field
[str] name of the field

getter
[function] A function which returns the current value

setter
[function] A function which accepts 1 argument that will be
used as the new value

class audio_dsp.design.stage.StageOutput(fs=48000, frame_size=1)
The Edge of a dsp pipeline.

Parameters

fs
[int] Edge sample rate Hz

frame_size
[int] Number of samples per frame

Attributes

source
[audio_dsp.design.graph.Node] Inherited from Edge

dest
[audio_dsp.design.graph.Node] Inherited from Edge

source_index
[int | None] The index of the edge connection to source.

29

lib_audio_dsp: Audio DSP Library

fs
[int] see fs parameter

frame_size
[int] see frame_size parameter

property dest_index: int | None
The index of the edge connection to the dest.

class audio_dsp.design.stage.StageOutputList(edges: Op-
tional[list[audio_dsp.design.stage.StageOutput
| None]] = None)

A container of StageOutput.
A stage output list will be created whenever a stage is added to the pipeline. It
is unlikely that a StageOutputList will have to be explicitly created during pipeline
design. However the indexing and combining methods shown in the example will
be used to create new StageOutputList instances.

Parameters

edges
list of StageOutput to create this list from.

Examples

This example shows how to combine StageOutputList in various ways:

a and b are StageOutputList
a = some_stage.o
b = other_stage.o

concatenate them
a + b

Choose a single channel from 'a'
a[0]

Choose channels 0 and 3 from 'a'
a[0, 3]

Choose a slice of channels from 'a', start:stop:step
a[0:10:2]

Combine channels 0 and 3 from 'a', and 2 from 'b'
a[0, 3] + b[2]

Join 'a' and 'b', with a placeholder "None" in between
a + None + b

Attributes

edges
[list[StageOutput]] To access the actual edges contained within
this list then read from the edges attribute. All methods in
this class return new StageOutputList instances (even when the
length is 1).

class audio_dsp.design.stage.ValueControlField(value=None)
Simple field which can be updated directly.

audio_dsp.design.stage.all_stages()→ dict[str,
Type[audio_dsp.design.stage.Stage]]

Get a dict containing all stages in scope.

30

lib_audio_dsp: Audio DSP Library

audio_dsp.design.stage.find_config(name)
Find the config yaml file for a stage by looking for it in the default directory for built
in stages.

Parameters

name
[str] Name of stage, e.g. a stage whose config is saved in “bi-
quad.yaml” should pass in “biquad”.

Returns

Path
Path to the config file.

audio_dsp.design.thread Contains classes for adding a thread to the DSP pipeline.

class audio_dsp.design.thread.DSPThreadStage(**kwargs)
Stage for the DSP thread. Does not support processing of data through it. Only
used for DSP thread level control commands, for example, querying themax cycles
consumed by the thread.
add_to_dot(dot)

Exclude this stage from the dot diagram.
Parameters

dot
[graphviz.Diagraph] dot instance to add edges to.

class audio_dsp.design.thread.Thread(id: int, **kwargs)
A composite stage used to represent a thread in the pipeline. Create using
Pipeline.thread rather than instantiating directly.

Parameters

id
[int] Thread index

kwargs
[dict] forwarded to __init__ of CompositeStage

Attributes

id
[int] Thread index

thread_stage
[Stage] DSPThreadStage stage

add_thread_stage()
Add to this thread the stage which manages thread level commands.

2 Design Guide

This guide will cover the details of how the xcore DSP pipeline is generated from the
Python description. This should enable the reader to debug their pipeline when issues
arise and understand the resource usage of a generated DSP pipeline. This is an ad-
vanced guide intended for users who wish for a deeper understanding of the generated
DSP pipeline that they have created. The accompanying tool and component guides
should be consulted for the basic process of using this tool.

31

lib_audio_dsp: Audio DSP Library

2.1 Summary of the xcore.ai architecture

A basic understanding of the xcore architecture is required in order to understand the
consequences of various design choices that can be made in the DSP pipeline.

An xcore application will consist of 1 or more xcore.ai chips connected together via a
communication fabric (the XLink). Each xcore.ai contains 2 or more tiles; a tile is an in-
dependent processor with its own memory. A tile cannot read or write the memory of
another tile. Each tile contains 8 logical cores; a logical core is an independent thread of
execution that will run some application code. Each tile also has 32 chanends available
for allocation; connecting 2 chanends forms a channel, which allows for synchronous
communication between any 2 logical cores in the system (even between tiles or pack-
ages).

In its default configuration, an xcore.ai chip will operate at 600MHz; thismeans that each
tile executes instructions at a rate of 600MIPS. This is shared between the 8 logical cores
by multiplexing the execution across 5 time slots. Each thread can consume at most 1
time slot per scheduler cycle. The consequence of this is that for applications with up
to 5 threads, each thread operates at 120MIPS (600/5). If there are over 5 threads then
this number can be reduced down to 75MIPS (600/8). If any of the threads modify their
priority mode then this can reduce the available MIPS even further; high-priority threads
are always guaranteed a slot in the scheduler on each cycle.

Term Definition

xcore.ai A chip containing 2 or more tiles.
Tile A single processor with some memory.
Logical
Core

1 of the 8 threads available in each tile.

Chanend The physical hardware used by a logical core to create a channel. There
are 32 available per tile.

Channel The bidirectional communication pathway that is created when 2 cha-
nends are connected.

For more information about the xcore architecture, consult The XMOS XS3 Architecture
and the data sheet for your package.

2.2 The Architecture of the Generated Pipeline

Fig. 8 shows the relationship between the classes in an application with a generated DSP
pipeline. A class in this context refers to a C struct and the functions that operate on it.

The application package contains Audio Source, Audio Sink and Control classes. The
Audio Source and Sink are responsible for producing and consuming audio at the rate
required by the DSP pipeline. The Control is responsible for implementing any applica-
tion specific dynamic control of the DSP pipeline; this is optional and will only be present
where run time control is used. These are in the Application package as they will be
unique for each application. Audio Source, Audio Sink, and Control make use of the
classes in lib_audio_dsp; all make use of a pointer to a shared adsp_pipeline_t (as shown
by the aggregation relationships (hollow diamond) in Fig. 8). lib_audio_dsp presents
a thread safe API, allowing Audio Source, Audio Sink and Control to exist on separate
threads if desired. However, they must all exist on the same tile in order to access the
shared adsp_pipeline_t.

32

https://www.xmos.com/download/The-XMOS-XS3-Architecture.pdf

lib_audio_dsp: Audio DSP Library

Fig. 8: Class diagram of a lib_audio_dsp application

The “lib_audio_dsp” repository represents the classes from this library. These APIs are
documented fully in the Tool User Guide.

The “Generated Pipeline” package represents the classes and objects which will
be generated from the user’s specified DSP pipeline design. Fig. 8 shows that
adsp_generated_auto is composed of (filled diamond) the adsp_pipeline_t and multiple
module_instance_t. Therefore, the generated pipeline is responsible for allocating the
memory for all the stages in the pipeline and also initialising each stage. The generated
pipeline also creates multiple threads (labelled dsp_threadX in Fig. 8), each of which will
have been uniquely generated for the DSP pipeline that has been designed. The gener-
ated pipeline will always require at least 1 thread to run the DSP on; it is not possible to
generate a DSP pipeline that can be executed inline on an existing thread. It is also not
possible to split the DSP threads across more than 1 tile, because all threads access a
shared adsp_pipeline_t object.

To summarise, the generated DSP pipeline will consume the number of threads specified
in the design (at least 1). At least one other thread on the same tile must be available to
exchange audio with the DSP pipeline.

2.3 Resource usage of the Generated Pipeline

The resources that are consumed by the generated DSP pipeline are threads, chanends,
and memory. Each DSP thread also has a finite number of instructions per sample that
are available for DSP. It is the responsibility of the DSP designer to ensure that this limit
is not exceeded on any of the threads.

Chanend Usage

The following snippet of Python shows aDSP design; the pipeline diagram for the snippet
is shown in Fig. 9. This design splits 4 DSP stages amongst 3 threads. Threads 0 and 1
operate on the pipeline inputs in parallel. Thread 2 receives its inputs from threads 0 and
1. The pipeline output comes from thread 1.

The generated DSP threads and the APIs for exchanging inputs with the pipeline all use
channels to communicate audio.

33

lib_audio_dsp: Audio DSP Library

from audio_dsp.design.pipeline import Pipeline
from audio_dsp.stages import *

p, edge = Pipeline.begin(4)

thread 0
e0 = p.stage(Bypass, edge[0], "a")

thread 1
p.next_thread()
e1 = p.stage(Bypass, edge[1:], "b")
e1 = p.stage(Bypass, e1, "c")

thread 2
p.next_thread()
e = p.stage(Bypass, e0 + e1, "d")

p.set_outputs(e)

Fig. 9: Output of Pipeline.draw() for the example pipeline

Fig. 10 shows how the chanends are allocated for this design. A channel (2 chanends) is
allocated for every connection from one thread to another. Thread 2 receives data from
thread 0 and 1, therefore it has 2 input channels. It only outputs to 1 thread (end) so has
1 output channel.

If multiple data channels are passed from 1 thread to another (e.g. 3 channels from
thread 1 to 2) this still only consumes a single xcore channel (2 chanends) as all the data
channels are sent over the same xcore channel.

For a simple linear pipeline, the chanend usage will be 2 ∗ numdspthreads + 2. For
pipelines with parallel threads the usage will be higher, as shown in Fig. 10 where 10
chanends (5 channels) are used for 3 DSP threads.

Thread Usage

Thread usage of the DSP pipeline is discussed in the sections above. Understanding the
thread usage of your application is a manual process. The application designer must
have an understanding of how many threads are in use in their application as well as in

34

lib_audio_dsp: Audio DSP Library

Fig. 10: Chanend usage for the example pipeline

the DSP pipeline to ensure that the limit of 8 is not exceeded. If this limit is exceeded the
xcore will trap when the application attempts to fork a ninth thread.

Memory Usage

Allmemory used in the generatedDSPpipeline is statically allocated and therefore known
at compile time. The Python design API cannot assist in understanding the memory us-
age of your application. Thememory report which is displayedwhen compiling the appli-
cation must be consulted to see the memory used. This value will include the generated
DSP pipeline as well as any other application code that is running on the tile.

MIPS Usage

In order to operate in a real time audio system it is critical that each thread in the DSP
pipeline can complete execution in less time than the sample period (or frame period if
the frame size is greater than 1). It is this constraint that requires the DSP to be split into
pipelined threads. If a thread is overloaded, the DSP pipeline will consume and produce
samples at a slower rate than expected. This could cause the source and sink threads to
block andmiss timing. The current version of lib_audio_dsp provides only limited support
for measuring the MIPS usage of each thread.

Each thread measures the total number of system ticks (periods of the system clock,
by default a 100MHz clock) that pass while it is doing work and stores the max-
imum value that has occured since boot. This measurement can be used to get
an estimate of the threads’ MIPS utilisations. To access this value, the function
adsp_auto_print_thread_max_ticks() (“auto” may be replaced with a custom pipeline iden-
tifier if specified) is generated along with the other generated pipeline functions. Calling
this function on the same tile as the pipeline will print the measured value. Printing is
implemented with printf, so the output will only be visible when connected to the device
with xrun or xgdb.

The number of available ticks on each thread depends on the frame size and sam-
ple rate of the data. For example, given that the system clock runs by default
at 100MHz, if the sample rate is 48000 Hz and frame size is 1 then the available
ticks will be 1 ∗ 100e6/48000 = 2083ticks. Below is an example output from
adsp_auto_print_thread_max_ticks() for a pipeline with 4 threads:
DSP Thread Ticks:
0: 1800

(continues on next page)

35

lib_audio_dsp: Audio DSP Library

(continued from previous page)
1: 181
2: 67
3: 93

The number that is displayed is the worst case that has happened since boot. This is
not necessarily the absolute worst case as some stages have data dependent execution
time. Therefore, it is recommended to play an audio signal through the pipeline with
varying amplitude and frequencies before measuring the thread MIPS.

2.4 Troubleshooting resource issues

Tile exceeds memory limit

Memory available check will report “FAILED” during linking. The Memory Usage section
describes how memory is allocated in the DSP pipeline. Recommended steps:

1. Remove all stages from the pipeline.

2. Add them back one at a time and take note of the memory usage of each stage.

3. Consult the documentation for the problematic stages and see if its memory usage
is configuration dependent.

Moving stages between threads will not impact the memory usage as all threads are on
the same tile.

Tile exceeds available chanends

If a tile attempts to allocate too many chanends it will raise an illegal resource exception
and cease execution. This can be detected easily with xgdb or xrun as it will print the
following message:
Unhandled exception: ILLEGAL_RESOURCE

The Chanend Usage section describes how chanends are used within the DSP pipeline.
Resolving this problemwill require either redesigning the DSP or the application that runs
on the same tile to use fewer chanends.

2.5 Exchanging audio with the DSP pipeline blocks for too long

adsp_pipeline_sink or adsp_pipeline_source will block until data is available. The MIPS
Usage section describes how to ensure the DSP pipeline meets timing. Identifying this
particular issue will depend on the rest of the application. The result could be either
dropped samples that are audible in the output or a complete application crash.

Tile exceeds available threads

If a tile attempts to fork too many threads it will raise an illegal resource exception and
cease execution. This can be detected easilywith xgdb or xrun as it will print the following
message:
Unhandled exception: ILLEGAL_RESOURCE

The Thread Usage section describes how threads are used within the DSP pipeline. Re-
solving this problem will require either redesigning the DSP or the application that runs
on the same tile to use fewer threads.

36

lib_audio_dsp: Audio DSP Library

3 DSP Components

lib_audio_dsp provides many common signal processing functions optimised for xcore.
These can be combined together to make complex audio pipelines for many different
applications, such as home audio, music production, voice processing, and AI feature
extraction.

The library is split into 2 levels of API: DSP stages and DSP modules. Both APIs provide
similar DSP functionality, but are suited to different use cases.

The higher-level APIs are called DSP Stages. These stages are designed to work with the
Python DSP pipeline tool. This tool allows developers to quickly and easily create, test,
and deploy DSP pipelines without needing to write a lot of code. By using DSP stages, the
user can build complex audio processing workflows in a short amount of time, making
it ideal for rapid prototyping and development.

The lower-level APIs are called DSP Modules. They are meant to be used as an API di-
rectly in cases where the Python DSP pipeline tool is not used. These modules can be
useful when integrating DSP functionality into an existing system, or as a starting point
for creating bespoke DSP functions.

3.1 DSP Stages

DSP stages are high level blocks for use in the Python DSP pipeline tool. Each Stage has
a Python and C implementation, allowing pipelines to be rapidly prototyped in Python
before being easily deployed to hardware in C. The audio performance of both imple-
mentations is equivalent.

Most stages have parameters that can be changed at runtime, and the available param-
eters are outlined in the documentation.

All the DSP stages can be imported into a Python file using:
from audio_dsp.stages import *

The following DSP stages are available for use in the Python DSP pipeline design.

Biquad Stages

Biquad Stages can be used for basic audio filters.

Biquad
class audio_dsp.stages.biquad.Biquad(**kwargs)

A second order biquadratic filter, which can be used to make many common sec-
ond order filters. The filter is initialised in a bypass state, and the make_*methods
can be used to calculate the coefficients.
This Stage implements a direct form 1 biquad filter: a0*y[n] = b0*x[n] +
b1*x[n-1] + b2*x[n-2] - a1*y[n-1] - a2*y[n-2]
For efficiency the biquad coefficients are normalised by a0 and the output a coef-
ficients multiplied by -1.

Attributes

dsp_block
[audio_dsp.dsp.biquad.biquad] TheDSPblock class; see
Single Biquad for implementation details.

37

lib_audio_dsp: Audio DSP Library

make_allpass(f: float, q: float)→ Biquad
Make this biquad an all pass filter.

Parameters

f
[float] Center frequency of the filter in Hz.

q
[float] Q factor of the filter.

make_bandpass(f: float, bw: float)→ Biquad
Make this biquad a second order bandpass filter.

Parameters

f
[float] Center frequency of the filter in Hz.

bw
[float] Bandwidth of the filter in octaves.

make_bandstop(f: float, bw: float)→ Biquad
Make this biquad a second order bandstop filter.

Parameters

f
[float] Center frequency of the filter in Hz.

bw
[float] Bandwidth of the filter in octaves.

make_bypass()→ Biquad
Make this biquad a bypass by setting the b0 coefficient to 1.

make_constant_q(f: float, q: float, boost_db: float)→ Biquad
Make this biquad a peaking filter with constant Q.
Constant Q means that the bandwidth of the filter remains constant as the
gain varies. It is commonly used for graphic equalisers.

Parameters

f
[float] Center frequency of the filter in Hz.

q
[float] Q factor of the filter.

boost_db
[float] Gain of the filter in decibels.

make_highpass(f: float, q: float)→ Biquad
Make this biquad a second order high pass filter.

Parameters

f
[float] Cutoff frequency of the filter in Hz.

q
[float] Q factor of the filter roll-off. 0.707 is equivalent to a But-
terworth response.

38

lib_audio_dsp: Audio DSP Library

make_highshelf(f: float, q: float, boost_db: float)→ Biquad
Make this biquad a second order high shelf filter.
The Q factor is defined in a similar way to standard high pass, i.e. > 0.707 will
yield peakiness (where the shelf response does not monotonically change).
The level change at f will be boost_db/2.

Parameters

f
[float] Cutoff frequency of the shelf in Hz, where the gain is
boost_db/2

q
[float] Q factor of the filter.

boost_db
[float] Gain of the filter in decibels.

make_linkwitz(f0: float, q0: float, fp: float, qp: float)→ Biquad
Make this biquad a Linkwitz Transform biquad filter.
The Linkwitz Transform changes the low frequency cutoff of a filter, and is
commonly used to change the low frequency roll off slope of a loudspeaker.
When applied to a loudspeaker, it will change the cutoff frequency from f0 to
fp, and the Q factor from q0 to qp.

Parameters

f0
[float] The original cutoff frequency of the filter in Hz.

q0
[float] The original quality factor of the filter at f0.

fp
[float] The target cutoff frequency for the filter in Hz.

qp
[float] The target quality factor for the filter.

make_lowpass(f: float, q: float)→ Biquad
Make this biquad a second order low pass filter.

Parameters

f
[float] Cutoff frequency of the filter in Hz.

q
[float] Q factor of the filter roll-off. 0.707 is equivalent to a But-
terworth response.

make_lowshelf(f: float, q: float, boost_db: float)→ Biquad
Make this biquad a second order low shelf filter.
The Q factor is defined in a similar way to standard low pass, i.e. > 0.707 will
yield peakiness (where the shelf response does not monotonically change).
The level change at f will be boost_db/2.

Parameters

f
[float] Cutoff frequency of the shelf in Hz, where the gain is
boost_db/2

q
[float] Q factor of the filter.

39

lib_audio_dsp: Audio DSP Library

boost_db
[float] Gain of the filter in decibels.

make_notch(f: float, q: float)→ Biquad
Make this biquad a notch filter.

Parameters

f
[float] Center frequency of the filter in Hz.

q
[float] Q factor of the filter.

make_peaking(f: float, q: float, boost_db: float)→ Biquad
Make this biquad a peaking filter.

Parameters

f
[float] Center frequency of the filter in Hz.

q
[float] Q factor of the filter.

boost_db
[float] Gain of the filter in decibels.

Biquad Control The following runtime command ids are available for the Biquad
Stage. For details on reading and writing these commands, see the Run-Time Control
User Guide.

Control parameter Payload length

CMD_BIQUAD_LEFT_SHIFT sizeof(int)
The number of bits to shift the output left by, in order to com-
pensate for any right shift applied to the biquad b coefficients.

CMD_BIQUAD_FILTER_COEFFS sizeof(int32_t)*[5]
The normalised biquad filter coefficients, in the order [b0, b1, b2,
-a1, -a2]/a0. The coefficients should be in Q1.30 format. If the
maximum b coefficient magnitude is greater than 2.0, the b co-
efficients should be right shifted to fit in Q1.30 format, and the
shift value passed as left_shift to correct the gain after filtering.
Biquad coefficients can be generated using the helper functions
in control/biquad.h.

CMD_BIQUAD_RESERVED sizeof(int32_t)*[3]
Reserved memory to ensure the VPU receives 8
DWORD_ALIGNED coefficients. This command is read only.
When sending a write control command, it will be ignored.

Cascaded Biquads Stages

Cascaded biquad Stages consist of several biquad filters connected together in series.

40

lib_audio_dsp: Audio DSP Library

CascadedBiquads
class audio_dsp.stages.cascaded_biquads.CascadedBiquads(**kwargs)

8 cascaded biquad filters. This allows up to 8 second order biquad filters to be run
in series.
This can be used for either:
· an Nth order filter built out of cascaded second order sections
· a parametric EQ, where several biquad filters are used at once.
For documentation on the individual biquad filters, see audio_dsp.stages.
biquad.Biquad and audio_dsp.dsp.biquad.biquad

Attributes

dsp_block
[audio_dsp.dsp.cascaded_biquad.
cascaded_biquad] The DSP block class; see Cascaded
Biquads for implementation details.

make_butterworth_highpass(N: int, fc: float)→ CascadedBiquads
Configure this instance as an Nth order Butterworth highpass filter using N/2
cascaded biquads.
For details on the implementation, see audio_dsp.dsp.
cascaded_biquads.make_butterworth_highpass

Parameters

N
[int] Filter order, must be even

fc
[float] -3 dB frequency in Hz.

make_butterworth_lowpass(N: int, fc: float)→ CascadedBiquads
Configure this instance as an Nth order Butterworth lowpass filter using N/2
cascaded biquads.
For details on the implementation, see audio_dsp.dsp.
cascaded_biquads.make_butterworth_lowpass

Parameters

N
[int] Filter order, must be even

fc
[float] -3 dB frequency in Hz.

make_parametric_eq(filter_spec: list[list[Any]])→ CascadedBiquads
Configure this instance as a Parametric Equaliser.
This allows each of the 8 biquads to be individually designed using the de-
signer methods for the biquad. This expects to receive a list of up to 8 biquad
design descriptions where a biquad design description is of the form:
["type", args...]

where “type” is a string defining how the biquad should be designed e.g. “low-
pass”, and args… is all the parameters to design that type of filter. All options
and arguments are listed below:

41

lib_audio_dsp: Audio DSP Library

["biquad_allpass", filter_freq, q_factor, Q_sig]
["biquad_bandpass", filter_freq, bw, Q_sig]
["biquad_bandstop", filter_freq, bw, Q_sig]
["biquad_bypass", Q_sig]
["biquad_constant_q", filter_freq, q_factor, boost_db, Q_sig]
["biquad_gain", gain_db, Q_sig]
["biquad_highpass", filter_freq, q_factor, Q_sig]
["biquad_highshelf", filter_freq, q_factor, boost_db, Q_sig]
["biquad_linkwitz", f0, q0, fp, qp, Q_sig]
["biquad_lowpass", filter_freq, q_factor, Q_sig]
["biquad_lowshelf", filter_freq, q_factor, boost_db, Q_sig]
["biquad_notch", filter_freq, q_factor, Q_sig]
["biquad_peaking", filter_freq, q_factor, boost_db, Q_sig]

CascadedBiquads Control The following runtime command ids are available for the
CascadedBiquads Stage. For details on reading and writing these commands, see the
Run-Time Control User Guide.

Control parameter Payload length

CMD_CASCADED_BIQUADS_LEFT_SHIFT sizeof(int)*[8]
The coefficient shift applied to the output of each biquad in the
cascade. The shifts should be in the same format as specified
in the individual biquad.

CMD_CASCADED_BIQUADS_FILTER_COEFFS sizeof(int32_t)*[40]
The normalised biquad filter coefficients for each biquad in the
cascade as an array of [5][8], with 5 coefficients for up to 8 bi-
quads. The coefficients should be in the same format as spec-
ified in the individual biquad.

Compressor Stages

Compressor stages allow for control of the dynamic range of the signal, such as reducing
the level of loud sounds.

CompressorRMS
class audio_dsp.stages.compressor.CompressorRMS(**kwargs)

A compressor based on the RMS envelope of the input signal.
When the RMS envelope of the signal exceeds the threshold, the signal amplitude
is reduced by the compression ratio.
The threshold sets the value above which compression occurs. The ratio sets how
much the signal is compressed. A ratio of 1 results in no compression, while a ratio
of infinity results in the same behaviour as a limiter. The attack time sets how fast
the compressor starts compressing. The release time sets how long the signal
takes to ramp up to its original level after the envelope is below the threshold.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.compressor_rms] The DSB
block class; see RMS Compressor for implementation details.

make_compressor_rms(ratio, threshold_db, attack_t, release_t, Q_sig=27)
Update compressor configuration based on new parameters.

Parameters

42

lib_audio_dsp: Audio DSP Library

ratio
[float] Compression gain ratio applied when the signal is above
the threshold.

threshold_db
[float] Threshold in decibels above which compression occurs.

attack_t
[float] Attack time of the compressor in seconds.

release_t
[float] Release time of the compressor in seconds.

CompressorRMS Control The following runtime command ids are available for the
CompressorRMS Stage. For details on reading and writing these commands, see the
Run-Time Control User Guide.

43

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_COMPRESSOR_RMS_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_COMPRESSOR_RMS_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_COMPRESSOR_RMS_ENVELOPE sizeof(int32_t)
The current RMS² envelope of the signal in Q_SIG for-
mat. To read the int32_t control value, use the function
qxx_to_db_pow(envelope, Q_SIG) in control/helpers.h.
This command is read only. When sending a write control command,
it will be ignored.

CMD_COMPRESSOR_RMS_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format above which compression will oc-
cur. To convert a threshold in dB to the int32_t control value,
use the function calculate_rms_threshold(x) in control/
helpers.h.

CMD_COMPRESSOR_RMS_GAIN sizeof(int32_t)
The current gain applied by the compressor in Q0.31 for-
mat. To read the int32_t control value, use the function
qxx_to_db(envelope, 31) in control/helpers.h This
command is read only. When sending a write control command, it
will be ignored.

CMD_COMPRESSOR_RMS_SLOPE sizeof(float)
The compression slope of the compressor. This is calculated as
(1 - 1 / ratio) / 2.0. To convert a ratio to a slope, use
the function rms_compressor_slope_from_ratio(ratio) in
control/helpers.h.

Compressor Sidechain Stages

Sidechain compressor Stages use the envelope of one input to control the level of a
different input.

CompressorSidechain

44

lib_audio_dsp: Audio DSP Library

class audio_dsp.stages.compressor_sidechain.CompressorSidechain(**kwargs)
An sidechain compressor based on the RMS envelope of the detect signal.
This stage is limited to accepting 2 channels. The first is the channel that will be
compressed. The second is the detect channel. The level of compression depends
on the envelope of the second channel.
When the RMS envelope of the detect signal exceeds the threshold, the processed
signal amplitude is reduced by the compression ratio.
The threshold sets the value above which compression occurs. The ratio sets how
much the signal is compressed. A ratio of 1 results in no compression, while a ratio
of infinity results in the same behaviour as a limiter. The attack time sets how fast
the compressor starts compressing. The release time sets how long the signal
takes to ramp up to its original level after the envelope is below the threshold.

Attributes

dsp_block
[audio_dsp.dsp.drc.sidechain.
compressor_rms_sidechain_mono] The DSP block class;
see Sidechain RMS Compressor for implementation details.

make_compressor_sidechain(ratio, threshold_db, attack_t, release_t,
Q_sig=27)

Update compressor configuration based on new parameters.
Parameters

ratio
[float] Compression gain ratio applied when the signal is above
the threshold.

threshold_db
[float] Threshold in decibels above which compression occurs.

attack_t
[float] Attack time of the compressor in seconds.

release_t
[float] Release time of the compressor in seconds.

CompressorSidechain Control The following runtime command ids are available
for theCompressorSidechain Stage. For details on reading andwriting these commands,
see the Run-Time Control User Guide.

45

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_COMPRESSOR_SIDECHAIN_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_COMPRESSOR_SIDECHAIN_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_COMPRESSOR_SIDECHAIN_ENVELOPE sizeof(int32_t)
The current RMS² envelope of the signal in Q_SIG for-
mat. To read the int32_t control value, use the function
qxx_to_db_pow(envelope, Q_SIG) in control/helpers.h
This command is read only. When sending a write control command,
it will be ignored.

CMD_COMPRESSOR_SIDECHAIN_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format above which compression will oc-
cur. To convert a threshold in dB to the int32_t control value,
use the function calculate_rms_threshold(x) in control/
helpers.h.

CMD_COMPRESSOR_SIDECHAIN_GAIN sizeof(int32_t)
The current gain applied by the compressor in Q0.31 for-
mat. To read the int32_t control value, use the function
qxx_to_db(envelope, 31) in control/helpers.h This
command is read only. When sending a write control command, it
will be ignored.

CMD_COMPRESSOR_SIDECHAIN_SLOPE sizeof(float)
The compression slope of the compressor. This is calculated
as (1 - 1 / ratio) / 2.0. To convert a ratio to a slope, use
the function rms_compressor_slope_from_ratio(ratio) in
control/helpers.h.

Envelope Detector Stages

Envelope detector Stages measure how the average or peak amplitude of a signal varies
over time.

EnvelopeDetectorPeak

46

lib_audio_dsp: Audio DSP Library

class audio_dsp.stages.envelope_detector.EnvelopeDetectorPeak(**kwargs)
A stage with no outputs that measures the signal peak envelope.
The current envelope of the signal can be read out using this stage’s envelope
control.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.envelope_detector_peak]
The DSP block class; see Peak Envelope Detector for implemen-
tation details.

make_env_det_peak(attack_t, release_t, Q_sig=27)
Update envelope detector configuration based on new parameters.

Parameters

attack_t
[float] Attack time of the envelope detector in seconds.

release_t
[float] Release time of the envelope detector in seconds.

EnvelopeDetectorPeak Control The following runtime command ids are available
for the EnvelopeDetectorPeak Stage. For details on reading and writing these com-
mands, see the Run-Time Control User Guide.

Control parameter Payload
length

CMD_ENVELOPE_DETECTOR_PEAK_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_ENVELOPE_DETECTOR_PEAK_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_ENVELOPE_DETECTOR_PEAK_ENVELOPE sizeof(int32_t)
The current peak envelope of the signal in Q_SIG format. To read the
int32_t control value, use the function qxx_to_db(envelope,
Q_SIG) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

EnvelopeDetectorRMS
class audio_dsp.stages.envelope_detector.EnvelopeDetectorRMS(**kwargs)

A stage with no outputs that measures the signal RMS envelope.
The current envelope of the signal can be read out using this stage’s envelope
control.

47

lib_audio_dsp: Audio DSP Library

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.envelope_detector_rms]
The DSP block class; see RMS Envelope Detector for implemen-
tation details.

make_env_det_rms(attack_t, release_t, Q_sig=27)
Update envelope detector configuration based on new parameters.

Parameters

attack_t
[float] Attack time of the envelope detector in seconds.

release_t
[float] Release time of the envelope detector in seconds.

EnvelopeDetectorRMS Control The following runtime command ids are available
for the EnvelopeDetectorRMS Stage. For details on reading and writing these com-
mands, see the Run-Time Control User Guide.

Control parameter Payload
length

CMD_ENVELOPE_DETECTOR_RMS_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_ENVELOPE_DETECTOR_RMS_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_ENVELOPE_DETECTOR_RMS_ENVELOPE sizeof(int32_t)
The current RMS² envelope of the signal in Q_SIG for-
mat. To read the int32_t control value, use the function
qxx_to_db_pow(envelope, Q_SIG) in control/helpers.h
This command is read only. When sending a write control command,
it will be ignored.

FIR Stages

Finite impulse response (FIR) filter Stages allow the use of arbitrary filters with a finite
number of taps.

FirDirect
class audio_dsp.stages.fir.FirDirect(coeffs_path, **kwargs)

A FIR filter implemented in the time domain. The input signal is convolved with the
filter coefficients. The filter coefficients can only be set at compile time.

48

lib_audio_dsp: Audio DSP Library

Parameters

coeffs_path
[Path] Path to a file containing the coefficients, in a format sup-
ported by np.loadtxt.

Attributes

dsp_block
[audio_dsp.dsp.fir.fir_direct] The DSP block class;
see FIR Direct for implementation details.

make_fir_direct(coeffs_path, Q_sig=27)
Update FIR configuration based on new parameters.

Parameters

coeffs_path
[Path] Path to a file containing the coefficients, in a format sup-
ported by np.loadtxt.

FirDirect Control The FirDirect Stage has no runtime controllable parameters.

Limiter Stages

Limiter Stages allow the amplitude of the signal to be restricted based on its envelope.

LimiterRMS
class audio_dsp.stages.limiter.LimiterRMS(**kwargs)

A limiter based on the RMS value of the signal. When the RMS envelope of the
signal exceeds the threshold, the signal amplitude is reduced.
The threshold sets the value above which limiting occurs. The attack time sets
how fast the limiter starts limiting. The release time sets how long the signal takes
to ramp up to its original level after the envelope is below the threshold.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.limiter_rms] The DSP block
class; see RMS Limiter for implementation details.

make_limiter_rms(threshold_db, attack_t, release_t, Q_sig=27)
Update limiter configuration based on new parameters.

Parameters

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the limiter in seconds.

release_t
[float] Release time of the limiter in seconds.

LimiterRMS Control The following runtime command ids are available for the Lim-
iterRMS Stage. For details on reading and writing these commands, see the Run-Time
Control User Guide.

49

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_LIMITER_RMS_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_LIMITER_RMS_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_LIMITER_RMS_ENVELOPE sizeof(int32_t)
The current RMS² envelope of the signal in Q_SIG for-
mat. To read the int32_t control value, use the function
qxx_to_db_pow(envelope, Q_SIG) in control/helpers.h
This command is read only. When sending a write control command,
it will be ignored.

CMD_LIMITER_RMS_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format abovewhich limitingwill occur. To con-
vert a threshold in dB to the int32_t control value, use the function
calculate_rms_threshold(x) in control/helpers.h.

CMD_LIMITER_RMS_GAIN sizeof(int32_t)
The current gain applied by the limiter in Q0.31 format. To read the
int32_t control value, use the function qxx_to_db(envelope,
31) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

LimiterPeak
class audio_dsp.stages.limiter.LimiterPeak(**kwargs)

A limiter based on the peak value of the signal. When the peak envelope of the
signal exceeds the threshold, the signal amplitude is reduced.
The threshold sets the value above which limiting occurs. The attack time sets
how fast the limiter starts limiting. The release time sets how long the signal takes
to ramp up to its original level after the envelope is below the threshold.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.limiter_peak] The DSP block
class; see Peak Limiter for implementation details.

make_limiter_peak(threshold_db, attack_t, release_t, Q_sig=27)
Update limiter configuration based on new parameters.

50

lib_audio_dsp: Audio DSP Library

Parameters

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the limiter in seconds.

release_t
[float] Release time of the limiter in seconds.

LimiterPeak Control The following runtime command ids are available for the Lim-
iterPeak Stage. For details on reading and writing these commands, see the Run-Time
Control User Guide.

Control parameter Payload
length

CMD_LIMITER_PEAK_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_LIMITER_PEAK_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_LIMITER_PEAK_ENVELOPE sizeof(int32_t)
The current peak envelope of the signal in Q_SIG format. To read the
int32_t control value, use the function qxx_to_db(envelope,
Q_SIG) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

CMD_LIMITER_PEAK_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format abovewhich limitingwill occur. To con-
vert a threshold in dB to the int32_t control value, use the function
calculate_peak_threshold(x) in control/helpers.h.

CMD_LIMITER_PEAK_GAIN sizeof(int32_t)
The current gain applied by the limiter in Q0.31 format. To read the
int32_t control value, use the function qxx_to_db(envelope,
31) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

HardLimiterPeak
class audio_dsp.stages.limiter.HardLimiterPeak(**kwargs)

51

lib_audio_dsp: Audio DSP Library

A limiter based on the peak value of the signal. The peak envelope of the signal
may never exceed the threshold.
When the peak envelope of the signal exceeds the threshold, the signal amplitude
is reduced. If the signal still exceeds the threshold, it is clipped.
The threshold sets the value above which limiting/clipping occurs. The attack time
sets how fast the limiter starts limiting. The release time sets how long the signal
takes to ramp up to its original level after the envelope is below the threshold.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.hard_limiter_peak] The
DSP block class; see Hard Peak Limiter for implementation
details.

make_hard_limiter_peak(threshold_db, attack_t, release_t, Q_sig=27)
Update limiter configuration based on new parameters.

Parameters

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the limiter in seconds.

release_t
[float] Release time of the limiter in seconds.

HardLimiterPeak Control The following runtime command ids are available for the
HardLimiterPeak Stage. For details on reading and writing these commands, see the
Run-Time Control User Guide.

52

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_HARD_LIMITER_PEAK_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_HARD_LIMITER_PEAK_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_HARD_LIMITER_PEAK_ENVELOPE sizeof(int32_t)
The current peak envelope of the signal in Q_SIG format. To read the
int32_t control value, use the function qxx_to_db(envelope,
Q_SIG) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

CMD_HARD_LIMITER_PEAK_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format abovewhich limitingwill occur. To con-
vert a threshold in dB to the int32_t control value, use the function
calculate_peak_threshold(x) in control/helpers.h.

CMD_HARD_LIMITER_PEAK_GAIN sizeof(int32_t)
The current gain applied by the limiter in Q0.31 format. To read the
int32_t control value, use the function qxx_to_db(envelope,
31) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

Clipper
class audio_dsp.stages.limiter.Clipper(**kwargs)

A simple clipper that limits the signal to a specified threshold.
If the signal is greater than the threshold level, it is set to the threshold value.

Attributes

dsp_block
[audio_dsp.dsp.drc.drc.clipper] The DSP block class;
see Clipper for implementation details.

make_clipper(threshold_db, Q_sig=27)
Update clipper configuration based on new parameters.

Parameters

threshold_db
[float] Threshold in decibels above which clipping occurs.

53

lib_audio_dsp: Audio DSP Library

Clipper Control The following runtime command ids are available for the Clipper
Stage. For details on reading and writing these commands, see the Run-Time Control
User Guide.

Control parameter Payload
length

CMD_CLIPPER_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format above which clipping will occur. To
convert a threshold in dB to the int32_t control value, use the func-
tion calculate_peak_threshold(x) in control/helpers.h.

Noise Gate Stages

Noise gate Stages remove quiet signals from the audio output.

NoiseGate
class audio_dsp.stages.noise_gate.NoiseGate(**kwargs)

Anoise gate that reduces the level of an audio signal when it falls belowa threshold.
When the signal envelope falls below the threshold, the gain applied to the signal is
reduced to 0 over the release time. When the envelope returns above the threshold,
the gain applied to the signal is increased to 1 over the attack time.
The initial state of the noise gate is with the gate open (no attenuation); thismodels
a full scale signal having been present before t = 0.

Attributes

dsp_block
[audio_dsp.dsp.drc.expander.noise_gate] The DSP
block class; see Noise Gate for implementation details.

make_noise_gate(threshold_db, attack_t, release_t, Q_sig=27)
Update noise gate configuration based on new parameters.

Parameters

threshold_db
[float] The threshold level in decibels below which the audio
signal is attenuated.

attack_t
[float] Attack time of the noise gate in seconds.

release_t
[float] Release time of the noise gate in seconds.

NoiseGate Control The following runtime command ids are available for the
NoiseGate Stage. For details on reading and writing these commands, see the Run-Time
Control User Guide.

54

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_NOISE_GATE_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_NOISE_GATE_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_NOISE_GATE_ENVELOPE sizeof(int32_t)
The current peak envelope of the signal in Q_SIG format. To read the
int32_t control value, use the function qxx_to_db(envelope,
Q_SIG) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

CMD_NOISE_GATE_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format below which gating will occur. To con-
vert a threshold in dB to the int32_t control value, use the function
calculate_peak_threshold(x) in control/helpers.h.

CMD_NOISE_GATE_GAIN sizeof(int32_t)
The current gain applied by the noise gate in Q0.31 format. To read the
int32_t control value, use the function qxx_to_db(envelope,
31) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

Noise Suppressor Expander Stages

Noise suppressor and expander Stages control the behaviour of quiet signals, typically
by tring to reduce the audibility of noise in the signal.

NoiseSuppressorExpander
class audio_dsp.stages.noise_suppressor_expander.NoiseSuppressorExpander(**kwargs)

The Noise Suppressor (Expander) stage. A noise suppressor that reduces the level
of an audio signal when it falls below a threshold. This is also known as an ex-
pander.
When the signal envelope falls below the threshold, the gain applied to the signal
is reduced relative to the expansion ratio over the release time. When the envelope
returns above the threshold, the gain applied to the signal is increased to 1 over the
attack time.
The initial state of the noise suppressor is with the suppression off; this models a
full scale signal having been present before t = 0.

55

lib_audio_dsp: Audio DSP Library

Attributes

dsp_block
[audio_dsp.dsp.drc.expander.
noise_suppressor_expander] The DSP block class;
see Noise Suppressor/Expander for implementation details.

make_noise_suppressor_expander(ratio, threshold_db, attack_t, release_t,
Q_sig=27)

Update noise suppressor (expander) configuration based on new parameters.
All parameters are passed to the constructor of audio_dsp.dsp.drc.
noise_suppressor_expander.

Parameters

ratio
[float] The expansion ratio applied to the signal when the enve-
lope falls below the threshold.

threshold_db
[float] The threshold level in decibels below which the audio
signal is attenuated.

attack_t
[float] Attack time of the noise suppressor in seconds.

release_t
[float] Release time of the noise suppressor in seconds.

NoiseSuppressorExpander Control The following runtime command ids are avail-
able for the NoiseSuppressorExpander Stage. For details on reading and writing these
commands, see the Run-Time Control User Guide.

56

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_NOISE_SUPPRESSOR_EXPANDER_ATTACK_ALPHA sizeof(int32_t)
The attack alpha in Q0.31 format. To convert an attack time
in seconds to an int32_t control value, use the function
calc_alpha(fs, attack_time) in control/helpers.h.

CMD_NOISE_SUPPRESSOR_EXPANDER_RELEASE_ALPHA sizeof(int32_t)
The release alpha in Q0.31 format. To convert a release
time in seconds to an int32_t control value, use the function
calc_alpha(fs, release_time) in control/helpers.h.

CMD_NOISE_SUPPRESSOR_EXPANDER_ENVELOPE sizeof(int32_t)
The current peak envelope of the signal in Q_SIG format. To read the
int32_t control value, use the function qxx_to_db(envelope,
Q_SIG) in control/helpers.h This command is read only. When
sending a write control command, it will be ignored.

CMD_NOISE_SUPPRESSOR_EXPANDER_THRESHOLD sizeof(int32_t)
The threshold in Q_SIG format belowwhich suppressionwill occur. To
convert a threshold in dB to the int32_t control value, use the func-
tion calculate_peak_threshold(x) in control/helpers.h.

CMD_NOISE_SUPPRESSOR_EXPANDER_GAIN sizeof(int32_t)
The current gain applied by the noise suppressor in Q0.31 for-
mat. To read the int32_t control value, use the function
qxx_to_db(envelope, 31) in control/helpers.h This com-
mand is read only. When sending a write control command, it will be
ignored.

CMD_NOISE_SUPPRESSOR_EXPANDER_SLOPE sizeof(float)
The expansion slope of the noise suppressor. This is calcu-
lated as (1 - ratio).To convert a ratio to a slope, use the function
peak_expander_slope_from_ratio(ratio) in control/
helpers.h.

Reverb Stages

Reverb Stages emulate the natural reverberance of rooms.

ReverbBase

57

lib_audio_dsp: Audio DSP Library

class audio_dsp.stages.reverb.ReverbBase(inputs: StageOutputList,
config: Optional[Union[Path,
str]] = None, name:
Optional[str] = None, label:
Optional[str] = None)

The base class for reverb stages, containing pre delays, and wet/dry mixes and
pregain.
set_dry_gain(gain_dB)

Set the dry gain of the reverb room stage. This sets the level of the unpro-
cessed signal.

Parameters

gain_db
[float] Dry gain in dB, less than 0 dB.

set_pre_gain(pre_gain)
Set the pre gain of the reverb room stage.

Parameters

pre_gain
[float] Pre gain value. Must be less than 1.

set_predelay(predelay)
Set the predelay of the wet channel.

Parameters

predelay
[float] Predelay in ms, less than max_predelay.

set_wet_dry_mix(mix)
Set the wet/dry gains so that the mix of 0 results in a fully dry output, the mix
of 1 results in a fully wet output.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

set_wet_gain(gain_dB)
Set the wet gain of the reverb room stage. This sets the level of the reverber-
ated signal.

Parameters

gain_db
[float] Wet gain in dB, less than 0 dB.

ReverbBase Control The ReverbBase Stage has no runtime controllable parame-
ters.

ReverbRoom
class audio_dsp.stages.reverb.ReverbRoom(max_room_size=1,

predelay=10,
max_predelay=None,
**kwargs)

The room reverb stage. This is based on Freeverb by Jezar at Dreampoint, and
consists of 8 parallel comb filters fed into 4 series all-pass filters.

58

lib_audio_dsp: Audio DSP Library

Parameters

max_room_size
Sets the maximum room size for this reverb. The room_size
parameter sets the fraction of this value actually used at
any given time. For optimal memory usage, max_room_size
should be set so that the longest reverb tail occurs when
room_size=1.0.

predelay
[float, optional] The delay applied to the wet channel in ms.

max_predelay
[float, optional] The maximum predelay in ms.

Attributes

dsp_block
[audio_dsp.dsp.reverb.reverb_room] The DSP block
class; see Reverb Room for implementation details.

set_damping(damping)
Set the damping of the reverb room stage. This controls how much high fre-
quency attenuation is in the room. Higher values yield shorter reverberation
times at high frequencies.

Parameters

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

set_decay(decay)
Set the decay of the reverb room stage. This sets how reverberant the room
is. Higher values will give a longer reverberation time for a given room size.

Parameters

decay
[float] How long the reverberation of the room is, between 0
and 1.

set_dry_gain(gain_dB)
Set the dry gain of the reverb room stage. This sets the level of the unpro-
cessed signal.

Parameters

gain_db
[float] Dry gain in dB, less than 0 dB.

set_pre_gain(pre_gain)
Set the pre gain of the reverb room stage.

Parameters

pre_gain
[float] Pre gain value. Must be less than 1.

set_predelay(predelay)
Set the predelay of the wet channel.

Parameters

59

lib_audio_dsp: Audio DSP Library

predelay
[float] Predelay in ms, less than max_predelay.

set_room_size(new_room_size)
Set the room size, will adjust the delay line lengths.
The room size is proportional to max_room_size, and must be between 0
and 1. To increase the room_size above 1.0, max_room_size must instead
be increased. Optimal memory usage occurs when room_size is set to 1.0.

Parameters

new_room_size
[float] How big the room is as a proportion of max_room_size.
This sets delay line lengths and must be between 0 and 1.

set_wet_dry_mix(mix)
Set the wet/dry gains so that the mix of 0 results in a fully dry output, the mix
of 1 results in a fully wet output.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

set_wet_gain(gain_dB)
Set the wet gain of the reverb room stage. This sets the level of the reverber-
ated signal.

Parameters

gain_db
[float] Wet gain in dB, less than 0 dB.

ReverbRoom Control The following runtime command ids are available for the Re-
verbRoom Stage. For details on reading and writing these commands, see the Run-Time
Control User Guide.

60

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_REVERB_ROOM_ROOM_SIZE sizeof(float)
How big the room is as a proportion of max_room_size. This sets
delay line lengths and must be between 0 and 1.

CMD_REVERB_ROOM_FEEDBACK sizeof(int32_t)
feedback gain in Q0.31 format. Feedback can be calcu-
lated from decay as (0.28 decay) + 0.7. Use the function
adsp_reverb_calculate_feedback in control/reverb.h.

CMD_REVERB_ROOM_DAMPING sizeof(int32_t)
High frequency attenuation in Q0.31 format. Use the function
adsp_reverb_calculate_damping in control/reverb.h.

CMD_REVERB_ROOM_WET_GAIN sizeof(int32_t)
Gain applied to the wet signal in Q0.31 format. Use the
function adsp_reverb_db2int in control/reverb.h. Al-
ternatively, both wet and dry gains can be obtained from
adsp_reverb_wet_dry_mix.

CMD_REVERB_ROOM_DRY_GAIN sizeof(int32_t)
Dry signal gain in Q0.31 format. Use the function
adsp_reverb_db2int in control/reverb.h. Alter-
natively, both wet and dry gains can be obtained from
adsp_reverb_wet_dry_mix.

CMD_REVERB_ROOM_PREGAIN sizeof(int32_t)
The pregain applied to the signal before the reverb. Chang-
ing this value is not recommended. Use the function
adsp_reverb_float2int in control/reverb.h.

CMD_REVERB_ROOM_PREDELAY sizeof(uint32_t)
Predelay applied to the wet channel in samples. To convert a
value in other units of time to samples, use time_to_samples in
control/signal_chain.h.

ReverbRoomStereo
class audio_dsp.stages.reverb.ReverbRoomStereo(max_room_size=1,

predelay=10,
max_predelay=None,
**kwargs)

61

lib_audio_dsp: Audio DSP Library

The stereo room reverb stage. This is based on Freeverb by Jezar at Dreampoint.
Each channel consists of 8 parallel comb filters fed into 4 series all-pass filters, and
the reverberator outputs are mixed according to the width parameter.

Parameters

max_room_size
Sets the maximum room size for this reverb. The room_size
parameter sets the fraction of this value actually used at
any given time. For optimal memory usage, max_room_size
should be set so that the longest reverb tail occurs when
room_size=1.0.

predelay
[float, optional] The delay applied to the wet channel in ms.

max_predelay
[float, optional] The maximum predelay in ms.

Attributes

dsp_block
[audio_dsp.dsp.reverb_stereo.
reverb_room_stereo] The DSP block class; see Reverb
Room Stereo for implementation details.

set_damping(damping)
Set the damping of the reverb room stage. This controls how much high fre-
quency attenuation is in the room. Higher values yield shorter reverberation
times at high frequencies.

Parameters

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

set_decay(decay)
Set the decay of the reverb room stage. This sets how reverberant the room
is. Higher values will give a longer reverberation time for a given room size.

Parameters

decay
[float] How long the reverberation of the room is, between 0
and 1.

set_dry_gain(gain_dB)
Set the dry gain of the reverb room stage. This sets the level of the unpro-
cessed signal.

Parameters

gain_db
[float] Dry gain in dB, less than 0 dB.

set_pre_gain(pre_gain)
Set the pre gain of the reverb room stage.

Parameters

pre_gain
[float] Pre gain value. Must be less than 1.

62

lib_audio_dsp: Audio DSP Library

set_predelay(predelay)
Set the predelay of the wet channel.

Parameters

predelay
[float] Predelay in ms, less than max_predelay.

set_room_size(new_room_size)
Set the room size, will adjust the delay line lengths.
The room size is proportional to max_room_size, and must be between 0
and 1. To increase the room_size above 1.0, max_room_size must instead
be increased. Optimal memory usage occurs when room_size is set to 1.0.

Parameters

new_room_size
[float] How big the room is as a proportion of max_room_size.
This sets delay line lengths and must be between 0 and 1.

set_wet_dry_mix(mix)
Set the wet/dry gains so that the mix of 0 results in a fully dry output, the mix
of 1 results in a fully wet output.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

set_wet_gain(gain_dB)
Set the wet gain of the reverb room stage. This sets the level of the reverber-
ated signal.

Parameters

gain_db
[float] Wet gain in dB, less than 0 dB.

set_width(width)
Set the decay of the reverb room stage. This sets how reverberant the room
is. Higher values will give a longer reverberation time for a given room size.

Parameters

width
[float] How much stereo separation between the channels. A
width of 0 indicates no stereo separation (i.e. mono). A width
of 1 indicates maximum stereo separation.

ReverbRoomStereo Control The following runtime command ids are available for
the ReverbRoomStereo Stage. For details on reading and writing these commands, see
the Run-Time Control User Guide.

63

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_REVERB_ROOM_STEREO_ROOM_SIZE sizeof(float)
How big the room is as a proportion of max_room_size. This sets
delay line lengths and must be between 0 and 1.

CMD_REVERB_ROOM_STEREO_FEEDBACK sizeof(int32_t)
feedback gain in Q0.31 format. Feedback can be calcu-
lated from decay as (0.28 decay) + 0.7. Use the function
adsp_reverb_calculate_feedback in control/reverb.h.

CMD_REVERB_ROOM_STEREO_DAMPING sizeof(int32_t)
High frequency attenuation in Q0.31 format. Use the function
adsp_reverb_calculate_damping in control/reverb.h.

CMD_REVERB_ROOM_STEREO_WET_GAIN1 sizeof(int32_t)
Gain applied to obtain the wet signal in Q0.31 format. Use func-
tion adsp_reverb_room_st_calc_wet_gains in control/
reverb.h. Alternatively, all gains can be obtained from
adsp_reverb_st_wet_dry_mix.

CMD_REVERB_ROOM_STEREO_WET_GAIN2 sizeof(int32_t)
Gain applied to obtain the wet signal in Q0.31 format. Use func-
tion adsp_reverb_room_st_calc_wet_gains in control/
reverb.h. Alternatively, all gains can be obtained from
adsp_reverb_st_wet_dry_mix.

CMD_REVERB_ROOM_STEREO_DRY_GAIN sizeof(int32_t)
Dry signal gain in Q0.31 format. Use the function
adsp_reverb_db2int in control/reverb.h. Alternatively, all
gains can be obtained from adsp_reverb_st_wet_dry_mix.

CMD_REVERB_ROOM_STEREO_PREGAIN sizeof(int32_t)
The pregain applied to the signal before the reverb. Chang-
ing this value is not recommended. Use the function
adsp_reverb_float2int in control/reverb.h.

CMD_REVERB_ROOM_STEREO_PREDELAY sizeof(uint32_t)
Predelay applied to the wet channel in samples. To convert a
value in other units of time to samples, use time_to_samples in
control/signal_chain.h.

64

lib_audio_dsp: Audio DSP Library

ReverbPlateStereo
class audio_dsp.stages.reverb.ReverbPlateStereo(predelay=10,

max_predelay=None,
**kwargs)

The stereo room plate stage. This is based on Dattorro’s 1997 paper. This reverb
consists of 4 allpass filters for input diffusion, followed by a figure of 8 reverb tank
of allpasses, low-pass filters, and delays. The output is taken frommultiple taps in
the delay lines to get a desirable echo density.

Parameters

predelay
[float, optional] The delay applied to the wet channel in ms.

max_predelay
[float, optional] The maximum predelay in ms.

Attributes

dsp_block
[audio_dsp.dsp.reverb.reverb_plate_stereo] The
DSP block class; see Reverb Plate Stereo for implementation
details.

set_bandwidth(bandwidth)
Set the bandwidth of the plate reverb stage. This sets the low pass cutoff
frequency of the reverb input. Higher valueswill give a higher cutoff frequency.

Parameters

bandwidth
[float] The bandwidth of the plate input signal, between 0 and
1.

set_damping(damping)
Set the damping of the plate reverb stage. This controls how much high fre-
quency attenuation is in the plate. Higher values yield shorter reverberation
times at high frequencies.

Parameters

damping
[float] How much high frequency attenuation in the plate, be-
tween 0 and 1.

set_decay(decay)
Set the decay of the plate reverb stage. This sets how reverberant the plate
is. Higher values will give a longer reverberation time.

Parameters

decay
[float] How long the reverberation of the plate is, between 0 and
1.

set_dry_gain(gain_dB)
Set the dry gain of the reverb room stage. This sets the level of the unpro-
cessed signal.

Parameters

gain_db
[float] Dry gain in dB, less than 0 dB.

65

lib_audio_dsp: Audio DSP Library

set_early_diffusion(diffusion)
Set the early diffusion of the plate reverb stage. This sets howmuch diffusion
is present in the first part of the reverberation. Higher values will give more
diffusion.

Parameters

diffusion
[float] How diffuse the plate is, between 0 and 1.

set_late_diffusion(diffusion)
Set the late diffusion of the plate reverb stage. This sets how much diffusion
is present in the latter part of the reverberation. Higher values will give more
diffusion.

Parameters

diffusion
[float] How diffuse the plate is, between 0 and 1.

set_pre_gain(pre_gain)
Set the pre gain of the reverb room stage.

Parameters

pre_gain
[float] Pre gain value. Must be less than 1.

set_predelay(predelay)
Set the predelay of the wet channel.

Parameters

predelay
[float] Predelay in ms, less than max_predelay.

set_wet_dry_mix(mix)
Set the wet/dry gains so that the mix of 0 results in a fully dry output, the mix
of 1 results in a fully wet output.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

set_wet_gain(gain_dB)
Set the wet gain of the reverb room stage. This sets the level of the reverber-
ated signal.

Parameters

gain_db
[float] Wet gain in dB, less than 0 dB.

set_width(width)
Set the decay of the reverb room stage. This sets how reverberant the room
is. Higher values will give a longer reverberation time for a given room size.

Parameters

width
[float] How much stereo separation between the channels. A
width of 0 indicates no stereo separation (i.e. mono). A width
of 1 indicates maximum stereo separation.

66

lib_audio_dsp: Audio DSP Library

ReverbPlateStereo Control The following runtime command ids are available for
the ReverbPlateStereo Stage. For details on reading and writing these commands, see
the Run-Time Control User Guide.

67

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_REVERB_PLATE_STEREO_DECAY sizeof(int32_t)
The amount of decay in the plate in Q0.31 format. To convert a de-
cay value between 0 and 1 to an int32_t control value, use the
function adsp_reverb_float2int‘ in control/reverb.h.

CMD_REVERB_PLATE_STEREO_DAMPING sizeof(int32_t)
The amount of high frequency attenuation in Q0.31 format. To con-
vert a damping value between 0 and 1 to an int32_t control value,
use the functionadsp_reverb_plate_calculate_damping in
control/reverb.h.

CMD_REVERB_PLATE_STEREO_EARLY_DIFFUSION sizeof(int32_t)
The amount of diffusion in the early part of the reverb. To convert
a diffusion value between 0 and 1 to an int32_t control value, use
the function adsp_reverb_float2int‘ in control/reverb.h.

CMD_REVERB_PLATE_STEREO_LATE_DIFFUSION sizeof(int32_t)
The amount of diffusion in the late part of the reverb. To convert a
diffusion value between 0 and 1 to an int32_t control value, use
the function adsp_reverb_plate_calc_late_diffusion‘ in control/
reverb.h.

CMD_REVERB_PLATE_STEREO_BANDWIDTH sizeof(int32_t)
The input low pass coefficient in Q0.31 format. A bandwidth in Hertz
can be converted to an int32_t control value using the function
xxxxx. Alternatively, a bandwidth between 0 and 1 can be converted
using the function adsp_reverb_plate_calc_bandwidth‘.

CMD_REVERB_PLATE_STEREO_WET_GAIN1 sizeof(int32_t)
Gain applied to the wet signal in Q0.31 format. To calcu-
late the wet gains based on a level in dB and a stereo width,
use the function adsp_reverb_room_st_calc_wet_gains
in control/reverb.h. Alternatively, wet and dry gains
can be calculated using a wet/dry ratio with the function
adsp_reverb_st_wet_dry_mix.

CMD_REVERB_PLATE_STEREO_WET_GAIN2 sizeof(int32_t)
Gain applied to the wet signal in Q0.31 format. To calcu-
late the wet gains based on a level in dB and a stereo width,
use the function adsp_reverb_room_st_calc_wet_gains
in control/reverb.h. Alternatively, wet and dry gains
can be calculated using a wet/dry ratio with the function
adsp_reverb_st_wet_dry_mix.

CMD_REVERB_PLATE_STEREO_DRY_GAIN sizeof(int32_t)
Gain applied to the dry signal in Q0.31 format. To calcu-
late the dry gain based on a level in dB, use the function
adsp_reverb_db2int in control/reverb.h. Alternatively,
wet and dry gains can be calculated using a wet/dry ratio with the
function adsp_reverb_st_wet_dry_mix.

CMD_REVERB_PLATE_STEREO_PREGAIN sizeof(int32_t)
The pregain applied to the signal before the reverb. Changing this
value is only required if saturation occurs in the reverb tank. To con-
vert a linear gain value to anint32_t control value, use the function
adsp_reverb_float2int in control/reverb.h.

CMD_REVERB_PLATE_STEREO_PREDELAY sizeof(uint32_t)
The wet channel predelay value in samples. To convert a value
in other units of time to samples, use time_to_samples in
control/signal_chain.h. Note the minimum delay provided
by this stage is 1 sample. Setting the delay to 0 will still yield a 1
sample delay.

68

lib_audio_dsp: Audio DSP Library

Signal Chain Stages

Signal chain stages allow for the control of signal flow through the pipeline. This includes
stages for combining and splitting signals, basic gain components, and delays.

Bypass
class audio_dsp.stages.signal_chain.Bypass(**kwargs)

Stage which does not modify its inputs. Useful if data needs to flow through a
thread which is not being processed on to keep pipeline lengths aligned.
process(in_channels)

Return a copy of the inputs.

Bypass Control The Bypass Stage has no runtime controllable parameters.

Fork
class audio_dsp.stages.signal_chain.Fork(count=2, **kwargs)

Fork the signal.
Use if the same data needs to be sent to multiple data paths:

a = t.stage(Example, ...)
f = t.stage(Fork, a, count=2) # count optional, default is 2
b = t.stage(Example, f.forks[0])
c = t.stage(Example, f.forks[1])

Attributes

forks
[list[list[StageOutput]]] For convenience, each forked output will
be available in this list each entry contains a set of outputswhich
will contain the same data as the input.

class ForkOutputList(edges:
Optional[list[audio_dsp.design.stage.StageOutput |
None]] = None)

Custom StageOutputList that is created by Fork.
This allows convenient access to each fork output.

Attributes

forks: list[StageOutputList]
Fork duplicates its inputs, each entry in the forks list is a single
copy of the input edges.

get_frequency_response(nfft=512)
Fork has no sensible frequency response, not implemented.

process(in_channels)
Duplicate the inputs to the outputs based on this fork’s configuration.

Fork Control The Fork Stage has no runtime controllable parameters.

Mixer
class audio_dsp.stages.signal_chain.Mixer(**kwargs)

Mixes the input signals together. The mixer can be used to add signals together, or
to attenuate the input signals.

69

lib_audio_dsp: Audio DSP Library

Attributes

dsp_block
[audio_dsp.dsp.signal_chain.mixer] The DSP block
class; seeMixer for implementation details

set_gain(gain_db)
Set the gain of the mixer in dB.

Parameters

gain_db
[float] The gain of the mixer in dB.

Mixer Control The following runtime command ids are available for theMixer Stage.
For details on reading and writing these commands, see the Run-Time Control User
Guide.

Control parameter Payload
length

CMD_MIXER_GAIN sizeof(int32_t)
The current gain in Q_GAIN format. To convert a value in deci-
bels to this format, the function adsp_dB_to_gain in control/
signal_chain.h can be used.

Adder
class audio_dsp.stages.signal_chain.Adder(**kwargs)

Add the input signals together. The adder can be used to add signals together.

Attributes

dsp_block
[audio_dsp.dsp.signal_chain.adder] The DSP block
class; see Adder for implementation details.

Adder Control The Adder Stage has no runtime controllable parameters.

Subtractor
class audio_dsp.stages.signal_chain.Subtractor(**kwargs)

Subtract the second input from the first. The subtractor can be used to subtract
signals from each other. It must only have 2 inputs.

Attributes

dsp_block
[audio_dsp.dsp.signal_chain.subtractor] The DSP
block class; see Subtractor for implementation details.

Subtractor Control The Subtractor Stage has no runtime controllable parameters.

FixedGain

70

lib_audio_dsp: Audio DSP Library

class audio_dsp.stages.signal_chain.FixedGain(gain_db=0, **kwargs)
This stage implements a fixed gain. The input signal is multiplied by a gain. If the
gain is changed at runtime, pops and clicks may occur.
If the gain needs to be changed at runtime, use a VolumeControl stage instead.

Parameters

gain_db
[float, optional] The gain of the mixer in dB.

Attributes

dsp_block
[audio_dsp.dsp.signal_chain.fixed_gain] The DSP
block class; see Fixed Gain for implementation details.

set_gain(gain_db)
Set the gain of the fixed gain in dB.

Parameters

gain_db
[float] The gain of the fixed gain in dB.

FixedGain Control The following runtime command ids are available for the
FixedGain Stage. For details on reading and writing these commands, see the Run-Time
Control User Guide.

Control parameter Payload
length

CMD_FIXED_GAIN_GAIN sizeof(int32_t)
The gain value in Q_GAIN format. To convert a value in deci-
bels to this format, the function adsp_dB_to_gain in control/
signal_chain.h can be used.

VolumeControl
class audio_dsp.stages.signal_chain.VolumeControl(gain_dB=0,

mute_state=0,
**kwargs)

This stage implements a volume control. The input signal is multiplied by a gain.
The gain can be changed at runtime. To avoid pops and clicks during gain changes,
a slew is applied to the gain update. The stage can be muted and unmuted at
runtime.

Parameters

gain_db
[float, optional] The gain of the mixer in dB.

mute_state
[int, optional] Themute state of the VolumeControl: 0: unmuted,
1: muted.

Attributes

71

lib_audio_dsp: Audio DSP Library

dsp_block
[audio_dsp.dsp.signal_chain.volume_control] The
DSP block class; see Volume Control for implementation details.

make_volume_control(gain_dB, slew_shift,mute_state, Q_sig=27)
Update the settings of this volume control.

Parameters

gain_dB
Target gain of this volume control.

slew_shift
The shift value used in the exponential slew.

mute_state
The mute state of the Volume Control: 0: unmuted, 1: muted.

set_gain(gain_dB)
Set the gain of the volume control in dB.

Parameters

gain_db
[float] The gain of the volume control in dB.

set_mute_state(mute_state)
Set the mute state of the volume control.

Parameters

mute_state
[bool] The mute state of the volume control.

VolumeControl Control The following runtime command ids are available for the
VolumeControl Stage. For details on reading and writing these commands, see the Run-
Time Control User Guide.

72

lib_audio_dsp: Audio DSP Library

Control parameter Payload
length

CMD_VOLUME_CONTROL_TARGET_GAIN sizeof(int32_t)
The target gain of the volume control in Q_GAIN format. To convert a
value in decibels to this format, the function adsp_dB_to_gain in
control/signal_chain.h can be used.

CMD_VOLUME_CONTROL_GAIN sizeof(int32_t)
The current applied gain of the volume control in Q_GAIN format. The
volume control will slew the applied gain towards the target gain. This
command is read only. When sending a write control command, it will
be ignored.

CMD_VOLUME_CONTROL_SLEW_SHIFT sizeof(int32_t)
The shift value used to set the slew rate. See the volume control doc-
umentation for conversions between slew_shift and time constant.

CMD_VOLUME_CONTROL_MUTE_STATE sizeof(uint8_t)
Sets the mute state. 1 is muted and 0 is unmuted.

Switch
class audio_dsp.stages.signal_chain.Switch(index=0, **kwargs)

Switch the input to one of the outputs. The switch can be used to select between
different signals.
move_switch(position)

Move the switch to the specified position.
Parameters

position
[int] The position to which to move the switch. This changes
the output signal to the input[position]

Switch Control The following runtime command ids are available for the Switch
Stage. For details on reading and writing these commands, see the Run-Time Control
User Guide.

Control parameter Payload
length

CMD_SWITCH_POSITION sizeof(int32_t)
The current switch position.

Delay

73

lib_audio_dsp: Audio DSP Library

class audio_dsp.stages.signal_chain.Delay(max_delay, starting_delay,
units=’samples’, **kwargs)

Delay the input signal by a specified amount.
The maximum delay is set at compile time, and the runtime delay can be set be-
tween 0 and max_delay.

Parameters

max_delay
[float] The maximum delay in specified units. This can only be
set at compile time.

starting_delay
[float] The starting delay in specified units.

units
[str, optional] The units of the delay, can be ‘samples’, ‘ms’ or ‘s’.
Default is ‘samples’.

Attributes

dsp_block
[audio_dsp.dsp.signal_chain.delay] The DSP block
class; see Delay for implementation details.

set_delay(delay, units=’samples’)
Set the length of the delay line, will saturate at max_delay.

Parameters

delay
[float] The delay in specified units.

units
[str] The units of the delay, can be ‘samples’, ‘ms’ or ‘s’. Default
is ‘samples’.

Delay Control The following runtime command ids are available for the Delay Stage.
For details on reading and writing these commands, see the Run-Time Control User
Guide.

Control parameter Payload
length

CMD_DELAY_MAX_DELAY sizeof(uint32_t)
The maximum delay value in samples. This is only configurable at
compile time. This command is read only. When sending a write
control command, it will be ignored.

CMD_DELAY_DELAY sizeof(uint32_t)
The current delay value in samples. To convert a value in other
units of time to samples, use time_to_samples in control/
signal_chain.h. Note theminimumdelay provided by this stage
is 1 sample. Setting the delay to 0 will still yield a 1 sample delay.

74

lib_audio_dsp: Audio DSP Library

3.2 DSP Modules

In lib_audio_dsp, DSP modules are the lower level functions and APIs. These can be
used directly without the pipeline building tool. The documentation also includes more
implementation details about the DSP algorithms. It includes topics such as Q formats,
C and Python APIs, providing more detailed view of the DSP modules.

Each DSP module has been implemented in floating point Python, fixed point int32
Python and fixed point int32 C, with optimisations for xcore. The Python and C fixed
point implementations aim to be bit exact with each other, allowing for Python prototyp-
ing of DSP pipelines.

Library Q Format

Note: For fixed point Q formats this document uses the format QM.N, where M is the
number of bits before the decimal point (excluding the sign bit), and N is the number of
bits after the decimal point. For an int32 number, M+N=31.

By default, the signal processing in the audio pipeline is carried out at 32 bit fixed point
precision in Q4.27 format. Assuming a 24 bit input signal in Q0.24 format, this gives 4
bits of internal headroom in the audio pipeline.

Most modules in this library assume that the signal is in a specific global Q format. This
format is defined by the Q_SIG macro. An additional macro for the signal exponent,
SIG_EXP is defined, where SIG_EXP = - Q_SIG.

Q_SIG
Default Q format

SIG_EXP
Default signal exponent

To ensure optimal headroom and noise floor, the user should ensure that signals are in
the correct Q format before processing. Either the input Q format can be converted to
Q_SIG, or Q_SIG can be changed to the desired value.

Note: Not using the DSP pipeline tool means that Q formats will not automatically be
managed, and the user should take care to ensure they have the correct values for opti-
mum performance and signal level.

For example, for more precision, the pipeline can be configured to run with no headroom
in Q0.31 format, but this would require manual headroom management (e.g. reducing
the signal level before a boost to avoid clipping).

To convert between Q_SIG and Q0.31 in a safe and optimised way, the APIs below are
provided.

int32_t adsp_from_q31(int32_t input)
Convert from Q0.31 to Q_SIG.

Parameters

· input – Input in Q0.31 format

75

lib_audio_dsp: Audio DSP Library

Returns
int32_t Output in Q_SIG format

int32_t adsp_to_q31(int32_t input)
Convert from Q_SIG to Q0.31.

Parameters

· input – Input in Q_SIG format
Returns

int32_t Output in Q0.31 format

Biquad Filters

Single Biquad A second order biquadratic filter, which can be used to implement many
common second order filters. The filter had been implemented in the direct form 1, and
uses the xcore.ai vector unit to calculate the 5 filter taps in a single instruction.

Coefficients are stored in Q1.30 format to benefit from the vector unit, allowing for a filter
coefficient range of [-2, 1.999]. For some high gain biquads (e.g. high shelf filters),
the numerator coefficients may exceed this range. If this is the case, the numerator
coefficients only should be right-shifted until they fit within the range (the denominator
coefficients cannot become larger than 2.0 without the poles exceeding the unit circle).
The shift should be passed into the API, and the output signal from the biquad will then
have a left-shift applied. This is equivalent to reducing the overall signal level in the bi-
quad, then returning to unity gain afterwards.

The state should be initialised to 0. The state and coeffsmust be word-aligned.

C API

int32_t adsp_biquad(int32_t new_sample, q2_30 coeffs[5], int32_t state[8],
left_shift_t lsh)

Biquad filter. This function implements a biquad filter. The filter is implemented as
a direct form 1.

Parameters

· new_sample – New sample to be filtered
· coeffs – Filter coefficients
· state – Filter state
· lsh – Left shift compensation value

Returns
int32_t Filtered sample

Python API

class audio_dsp.dsp.biquad.biquad(coeffs: list[float], fs: int, n_chans: int = 1,
b_shift: int = 0, Q_sig: int = 27)

A second order biquadratic filter instance.
This implements a direct form 1 biquad filter, using the coefficients provided at
initialisation: a0*y[n] = b0*x[n] + b1*x[n-1] + b2*x[n-2] - a1*y[n-1] - a2*y[n-2]
For efficiency the biquad coefficients are normalised by a0 and the output a coef-
ficients multiplied by -1.

Parameters

76

lib_audio_dsp: Audio DSP Library

coeffs
[list[float]] List of normalised biquad coefficients in the form in
the form [b0, b1, b2, -a1, -a2]/a0

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

b_shift
[int] The number of right shift bits applied to the b coefficients.
The default coefficient scaling allows for amaximumcoefficient
value of 2, but high gain shelf and peaking filters can have coef-
ficients above this value. Shifting the b coefficients down allows
coefficients greater than 2, with the cost of b_shift bits of preci-
sion.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

coeffs
[list[float]] List of normalised float biquad coefficients in the form
in the form [b0, b1, b2, -a1, -a2]/a0, rounded to int32 precision.

int_coeffs
[list[int]] List of normalised int biquad coefficients in the form in
the form [b0, b1, b2, -a1, -a2]/a0, scaled and rounded to int32.

process(sample: float, channel: int = 0)→ float
Filter a single sample using direct form 1 biquad using floating point maths.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

update_coeffs(new_coeffs: list[float])
Update the saved coefficients to the input values.

Parameters

new_coeffs
[list[float]] The new coefficients to be updated.

reset_state()
Reset the biquad saved states to zero.

77

lib_audio_dsp: Audio DSP Library

Cascaded Biquads The cascaded biquad module is equivalent to 8 individual biquad
filters connected in series. It can be used to implement a simple parametric equaliser or
high-order Butterworth filters, implemented as cascaded second order sections.

C API

int32_t adsp_cascaded_biquads_8b(int32_t new_sample, q2_30 coeffs[40],
int32_t state[64], left_shift_t lsh[8])

8-band cascaded biquad filter This function implements an 8-band cascaded bi-
quad filter. The filter is implemented as a direct form 1 filter.

Note: The filter coefficients must be in [5][8]

Parameters

· new_sample – New sample to be filtered
· coeffs – Filter coefficients
· state – Filter state
· lsh – Left shift compensation value

Returns
int32_t Filtered sample

Python API

class audio_dsp.dsp.cascaded_biquads.cascaded_biquads_8(coeffs_list,
fs,
n_chans,
Q_sig=27)

A class representing a cascaded biquad filter with up to 8 biquads.
This can be used to either implement a parametric equaliser or a higher order filter
built out of second order sections.
8 biquad objects are always created, if there are less than 8 biquads in the cascade,
the remaining biquads are set to bypass (b0 = 1).
For documentation on individual biquads, see audio_dsp.dsp.biquad.
biquad.

Parameters

coeffs_list
[list] List of coefficients for each biquad in the cascade.

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

78

lib_audio_dsp: Audio DSP Library

Q_sig: int
Q format of the signal, number of bits after the decimal point.

biquads
[list] List of biquad objects representing each biquad in the cas-
cade.

process(sample, channel=0)
Process the input sample through the cascaded biquads using floating point
maths.

Parameters

sample
[float] The input sample to be processed.

channel
[int] The channel index to process the sample on.

Returns

float
The processed output sample.

reset_state()
Reset the biquad saved states to zero.

Dynamic Range Control

Dynamic Range Control (DRC) in audio digital signal processing (DSP) refers to the au-
tomatic adjustment of an audio signal’s amplitude to reduce its dynamic range - the dif-
ference between the loudest and quietest parts of the audio. They include compressors,
limiters and clippers, as well as the envelope detectors used to detect the signal level.

Attack and Release Times Nearly all DRC modules feature an attack and release time
to control the responsiveness of themodule to changes in signal level. Attack and release
times converted fromseconds to alpha coefficients for use in the the exponentialmoving
average calculation. The shorter the attack or release time, the bigger the alpha. Large
alpha will result in the envelope becoming more reactive to the input samples. Small
alpha values will give more smoothed behaviour. The difference between the input level
and the current envelope or gain determines whether the attack or release alpha is used.

Envelope Detectors Envelope detectors run an exponential moving average (EMA) of
the incoming signal. They are used as a part of the most DRC components. They can
also be used to implement VU meters and level detectors.

They feature attack and release times to control the responsiveness of the envelope de-
tector.

The C struct below is used for all the envelope detector implementations.

struct env_detector_t
Envelope detector state structure.

Public Members

q1_31 attack_alpha
Attack alpha

79

lib_audio_dsp: Audio DSP Library

q1_31 release_alpha
Release alpha

int32_t envelope
Current envelope

Peak Envelope Detector A peak-based envelope detector will run its EMA using the
absolute value of the input sample.

C API

void adsp_env_detector_peak(env_detector_t *env_det, int32_t new_sample)
Update the envelope detector peak with a new sample.

Parameters

· env_det – Envelope detector object
· new_sample – New sample

Python API

class audio_dsp.dsp.drc.drc.envelope_detector_peak(fs, n_chans,
attack_t,
release_t,
Q_sig=27)

Envelope detector that follows the absolute peak value of a signal.
The attack time sets how fast the envelope detector ramps up. The release time
sets how fast the envelope detector ramps down.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

attack_t
[float] Attack time of the envelope detector in seconds. This can-
not be faster than 2/fs seconds, and saturates to that value. Ex-
ceptionally large attack times may converge to zero.

release_t: float
Release time of the envelope detector in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

80

lib_audio_dsp: Audio DSP Library

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

envelope
[list[float]] Current envelope value for each channel for floating
point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

envelope_int
[list[int]] current envelope value for each channel in 32-bit int for-
mat.

process(sample, channel=0)
Update the peak envelope for a signal, using floating point maths.
Take one new sample and return the updated envelope. Input should be
scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope to zero.

RMSEnvelope Detector AnRMS-based envelope detector will run its EMA using the
square of the input sample. It returns the mean² in order to avoid a square root.

C API

void adsp_env_detector_rms(env_detector_t *env_det, int32_t new_sample)
Update the envelope detector RMS with a new sample.

Parameters

81

lib_audio_dsp: Audio DSP Library

· env_det – Envelope detector object
· new_sample – New sample

Python API

class audio_dsp.dsp.drc.drc.envelope_detector_rms(fs, n_chans,
attack_t, release_t,
Q_sig=27)

Envelope detector that follows the RMS value of a signal.
Note this returns the mean² value, there is no need to do the sqrt() as if the output
is converted to dB, 10log10() can be taken instead of 20log10().
The attack time sets how fast the envelope detector ramps up. The release time
sets how fast the envelope detector ramps down.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

attack_t
[float] Attack time of the envelope detector in seconds. This can-
not be faster than 2/fs seconds, and saturates to that value. Ex-
ceptionally large attack times may converge to zero.

release_t: float
Release time of the envelope detector in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

82

lib_audio_dsp: Audio DSP Library

envelope
[list[float]] Current envelope value for each channel for floating
point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

envelope_int
[list[int]] current envelope value for each channel in 32-bit int for-
mat.

process(sample, channel=0)
Update the RMS envelope for a signal, using floating point maths.
Take one new sample and return the updated envelope. Input should be
scaled with 0 dB = 1.0.
Note this returns the mean² value, there is no need to do the sqrt() as if the
output is converted to dB, 10log10() can be taken instead of 20log10().

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope to zero.

Clipper A clipper limits the signal to a specified threshold. It is applied instantaneously,
so has no attack or release times.

typedef int32_t clipper_t
Clipper state structure. Should be initilised with the linear threshold.

C API

int32_t adsp_clipper(clipper_t clip, int32_t new_samp)
Process a new sample with a clipper.

Parameters

· clip – Clipper object
· new_samp – New sample

Returns
int32_t Clipped sample

Python API

83

lib_audio_dsp: Audio DSP Library

class audio_dsp.dsp.drc.drc.clipper(fs, n_chans, threshold_db, Q_sig=27)
A simple clipper that limits the signal to a specified threshold.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

threshold_db
[float] Threshold above which clipping occurs in dB.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

threshold_db
[float] The threshold in decibels; changing this property also up-
dates the fixed and floating point thresholds in linear gain.

threshold
[float] Value above which clipping occurs for floating point pro-
cessing.

threshold_int
[int] Value above which clipping occurs for int32 fixed point pro-
cessing.

process(sample, channel=0)
Take one new sample and return the clipped sample, using floating point
maths. Input should be scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

Limiters Limiters will reduce the amplitude of a signal when the signal envelope is
greater than the desired threshold. This is similar behaviour to a compressor with an
infinite ratio.

A limiter will run an internal envelope detector to get the signal envelope, then compare
it to the threshold. If the envelope is greater than the threshold, the applied gain will be
reduced. If the envelope is below the threshold, unity gain will be applied. The gain is run

84

lib_audio_dsp: Audio DSP Library

through an EMA to avoid abrupt changes. The same attack and release times are used
for the envelope detector and the gain smoothing.

The C struct below is used for all the limiter implementations.

struct limiter_t
Limiter state structure.

Public Members

env_detector_t env_det
Envelope detector

int32_t threshold
Linear threshold

int32_t gain
Linear gain

Peak Limiter A peak limiter uses the Peak Envelope Detector to get an envelope.
When envelope is above the threshold, the new gain is calculated as threshold /
envelope.

C API

int32_t adsp_limiter_peak(limiter_t *lim, int32_t new_samp)
Process a new sample with a peak limiter.

Parameters

· lim – Limiter object
· new_samp – New sample

Returns
int32_t Limited sample

Python API

class audio_dsp.dsp.drc.drc.limiter_peak(fs, n_chans, threshold_db,
attack_t, release_t, Q_sig=27)

A limiter based on the peak value of the signal. When the peak envelope of the
signal exceeds the threshold, the signal amplitude is reduced.
The threshold set the value above which limiting occurs. The attack time sets how
fast the limiter starts limiting. The release time sets how long the signal takes to
ramp up to its original level after the envelope is below the threshold.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of parallel channels the compressor/limiter runs
on. The channels are limited/compressed separately, only the
constant parameters are shared.

85

lib_audio_dsp: Audio DSP Library

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the compressor/limiter in seconds. This
cannot be faster than 2/fs seconds, and saturates to that value.
Exceptionally large attack times may converge to zero.

release_t: float
Release time of the compressor/limiter in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

threshold
[float] Value above which compression/limiting occurs for float-
ing point processing.

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value above which compression/limiting occurs for int32
fixed point processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

86

lib_audio_dsp: Audio DSP Library

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

threshold_db
[float] The threshold in decibels; changing this property also up-
dates the fixed and floating point thresholds in linear gain.

env_detector
[envelope_detector_peak] Peak envelope detector object used to
calculate the envelope of the signal.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain
for compression/limiting, using floating point maths.
Take one new sample and return the compressed/limited sample. Input
should be scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 0 and the gain to 1.

Hard Peak Limiter A hard peak limiter is similar to a Peak Limiter, but will clip the
output if it’s still above the threshold after the peak limiter. This can be useful for a final
output limiter before truncating any headroom bits.

C API

int32_t adsp_hard_limiter_peak(limiter_t *lim, int32_t new_samp)
Process a new sample with a hard limiter peak.

Parameters

· lim – Limiter object
· new_samp – New sample

Returns
int32_t Limited sample

Python API

class audio_dsp.dsp.drc.drc.hard_limiter_peak(fs, n_chans,
threshold_db, attack_t,
release_t, Q_sig=27)

A limiter based on the peak value of the signal. When the peak envelope of the
signal exceeds the threshold, the signal amplitude is reduced. If the signal still
exceeds the threshold, it is clipped.

87

lib_audio_dsp: Audio DSP Library

The threshold set the value above which limiting/clipping occurs. The attack time
sets how fast the limiter starts limiting. The release time sets how long the signal
takes to ramp up to it’s original level after the envelope is below the threshold.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of parallel channels the compressor/limiter runs
on. The channels are limited/compressed separately, only the
constant parameters are shared.

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the compressor/limiter in seconds. This
cannot be faster than 2/fs seconds, and saturates to that value.
Exceptionally large attack times may converge to zero.

release_t: float
Release time of the compressor/limiter in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

threshold
[float] Value above which compression/limiting occurs for float-
ing point processing.

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

88

lib_audio_dsp: Audio DSP Library

threshold_int
[int] Value above which compression/limiting occurs for int32
fixed point processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

threshold_db
[float] The threshold in decibels; changing this property also up-
dates the fixed and floating point thresholds in linear gain.

env_detector
[envelope_detector_peak] Peak envelope detector object used to
calculate the envelope of the signal.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain for
limiting, using floating pointmaths. If the output signal exceeds the threshold,
clip it to the threshold.
Take one new sample and return the limited sample. Input should be scaled
with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 0 and the gain to 1.

RMS Limiter A RMS limiter uses the RMS Envelope Detector to calculate an
envelope. When envelope is above the threshold, the new gain is calculated as
sqrt(threshold / envelope).

C API

int32_t adsp_limiter_rms(limiter_t *lim, int32_t new_samp)
Process a new sample with an RMS limiter.

Parameters

89

lib_audio_dsp: Audio DSP Library

· lim – Limiter object
· new_samp – New sample

Returns
int32_t Limited sample

Python API

class audio_dsp.dsp.drc.drc.limiter_rms(fs, n_chans, threshold_db,
attack_t, release_t, Q_sig=27)

A limiter based on the RMS value of the signal. When the RMS envelope of the
signal exceeds the threshold, the signal amplitude is reduced.
The threshold set the value above which limiting occurs. The attack time sets how
fast the limiter starts limiting. The release time sets how long the signal takes to
ramp up to its original level after the envelope is below the threshold.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of parallel channels the compressor/limiter runs
on. The channels are limited/compressed separately, only the
constant parameters are shared.

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the compressor/limiter in seconds. This
cannot be faster than 2/fs seconds, and saturates to that value.
Exceptionally large attack times may converge to zero.

release_t: float
Release time of the compressor/limiter in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

90

lib_audio_dsp: Audio DSP Library

threshold
[float] Value above which compression/limiting occurs for float-
ing point processing. Note the threshold is saved in the power
domain, as the RMS envelope detector returns x².

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value above which compression/limiting occurs for int32
fixed point processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

env_detector
[envelope_detector_rms] RMS envelope detector object used to
calculate the envelope of the signal.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain
for compression/limiting, using floating point maths.
Take one new sample and return the compressed/limited sample. Input
should be scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 0 and the gain to 1.

91

lib_audio_dsp: Audio DSP Library

Compressors A compressorwill attenuate the signal when the envelope is greater than
the threshold. The input/output relationship above the threshold is defined by the com-
pressor ratio.

As with a limiter, the compressor runs an internal envelope detector to get the signal
envelope, then compares it to the threshold. If the envelope is greater than the threshold,
the gain will be proportionally reduced by the ratio, such that it is greater than the
threshold by a smaller amount. If the envelope is below the threshold, unity gain will
be applied. The gain is then run through an EMA to avoid abrupt changes, before being
applied.

The ratio defines the input/output gradient in the logarithmic domain. For example,
a ratio of 2 will reduce the output gain by 0.5 dB for every 1 dB the envelope is over the
threshold. A ratio of 1 will apply no compression. To avoid converting the envelope to
the logarithmic domain for the gain calculation, the ratio is converted to the slope as
(1 - 1 / ratio) / 2 . The gain can then be calculated as an exponential in the
linear domain.

The C struct below is used for all the compressors implementations.

struct compressor_t
Compressor state structure.

Public Members

env_detector_t env_det
Envelope detector

int32_t threshold
Linear threshold

int32_t gain
Linear gain

float slope
Slope of the compression curve

RMS Compressor The RMS compressor uses the RMS Envelope Detector to calcu-
late an envelope. When the envelope is above the threshold, the new gain is calculated
as (threshold / envelope) ^ slope.

C API

int32_t adsp_compressor_rms(compressor_t *comp, int32_t new_samp)
Process a new sample with an RMS compressor.

Parameters

· comp – Compressor object
· new_samp – New sample

Returns
int32_t Compressed sample

92

lib_audio_dsp: Audio DSP Library

Python API

class audio_dsp.dsp.drc.drc.compressor_rms(fs, n_chans, ratio,
threshold_db, attack_t,
release_t, Q_sig=27)

Acompressor based on theRMSvalue of the signal. When theRMSenvelope of the
signal exceeds the threshold, the signal amplitude is reduced by the compression
ratio.
The threshold sets the value above which compression occurs. The ratio sets how
much the signal is compressed. A ratio of 1 results in no compression, while a ratio
of infinity results in the same behaviour as a limiter. The attack time sets how fast
the compressor starts compressing. The release time sets how long the signal
takes to ramp up to it’s original level after the envelope is below the threshold.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of parallel channels the compressor/limiter runs
on. The channels are limited/compressed separately, only the
constant parameters are shared.

ratio
[float] Compression gain ratio applied when the signal is above
the threshold

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the compressor/limiter in seconds. This
cannot be faster than 2/fs seconds, and saturates to that value.
Exceptionally large attack times may converge to zero.

release_t: float
Release time of the compressor/limiter in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

93

lib_audio_dsp: Audio DSP Library

threshold
[float] Value above which compression/limiting occurs for float-
ing point processing. Note the threshold is saved in the power
domain, as the RMS envelope detector returns x².

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value above which compression/limiting occurs for int32
fixed point processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

env_detector
[envelope_detector_rms] RMS envelope detector object used to
calculate the envelope of the signal.

ratio
[float] Compression gain ratio applied when the signal is above
the threshold; changing this property also updates the slope
used in the fixed and floating point implementation.

slope
[float] The slope factor of the compressor, defined as slope = (1
- 1/ratio) / 2.

slope_f32
[float32] The slope factor of the compressor, used for int32 to
float32 processing.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain
for compression/limiting, using floating point maths.
Take one new sample and return the compressed/limited sample. Input
should be scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

94

lib_audio_dsp: Audio DSP Library

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 0 and the gain to 1.

Sidechain RMS Compressor The sidechain RMS compressor calculates the enve-
lope of one signal and uses it to compress another signal. It takes two signals: detect
and input. The envelope of the detect signal is calculated using an internal RMS Envelope
Detector. The gain is calculated in the same way as a RMS Compressor, but the gain is
then applied to the input sample. This can be used to reduce the level of the input signal
when the detect signal gets above the threshold.

C API

int32_t adsp_compressor_rms_sidechain(compressor_t *comp, int32_t
input_samp, int32_t detect_samp)

Process a new sample with a sidechain RMS compressor.

Parameters

· comp – Compressor object
· input_samp – Input sample
· detect_samp – Sidechain sample

Returns
int32_t Compressed sample

Python API

class audio_dsp.dsp.drc.sidechain.compressor_rms_sidechain_mono(fs,
ra-
tio,
thresh-
old_db,
at-
tack_t,
re-
lease_t,
Q_sig=27)

A mono sidechain compressor based on the RMS value of the signal. When the
RMS envelope of the signal exceeds the threshold, the signal amplitude is reduced
by the compression ratio.
The threshold sets the value above which compression occurs. The ratio sets how
much the signal is compressed. A ratio of 1 results in no compression, while a ratio
of infinity results in the same behaviour as a limiter. The attack time sets how fast
the compressor starts compressing. The release time sets how long the signal
takes to ramp up to it’s original level after the envelope is below the threshold.

Parameters

95

lib_audio_dsp: Audio DSP Library

fs
[int] Sampling frequency in Hz.

ratio
[float] Compression gain ratio applied when the signal is above
the threshold

threshold_db
[float] Threshold in decibels above which limiting occurs.

attack_t
[float] Attack time of the compressor/limiter in seconds. This
cannot be faster than 2/fs seconds, and saturates to that value.
Exceptionally large attack times may converge to zero.

release_t: float
Release time of the compressor/limiter in seconds. This cannot
be faster than 2/fs seconds, and saturates to that value. Excep-
tionally large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

threshold
[float] Value above which compression/limiting occurs for float-
ing point processing. Note the threshold is saved in the power
domain, as the RMS envelope detector returns x².

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value above which compression/limiting occurs for int32
fixed point processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

96

lib_audio_dsp: Audio DSP Library

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

env_detector
[envelope_detector_rms] RMS envelope detector object used to
calculate the envelope of the signal.

ratio
[float] Compression gain ratio applied when the signal is above
the threshold; changing this property also updates the slope
used in the fixed and floating point implementation.

slope
[float] The slope factor of the compressor, defined as slope = (1
- 1/ratio) / 2.

slope_f32
[float32] The slope factor of the compressor, used for int32 to
float32 processing.

process(input_sample: float, detect_sample: float)
Update the envelope for the detection signal, then calculate and apply the re-
quired gain for compression/limiting, and apply to the input signal using float-
ing point maths.
Take one new sample and return the compressed/limited sample. Input
should be scaled with 0 dB = 1.0.

Parameters

input_sample
[float] The input sample to be compressed.

detect_sample
[float] The sample used by the envelope detector to determine
the amount of compression to apply to the input_sample.

Returns

float
The processed sample.

reset_state()
Reset the envelope detectors to 0 and the gain to 1.

Expanders An expander attenuates a signal when the envelope is below the thresh-
old. This increases the dynamic range of the signal, and can be used to attenuate quiet
signals, such as low level noise.

Like limiters and compressors, an expander will run an internal envelope detector to cal-
culate the envelope and compare it to the threshold. If the envelope is below the thresh-
old, the applied gain will be reduced. If the envelope is greater than the threshold, unity
gain will be applied. The gain is run through an EMA to avoid abrupt changes. The same
attack and release times are used for the envelope detector and the gain smoothing. In
an expander, the attack time is defined as the speed at which the gain returns to unity
after the signal has been below the threshold.

97

lib_audio_dsp: Audio DSP Library

Noise Gate A noise gate uses the Peak Envelope Detector to calculate the envelope
of the input signal. When the envelope is below the threshold, a gain of 0 is applied to
the input signal. Otherwise, unity gain is applied.

typedef limiter_t noise_gate_t
Noise gate state structure.

C API

int32_t adsp_noise_gate(noise_gate_t *ng, int32_t new_samp)
Process a new sample with a noise gate.

Parameters

· ng – Noise gate object
· new_samp – New sample

Returns
int32_t Gated sample

Python API

class audio_dsp.dsp.drc.expander.noise_gate(fs, n_chans, threshold_db,
attack_t, release_t,
Q_sig=27)

Anoise gate that reduces the level of an audio signal when it falls belowa threshold.
When the signal envelope falls below the threshold, the gain applied to the signal
is reduced to 0 (based on the release time). When the envelope returns above the
threshold, the gain applied to the signal is increased to 1 over the attack time.
The initial state of the noise gate is with the gate open (no attenuation), assuming
a full scale signal has been present before t = 0.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] number of parallel channels the expander runs on. The
channels are expanded separately, only the constant parame-
ters are shared.

threshold_db
[float] Threshold in decibels belowwhich expansion occurs. This
cannot be greater than the maximum value representable in
Q_SIG format, and will saturate to that value.

attack_t
[float] Attack time of the expander in seconds. This cannot be
faster than 2/fs seconds, and saturates to that value. Exception-
ally large attack times may converge to zero.

release_t: float
Release time of the expander in seconds. This cannot be faster
than 2/fs seconds, and saturates to that value. Exceptionally
large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

98

lib_audio_dsp: Audio DSP Library

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

threshold
[float] Value below which expanding occurs for floating point
processing.

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value below which expanding occurs for int32 fixed point
processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

threshold_db
[float] The threshold in decibels; changing this property also up-
dates the fixed and floating point thresholds in linear gain.

env_detector
[envelope_detector_peak] Peak envelope detector object used to
calculate the envelope of the signal.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain
for expanding, using floating point maths.

99

lib_audio_dsp: Audio DSP Library

Take one new sample and return the expanded sample. Input should be
scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 1 and the gain to 1, so the gate starts off.

Noise Suppressor/Expander A basic expander can also be used as a noise sup-
pressor. It uses the Peak Envelope Detector to calculate the envelope of the input signal.
When the envelope is below the threshold, the gain of the signal is reduced according to
the ratio. Otherwise, unity gain is applied.

Like a compressor, the ratio defines the input/output gradient in the logarithmic do-
main. For example, a ratio of 2 will reduce the output gain by 0.5 dB for every 1 dB the
envelope is below the threshold. A ratio of 1 will apply no gain changes. To avoid convert-
ing the envelope to the logarithmic domain for the gain calculation, the ratio is converted
to the slope as (1 - ratio). The gain can then be calculated as an exponential in
the linear domain.

For speed, some parameters such as inv_threshold are computed at initialisation to
simplify run-time computation.

struct noise_suppressor_expander_t

Public Members

env_detector_t env_det
Envelope detector

int32_t threshold
Linear threshold

int64_t inv_threshold
Inverse threshold

int32_t gain
Linear gain

float slope
Slope of the noise suppression curve

100

lib_audio_dsp: Audio DSP Library

C API

int32_t adsp_noise_suppressor_expander(noise_suppressor_expander_t *nse,
int32_t new_samp)

Process a new sample with a noise suppressor (expander)

Parameters

· nse – Noise suppressor (Expander) object
· new_samp – New sample

Returns
int32_t Suppressed sample

Python API

class audio_dsp.dsp.drc.expander.noise_suppressor_expander(fs,
n_chans,
ratio,
thresh-
old_db,
at-
tack_t,
re-
lease_t,
Q_sig=27)

A noise suppressor that reduces the level of an audio signal when it falls below a
threshold. This is also known as an expander.
When the signal envelope falls below the threshold, the gain applied to the signal
is reduced relative to the expansion ratio over the release time. When the envelope
returns above the threshold, the gain applied to the signal is increased to 1 over the
attack time.
The initial state of the noise suppressor is with the suppression off, assuming a full
scale signal has been present before t = 0.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] number of parallel channels the expander runs on. The
channels are expanded separately, only the constant parame-
ters are shared.

ratio
[float] The expansion ratio applied to the signal when the enve-
lope falls below the threshold.

threshold_db
[float] Threshold in decibels belowwhich expansion occurs. This
cannot be greater than the maximum value representable in
Q_SIG format, and will saturate to that value.

attack_t
[float] Attack time of the expander in seconds. This cannot be
faster than 2/fs seconds, and saturates to that value. Exception-
ally large attack times may converge to zero.

release_t: float
Release time of the expander in seconds. This cannot be faster

101

lib_audio_dsp: Audio DSP Library

than 2/fs seconds, and saturates to that value. Exceptionally
large release times may converge to zero.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

attack_t
[float] The attack time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

release_t
[float] The release time of the compressor/limiter in seconds;
changing this property also sets the EWM alpha values for fixed
and floating point implementations.

threshold
[float] Value below which expanding occurs for floating point
processing.

gain
[list[float]] Current gain to be applied to the signal for each chan-
nel for floating point processing.

attack_alpha
[float] Attack time parameter used for exponential moving aver-
age in floating point processing.

release_alpha
[float] Release time parameter used for exponential moving av-
erage in floating point processing.

threshold_int
[int] Value below which expanding occurs for int32 fixed point
processing.

gain_int
[list[int]] Current gain to be applied to the signal for each channel
for int32 fixed point processing.

attack_alpha_int
[int] attack_alpha in 32-bit int format.

release_alpha_int
[int] release_alpha in 32-bit int format.

gain_calc
[function] function pointer to floating point gain calculation func-
tion.

gain_calc_int
[function] function pointer to fixed point gain calculation func-
tion.

threshold_db
[float] The threshold in decibels; changing this property also up-
dates the fixed and floating point thresholds in linear gain.

102

lib_audio_dsp: Audio DSP Library

env_detector
[envelope_detector_peak] Peak envelope detector object used to
calculate the envelope of the signal.

ratio
[float] Expansion gain ratio applied when the signal is below the
threshold; changing this property also updates the slope used in
the fixed and floating point implementation.

slope
[float] The slope factor of the expander, defined as slope = 1 -
ratio.

slope_f32
[float32] The slope factor of the expander, used for int32 to
float32 processing.

process(sample, channel=0)
Update the envelope for a signal, then calculate and apply the required gain
for expanding, using floating point maths.
Take one new sample and return the expanded sample. Input should be
scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset the envelope detector to 1 and the gain to 1, so the gate starts off.

Finite Impulse Response Filters

Finite impulse response (FIR) filters allow the use of arbitrary filters with a finite number
of taps. This library does not provide FIR filter design tools, but allows for coefficients to
be imported from other design tools, such as SciPy/filter_design.

FIR Direct The direct FIR implements the filter as a convolution in the time domain.
This library uses FIR filter_fir_s32 implementation from lib_xcore_math to run
on xcore. More information on implementation can be found in XCORE Math Library
documentation.

class audio_dsp.dsp.fir.fir_direct(fs: float, n_chans: int, coeffs_path:
Path, Q_sig: int = 27)

An FIR filter, implemented in direct form in the time domain.
When the filter coefficients are converted to fixed point, if therewill be leading zeros,
a left shift is applied to the coefficients in order to use the full dynamic range of the
VPU. A subsequent right shift is applied to the accumulator after the convolution
to return to the same gain.

Parameters

103

https://docs.scipy.org/doc/scipy/reference/signal.html#filter-design>
https://www.xmos.com/file/lib_xcore_math/

lib_audio_dsp: Audio DSP Library

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

coeffs_path
[Path] Path to a file containing the coefficients, in a format sup-
ported by np.loadtxt.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

coeffs
[np.ndarray] Array of the FIR coefficients in floating point format.

coeffs_int
[list] Array of the FIR coefficients in fixed point int32 format.

shift
[int] Right shift to be applied to the fixed point convolution result.
This compensates for any left shift applied to the coefficients.

n_taps
[int] Number of taps in the filter.

buffer
[np.ndarray] Buffer of previous inputs for the convlution in float-
ing point format.

buffer_int
[list] Buffer of previous inputs for the convlution in fixed point
format.

buffer_idx
[list] List of the floating point buffer head for each channel.

buffer_idx_int
[list] List of the fixed point point buffer head for each channel.

process(sample: float, channel: int = 0)→ float
Update the buffer with the current sample and convolve with the filter coeffi-
cients, using floating point math.

Parameters

sample
[float] The input sample to be processed.

channel
[int] The channel index to process the sample on.

Returns

float
The processed output sample.

reset_state()→ None
Reset all the delay line values to zero.

104

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

lib_audio_dsp: Audio DSP Library

check_coeff_scaling()
Check the coefficient scaling is optimal.
If there will be leading zeros, calculate a shift to use the full dynamic range of
the VPU

Reverb

Reverb Room The room reverb module imitates the reflections of a room. The algo-
rithm is a Schroeder style reverberation, based on Freeverb by Jezar at Dreampoint. It
consists of the wet predelay, 8 parallel comb filters fed into 4 series all-pass filters, with
a wet and dry microphone control to set the effect level.

For more details on the algorithm, see Physical Audio Signal Processing by Julius Smith.

struct reverb_room_t
A room reverb filter structure.

Public Members

uint32_t total_buffer_length
Total buffer length

float room_size
Room size

int32_t wet_gain
Wet linear gain

int32_t dry_gain
Dry linear gain

int32_t pre_gain
Linear pre-gain

comb_fv_t combs[ADSP_RVR_N_COMBS]
Comb filters

allpass_fv_t allpasses[ADSP_RVR_N_APS]
Allpass filters

delay_t predelay
Predelay applied to the wet channel

C API

int32_t adsp_reverb_room(reverb_room_t *rv, int32_t new_samp)
Process a sample through a reverb room object.

Parameters

· rv – Reverb room object
· new_samp – New sample to process

Returns
int32_t Processed sample

105

https://www.dsprelated.com/freebooks/pasp/Freeverb.html
https://www.dsprelated.com/freebooks/pasp/Freeverb.html

lib_audio_dsp: Audio DSP Library

Python API

class audio_dsp.dsp.reverb.reverb_room(fs, n_chans,max_room_size=1,
room_size=1, decay=0.5,
damping=0.4, wet_gain_db=-1,
dry_gain_db=-1, pregain=0.015,
predelay=10,
max_predelay=None, Q_sig=27)

Generate a room reverb effect. This is based on Freeverb by Jezar at Dreampoint,
and consists of 8 parallel comb filters fed into 4 series all-pass filters.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

max_room_size
[float, optional] sets the maximum size of the delay buffers, can
only be set at initialisation.

room_size
[float, optional] how big the room is as a proportion of
max_room_size. This sets delay line lengths and must be be-
tween 0 and 1.

decay
[int, optional] The length of the reverberation of the room, be-
tween 0 and 1.

damping
[float, optional] how much high frequency attenuation in the
room, between 0 and 1

wet_gain_db
[int, optional] wet signal gain, less than 0 dB.

dry_gain_db
[int, optional] dry signal gain, less than 0 dB.

pregain
[float, optional] the amount of gain applied to the signal before
being passed into the reverb, less than 1. If the reverb raises
an OverflowWarning, this value should be reduced until it does
not. The default value of 0.015 should be sufficient formost Q27
signals.

predelay
[float, optional] the delay applied to the wet channel in ms.

max_predelay
[float, optional] the maximum predelay in ms.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

106

lib_audio_dsp: Audio DSP Library

Q_sig: int
Q format of the signal, number of bits after the decimal point.

pregain
[float] The pregain applied before the reverb as a floating point
number.

pregain_int
[int] The pregain applied before the reverb as a fixed point num-
ber.

wet_db
[float] The gain applied to the wet signal in dB.

wet
[float] The linear gain applied to the wet signal.

wet_int
[int] The linear gain applied to thewet signal as a fixed point num-
ber.

dry
[float] The linear gain applied to the dry signal.

dry_db
[float] The gain applied to the dry signal in dB.

dry_int
[int] The linear gain applied to the dry signal as a fixed point num-
ber.

predelay
[float]

comb_lengths
[np.ndarray] An array of the comb filter delay line lengths, scaled
by max_room_size.

ap_length
[np.ndarray] An array of the all pass filter delay line lengths,
scaled by max_room_size.

combs
[list] A list of comb_fv objects containing the comb filters for the
reverb.

allpasses
[list] A list of allpass_fv objects containing the all pass filters for
the reverb.

room_size
[float] The room size as a proportion of the max_room_size.

decay
[float] The length of the reverberation of the room, between 0
and 1.

feedback
[float] Gain of the feedback line in the reverb filters.

feedback_int
[int] feedback as a fixed point integer.

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

damping_int
[int] damping as a fixed point integer.

107

lib_audio_dsp: Audio DSP Library

process(sample, channel=0)
Add reverberation to a signal, using floating point maths.
Take one new sample and return the sample with reverb. Input should be
scaled with 0 dB = 1.0.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset all the delay line values to zero.

set_wet_dry_mix(mix)
Will mix wet and dry signal by adjusting wet and dry gains. So that when the
mix is 0, the output signal is fully dry, when 1, the output signal is fully wet.
Tries to maintain a stable signal level using -4.5 dB Pan Law.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

set_pre_gain(pre_gain)
Deprecated since version 1.0.0: set_pre_gainwill be removed in 2.0.0. Replace
reverb_room.set_pre_gain(x) with reverb_room.pregain = x
Set the pre gain.

Parameters

pre_gain
[float] pre gain value, less than 1.

set_wet_gain(wet_gain_db)
Deprecated since version 1.0.0: set_wet_gain will be removed in 2.0.0. Re-
place reverb_room.set_wet_gain(x) with reverb_room.wet_db = x
Set the wet gain.

Parameters

wet_gain_db
[float] Wet gain in dB, less than 0 dB.

set_dry_gain(dry_gain_db)
Deprecated since version 1.0.0: set_dry_gainwill be removed in 2.0.0. Replace
reverb_room.set_dry_gain(x) with reverb_room.dry_db = x
Set the dry gain.

Parameters

dry_gain_db
[float] Dry gain in dB, lees than 0 dB.

108

lib_audio_dsp: Audio DSP Library

set_decay(decay)
Deprecated since version 1.0.0: set_decay will be removed in 2.0.0. Replace
reverb_room.set_decay(x) with reverb_room.decay = x
Set the decay of the reverb.

Parameters

decay
[float] How long the reverberation of the room is, between 0
and 1.

set_damping(damping)
Deprecated since version 1.0.0: set_damping will be removed in 2.0.0. Re-
place reverb_room.set_damping(x) with reverb_room.damping = x
Set the damping of the reverb.

Parameters

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

set_room_size(room_size)
Deprecated since version 1.0.0: set_room_size will be removed in 2.0.0. Re-
place reverb_room.set_room_size(x) with reverb_room.room_size = x
Set the current room size; will adjust the delay line lengths accordingly.

Parameters

room_size
[float] How big the room is as a proportion of max_room_size.
This sets delay line lengths and must be between 0 and 1.

Reverb Room Stereo The stereo room reverb module extends the mono Reverb Room
by adding a second set of comb and all-pass filters in parallel, and mixing the output
of the two networks. Varying the mix of the networks changes the stereo width of the
effect.

For more details on the algorithm, see Physical Audio Signal Processing by Julius Smith.

struct reverb_room_st_t
A stereo room reverb filter structure.

Public Members

uint32_t total_buffer_length
Total buffer length

uint32_t spread_length
Spread length

float room_size
Room size

109

https://www.dsprelated.com/freebooks/pasp/Freeverb.html

lib_audio_dsp: Audio DSP Library

int32_t wet_gain1
Wet 1 linear gain

int32_t wet_gain2
Wet 2 linear gain

int32_t dry_gain
Dry linear gain

int32_t pre_gain
Linear pre-gain

comb_fv_t combs[2][ADSP_RVR_N_COMBS]
Comb filters, 0:left, 1:right

allpass_fv_t allpasses[2][ADSP_RVR_N_APS]
Allpass filters, 0:left, 1:right

delay_t predelay
Predelay applied to the wet channel

C API

void adsp_reverb_room_st(reverb_room_st_t *rv, int32_t outputs_lr[2], int32_t
in_left, int32_t in_right)

Process samples through a stereo reverb room object.

Parameters

· rv – Stereo reverb room object
· outputs_lr – Pointer to the outputs 0:left, 1:right
· in_left – New left sample to process
· in_right – New right sample to process

Python API

class audio_dsp.dsp.reverb_stereo.reverb_room_stereo(fs, n_chans,
max_room_size=1,
room_size=1,
decay=0.5,
damping=0.4,
width=1.0,
wet_gain_db=-
1,
dry_gain_db=-
1,
pre-
gain=0.0075,
predelay=10,
max_predelay=None,
Q_sig=27)

Generate a stereo room reverb effect. This is based on Freeverb by Jezar at Dream-
point. Each channel consists of 8 parallel comb filters fed into 4 series all-pass
filters, and the reverberator outputs are mixed according to the width parameter.

110

lib_audio_dsp: Audio DSP Library

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

max_room_size
[float, optional] sets the maximum size of the delay buffers, can
only be set at initialisation.

room_size
[float, optional] how big the room is as a proportion of
max_room_size. This sets delay line lengths and must be be-
tween 0 and 1.

decay
[int, optional] The length of the reverberation of the room, be-
tween 0 and 1.

damping
[float, optional] how much high frequency attenuation in the
room, between 0 and 1

width
[float, optional] how much stereo separation there is between
the left and right channels. Setting width to 0 will yield a mono
signal, whilst setting width to 1 will yield the most stereo sepa-
ration.

wet_gain_db
[int, optional] wet signal gain, less than 0 dB.

dry_gain_db
[int, optional] dry signal gain, less than 0 dB.

pregain
[float, optional] the amount of gain applied to the signal before
being passed into the reverb, less than 1. If the reverb raises
an OverflowWarning, this value should be reduced until it does
not. The default value of 0.015 should be sufficient formost Q27
signals.

predelay
[float, optional] the delay applied to the wet channel in ms.

max_predelay
[float, optional] the maximum predelay in ms.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

pregain
[float] The pregain applied before the reverb as a floating point
number.

111

lib_audio_dsp: Audio DSP Library

pregain_int
[int] The pregain applied before the reverb as a fixed point num-
ber.

wet_db
[float] The gain applied to the wet signal in dB.

wet
[float] The linear gain applied to the wet signal.

wet_int
[int] The linear gain applied to thewet signal as a fixed point num-
ber.

dry
[float] The linear gain applied to the dry signal.

dry_db
[float] The gain applied to the dry signal in dB.

dry_int
[int] The linear gain applied to the dry signal as a fixed point num-
ber.

predelay
[float]

width
[float] Stereo separation of the reverberated signal.

comb_lengths
[np.ndarray] An array of the comb filter delay line lengths, scaled
by max_room_size.

ap_length
[np.ndarray] An array of the all pass filter delay line lengths,
scaled by max_room_size.

combs
[list] A list of comb_fv objects containing the comb filters for the
reverb.

allpasses
[list] A list of allpass_fv objects containing the all pass filters for
the reverb.

room_size
[float] The room size as a proportion of the max_room_size.

decay
[float] The length of the reverberation of the room, between 0
and 1.

feedback
[float] Gain of the feedback line in the reverb filters.

feedback_int
[int] feedback as a fixed point integer.

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

damping_int
[int] damping as a fixed point integer.

process(sample, channel=0)
Process is not implemented for the stereo reverb, as it needs 2 channels at
once.

Parameters

112

lib_audio_dsp: Audio DSP Library

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset all the delay line values to zero.

set_wet_dry_mix(mix)
Will mix wet and dry signal by adjusting wet and dry gains. So that when the
mix is 0, the output signal is fully dry, when 1, the output signal is fully wet.
Tries to maintain a stable signal level using -4.5 dB Pan Law.

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

property wet_db
The gain applied to the wet signal in dB.

property dry_db
The gain applied to the dry signal in dB.

property decay
The length of the reverberation of the room, between 0 and 1.

property damping
How much high frequency attenuation in the room, between 0 and 1.

Reverb Plate Stereo The plate reverb module imitates the reflections of a plate reverb,
which has more early reflections than the room reverb. The algorithm is based on Dat-
torro’s 1997 paper. This reverb consists of 4 allpass filters for input diffusion, followed
by a figure of 8 reverb tank of allpasses, low-pass filters, and delays. The output is taken
from multiple taps in the delay lines to get a desirable echo density. The left and right
output can be mixed with various widths.

For more details on the algorithm, see Effect Design, Part 1: Reverberator and Other
Filters by Jon Dattorro.

struct reverb_plate_t
A plate reverb structure.

Public Members

int32_t decay
Reverb decay

int32_t wet_gain1
Wet 1 linear gain

113

https://aes2.org/publications/elibrary-page/?id=10160
https://aes2.org/publications/elibrary-page/?id=10160

lib_audio_dsp: Audio DSP Library

int32_t wet_gain2
Wet 2 linear gain

int32_t dry_gain
Dry linear gain

int32_t pre_gain
Linear pre-gain

int32_t paths[ADSP_RVP_N_PATHS]
Saved output paths

int32_t taps_l[ADSP_RVP_N_OUT_TAPS]
Indexes for the left channel calculation

int32_t taps_len_l[ADSP_RVP_N_OUT_TAPS]
Max lenghts of buffers use for the left channel calculation

int32_t taps_r[ADSP_RVP_N_OUT_TAPS]
Indexes for the right channel calculation

int32_t taps_len_r[ADSP_RVP_N_OUT_TAPS]
Max lenghts of buffers use for the right channel calculation

lowpass_1ord_t lowpasses[ADSP_RVP_N_LPS]
FIrst order lowpass filters

allpass_fv_t mod_allpasses[ADSP_RVP_N_PATHS]
Modulated allpass filters

allpass_fv_t allpasses[ADSP_RVP_N_APS]
Allpass filters

delay_t delays[ADSP_RVP_N_DELAYS]
Delay lines

delay_t predelay
Predelay applied to the wet channel

C API

void adsp_reverb_plate(reverb_plate_t *rv, int32_t outputs_lr[2], int32_t in_left,
int32_t in_right)

Process samples through a reverb plate object.

Parameters

· rv – Reverb plate object
· outputs_lr – Pointer to the outputs 0:left, 1:right
· in_left – New left sample to process
· in_right – New right sample to process

114

lib_audio_dsp: Audio DSP Library

Python API

class audio_dsp.dsp.reverb_plate.reverb_plate_stereo(fs, n_chans,
decay=0.4,
damp-
ing=0.75,
band-
width=8000,
early_diffusion=0.75,
late_diffusion=0.7,
width=1.0,
wet_gain_db=-
3,
dry_gain_db=-
3,
pregain=0.5,
predelay=10,
max_predelay=None,
Q_sig=27)

Generate a stereo plate reverb effect, based on Dattorro’s 1997 paper. This reverb
consists of 4 allpass filters for input diffusion, followed by a figure of 8 reverb tank
of allpasses, low-pass filters, and delays. The output is taken frommultiple taps in
the delay lines to get a desirable echo density.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

decay
[int, optional] The length of the reverberation of the room, be-
tween 0 and 1.

damping
[float, optional] How much high frequency attenuation in the
room, between 0 and 1

bandwidth
[float, optional] Controls the low pass filter cutoff frequency at
the start of the reverb, in Hz.

early_diffusion
[float, optional] Controls how much diffusion the early echoes
have.

late_diffusion
[float, optional] Controls how much diffusion the late echoes
have.

width
[float, optional] how much stereo separation there is between
the left and right channels. Setting width to 0 will yield a mono
signal, whilst setting width to 1 will yield the most stereo sepa-
ration.

wet_gain_db
[int, optional] wet signal gain, less than 0 dB.

dry_gain_db
[int, optional] dry signal gain, less than 0 dB.

115

lib_audio_dsp: Audio DSP Library

pregain
[float, optional] the amount of gain applied to the signal before
being passed into the reverb, less than 1. If the reverb raises
an OverflowWarning, this value should be reduced until it does
not. The default value of 0.5 should be sufficient for most Q27
signals, and should be reduced by 1 bit per increase in Q format,
e.g. 0.25 for Q28, 0.125 for Q29 etc.

predelay
[float, optional] the delay applied to the wet channel in ms.

max_predelay
[float, optional] the maximum predelay in ms.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

pregain
[float] The pregain applied before the reverb as a floating point
number.

pregain_int
[int] The pregain applied before the reverb as a fixed point num-
ber.

wet_db
[float] The gain applied to the wet signal in dB.

wet
[float] The linear gain applied to the wet signal.

wet_int
[int] The linear gain applied to thewet signal as a fixed point num-
ber.

dry
[float] The linear gain applied to the dry signal.

dry_db
[float] The gain applied to the dry signal in dB.

dry_int
[int] The linear gain applied to the dry signal as a fixed point num-
ber.

predelay
[float]

width
[float] Stereo separation of the reverberated signal.

allpasses
[list] A list of allpass objects containing the all pass filters for the
reverb.

lowpasses
[list] A list of lowpass objects containing the low pass filters for
the reverb.

116

lib_audio_dsp: Audio DSP Library

delays
[list] A list of delay objects containing the delay lines for the re-
verb.

mod_allpasses
[list] A list of allpass objects containing the modulated all pass
objects for the reverb.

taps_l
[list] A list of the current output tap locations for the left output.

taps_r
[list] A list of the current output tap locations for the right output.

tap_lens_l
[list] A list of the buffer lengths used by taps_l, to aid wrapping
the read head at the end of the buffer

tap_lens_r
[list] As tap lens_l, but for the right output channel.

decay
[float] The length of the reverberation of the room, between 0
and 1.

decay_int
[int] decay as a fixed point integer.

damping
[float] How much high frequency attenuation in the room, be-
tween 0 and 1.

damping_int
[int] damping as a fixed point integer.

bandwidth
[float] The bandwidth of the reverb input signal, in Hertz.

early_diffusion
[float] How much early diffusion in the reverb, between 0 and 1.

late_diffusion
[float] How much late diffusion in the reverb, between 0 and 1.

process(sample, channel=0)
Process is not implemented for the stereo reverb, as it needs 2 channels at
once.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

reset_state()
Reset all the delay line values to zero.

set_wet_dry_mix(mix)
Will mix wet and dry signal by adjusting wet and dry gains. So that when the
mix is 0, the output signal is fully dry, when 1, the output signal is fully wet.
Tries to maintain a stable signal level using -4.5 dB Pan Law.

117

lib_audio_dsp: Audio DSP Library

Parameters

mix
[float] The wet/dry mix, must be [0, 1].

Signal Chain Components

Signal chain components includes DSP modules for: * combining signals, such as sub-
tracting, adding, and mixing * forks for splitting signals * basic gain components, such
as fixed gain, volume control, and mute * basic delay buffers.

Adder The adder will add samples from N inputs together. It will round and saturate
the result to the Q0.31 range.

C API

int32_t adsp_adder(int32_t *input, unsigned n_ch)
Saturating addition of an array of samples.

Note: Will work for any q format

Parameters

· input – Array of samples
· n_ch – Number of channels

Returns
int32_t Sum of samples

Python API

class audio_dsp.dsp.signal_chain.adder(fs: float, n_chans: int, Q_sig: int =
27)

A class representing an adder in a signal chain.
This class inherits from themixer class and provides an adder with no attenuation.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

118

lib_audio_dsp: Audio DSP Library

gain_db
[float] The mixer gain in decibels.

gain
[float] Gain as a linear value.

gain_int
[int] Gain as an integer value.

process_channels(sample_list: list[float])→ float
Process a single sample. Apply the gain to all the input samples then sum
them using floating point maths.

Parameters

sample_list
[list] List of input samples

Returns

float
Output sample.

Subtractor The subtractor will subtract one sample from another, then round and sat-
urate the difference to Q0.31 range.

C API

int32_t adsp_subtractor(int32_t x, int32_t y)
Saturating subtraction of two samples, this returns x - y.

Note: Will work for any q format

Parameters

· x – Minuend
· y – Subtrahend

Returns
int32_t Difference

Python API

class audio_dsp.dsp.signal_chain.subtractor(fs: float, Q_sig: int = 27)
Subtractor class for subtracting two signals.

Parameters

fs
[int] Sampling frequency in Hz.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

119

lib_audio_dsp: Audio DSP Library

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

process_channels(sample_list: list[float])→ float
Subtract the second input sample from the first using floating point maths.

Parameters

sample_list
[list[float]] List of input samples.

Returns

float
Result of the subtraction.

Fixed Gain This module applies a fixed gain to a sample, with rounding and saturation
to Q0.31 range. The gain must be in Q_GAIN format.

Q_GAIN
Gain format to be used in the gain APIs

C API

int32_t adsp_fixed_gain(int32_t input, int32_t gain)
Fixed-point gain.

Note: One of the inputs has to be in Q_GAIN format

Parameters

· input – Input sample
· gain – Gain

Returns
int32_t Output sample

Python API

class audio_dsp.dsp.signal_chain.fixed_gain(fs: float, n_chans: int,
gain_db: float, Q_sig: int =
27)

Multiply every sample by a fixed gain value.
In the current implementation, the maximum boost is +24 dB.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

gain_db
[float] The gain in decibels. Maximum fixed gain is +24 dB.

120

lib_audio_dsp: Audio DSP Library

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

gain_db
[float] The mixer gain in decibels.

gain
[float] Gain as a linear value.

gain_int
[int] Gain as an integer value.

process(sample: float, channel: int = 0)→ float
Multiply the input sample by the gain, using floating point maths.

Parameters

sample
[float] The input sample to be processed.

channel
[int] The channel index to process the sample on, not used by
this module.

Returns

float
The processed output sample.

Mixer The mixer applies a gain to all N channels of input samples and adds them to-
gether. The sum is rounded and saturated to Q0.31 range. The gain must be in Q_GAIN
format.

C API

int32_t adsp_mixer(int32_t *input, unsigned n_ch, int32_t gain)
Mixer. Will add signals with gain applied to each signal before mixing.

Note: Inputs or gain have to be in Q_GAIN format

Parameters

· input – Array of samples
· n_ch – Number of channels
· gain – Gain

Returns
int32_t Mixed sample

An alternative way to implement amixer is tomultiply-accumulate the input samples into
a 64-bit word, then saturate it to a 32-bit word using:

121

lib_audio_dsp: Audio DSP Library

int32_t adsp_saturate_32b(int64_t acc)
Saturating 64-bit accumulator. Will saturate to 32-bit, so that the output value is in
the range of int32_t.

Parameters

· acc – Accumulator
Returns

int32_t Saturated value

Python API

class audio_dsp.dsp.signal_chain.mixer(fs: float, n_chans: int, gain_db:
float = -6, Q_sig: int = 27)

Mixer class for adding signals with attenuation to maintain headroom.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

gain_db
[float] Gain in decibels (default is -6 dB).

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

gain_db
[float] The mixer gain in decibels.

gain
[float] Gain as a linear value.

gain_int
[int] Gain as an integer value.

process_channels(sample_list: list[float])→ float
Process a single sample. Apply the gain to all the input samples then sum
them using floating point maths.

Parameters

sample_list
[list] List of input samples

Returns

float
Output sample.

122

lib_audio_dsp: Audio DSP Library

Volume Control The volume control allows safe real-time gain adjustments with mini-
mal artifacts. When the target gain is changed, a slew is used to move from the current
gain to the target gain. This allows smooth gain change and no clicks in the output signal.

Themute API allows the user to safelymute the signal by setting the target gain to 0, with
the slew ensuring no pops or clicks. Unmuting will restore the pre-mute target gain. The
new gain can be set while muted, but will not take effect until unmute is called. There are
separate APIs for process, setting the gain, muting and unmuting so that volume control
can easily be implemented into the control system.

The slew is applied as an exponential of the difference between the target and current
gain. For run-time efficiency, instead of an EMA-style alpha, the difference is right shifted
by the slew_shift parameter. The relation between slew_shift and time is further
discussed in the Python class documentation.

struct volume_control_t
Volume control state structure.

Public Members

int32_t target_gain
Target linear gain

int32_t gain
Current linear gain

int32_t slew_shift
Slew shift

int32_t saved_gain
Saved linear gain

uint8_t mute_state
Mute state: 0: unmuted, 1 muted

C API

int32_t adsp_volume_control(volume_control_t *vol_ctl, int32_t samp)
Process a new sample with a volume control.

Parameters

· vol_ctl – Volume control object
· samp – New sample

Returns
int32_t Processed sample

void adsp_volume_control_set_gain(volume_control_t *vol_ctl, int32_t
new_gain)

Set the target gain of a volume control.

Parameters

· vol_ctl – Volume control object
· new_gain – New target linear gain

123

lib_audio_dsp: Audio DSP Library

void adsp_volume_control_mute(volume_control_t *vol_ctl)
Mute a volume control. Will save the current target gain and set the target gain to
0.

Parameters

· vol_ctl – Volume control object

void adsp_volume_control_unmute(volume_control_t *vol_ctl)
Unmute a volume control. Will restore the saved target gain.

Parameters

· vol_ctl – Volume control object

Python API

class audio_dsp.dsp.signal_chain.volume_control(fs: float, n_chans: int,
gain_db: float = -6,
slew_shift: int = 7,
mute_state: int = 0,
Q_sig: int = 27)

A volume control class that allows setting the gain in decibels. When the gain is
updated, an exponential slew is applied to reduce artifacts.
The slew is implemented as a shift operation. The slew rate can be converted to a
time constant using the formula: time_constant = -1/ln(1 - 2^-slew_shift) * (1/fs)
A table of the first 10 slew shifts is shown below:

slew_shift Time constant (ms)

1 0.03
2 0.07
3 0.16
4 0.32
5 0.66
6 1.32
7 2.66
8 5.32
9 10.66
10 21.32

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

gain_db
[float, optional] The initial gain in decibels

slew_shift
[int, optional] The shift value used in the exponential slew.

124

lib_audio_dsp: Audio DSP Library

mute_state
[int, optional] Themute state of the VolumeControl: 0: unmuted,
1: muted.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Raises

ValueError
If the gain_db parameter is greater than 24 dB.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

target_gain_db
[float] The target gain in decibels.

target_gain
[float] The target gain as a linear value.

target_gain_int
[int] The target gain as a fixed-point integer value.

gain_db
[float] The current gain in decibels.

gain
[float] The current gain as a linear value.

gain_int
[int] The current gain as a fixed-point integer value.

slew_shift
[int] The shift value used in the exponential slew.

mute_state
[int] Themute state of the VolumeControl: 0: unmuted, 1: muted

process(sample: float, channel: int = 0)→ float
Update the current gain, then multiply the input sample by it, using floating
point maths.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. Not
used by this module.

Returns

float
The processed output sample.

set_gain(gain_db: float)→ None
Deprecated since version 1.0.0: set_gain will be removed in 2.0.0. Replace
volume_control.set_gain(x) with volume_control.target_gain_db = x
Set the gain of the volume control.

125

lib_audio_dsp: Audio DSP Library

Parameters

gain_db
[float] The gain in decibels. Must be less than or equal to 24
dB.

Raises

ValueError
If the gain_db parameter is greater than 24 dB.

mute()→ None
Mute the volume control.

unmute()→ None
Unmute the volume control.

Delay The delay module uses a memory buffer to return a sample after a specified
time period. The returned samples will be delayed by a specified value. The max_delay
is set at initialisation, and sets the amount of memory used by the buffers. It cannot
be changed at runtime. The current delay value can be changed at runtime within the
range [0, max_delay]

struct delay_t
Delay state structure.

Public Members

float fs
Sampling frequency

uint32_t delay
Current delay in samples

uint32_t max_delay
Maximum delay in samples

uint32_t buffer_idx
Current buffer index

int32_t *buffer
Buffer

C API

int32_t adsp_delay(delay_t *delay, int32_t samp)
Process a new sample through a delay object.

Note: The minimum delay provided by this block is 1 sample. Setting the delay to
0 will still yield a 1 sample delay.

Parameters

126

lib_audio_dsp: Audio DSP Library

· delay – Delay object
· samp – New sample

Returns
int32_t Oldest sample

Python API

class audio_dsp.dsp.signal_chain.delay(fs, n_chans,max_delay: float,
starting_delay: float, units: str =
’samples’)

A simple delay line class.
Note the minimum delay provided by this block is 1 sample. Setting the delay to 0
will still yield a 1 sample delay.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

max_delay
[float] The maximum delay in specified units.

starting_delay
[float] The starting delay in specified units.

units
[str, optional] The units of the delay, can be ‘samples’, ‘ms’ or ‘s’.
Default is ‘samples’.

Attributes

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

max_delay
[int] The maximum delay in samples.

delay
[int] The delay in samples.

buffer
[np.ndarray] The delay line buffer.

buffer_idx
[int] The current index of the buffer.

process_channels(sample: list[float])→ list[float]
Put the new sample in the buffer and return the oldest sample.

Parameters

sample
[list] List of input samples

Returns

float
List of delayed samples.

127

lib_audio_dsp: Audio DSP Library

reset_state()→ None
Reset all the delay line values to zero.

set_delay(delay: float, units: str = ’samples’)→ None
Set the length of the delay line, will saturate at max_delay.

Parameters

delay
[float] The delay length in specified units.

units
[str, optional] The units of the delay, can be ‘samples’, ‘ms’ or
‘s’. Default is ‘samples’.

Python module base class

All the Python DSP modules are based on a common base class. In order to keep the
documentation short, all Python classes in the previous sections only had the process
method described, and controlmethodswhere necessary. This section provides the user
with a more in-depth information of the Python API, which may be useful when adding
custom DSP modules.

Some classes overload the base class APIs where they require different input data types
or dimensions. However, they will all have the attributes and methods described below.

The process methods can be split into 2 groups:

1) process is a 64b floating point implementation

2) process_xcore is a 32b fixed-point implementation, with the aim of being bit exact
with the C/assembly implementation.

The process_xcoremethods can be used to simulate the xcore implementation pre-
cision and the noise floor. The Python process_xcore implementations have very
similar accuracy to the xcore C adsp_* implementations (subject to the module and
implementation). Python simulation methods tend to be slower as Python has a limited
support for the fixed point processing. Bit exactness is not always possible for modules
that use 32b float operations, as the rounding of these can differ between C libraries.

class audio_dsp.dsp.generic.dsp_block(fs, n_chans, Q_sig=27)
Generic DSPblock, all blocks should inherit from this class and implement it’smeth-
ods.
By using the metaclass NumpyDocstringInheritanceInitMeta, parameter and at-
tribute documentation can be inherited by the child classes.

Parameters

fs
[int] Sampling frequency in Hz.

n_chans
[int] Number of channels the block runs on.

Q_sig: int, optional
Q format of the signal, number of bits after the decimal point.
Defaults to Q4.27.

Attributes

fs
[int] Sampling frequency in Hz.

128

lib_audio_dsp: Audio DSP Library

n_chans
[int] Number of channels the block runs on.

Q_sig: int
Q format of the signal, number of bits after the decimal point.

freq_response(nfft=512)
Calculate the frequency response of the module for a nominal input.
The generic module has a flat frequency response.

Parameters

nfft
[int, optional] The number of points to use for the FFT, by de-
fault 512

Returns

tuple
A tuple containing the frequency values and the corresponding
complex response.

process(sample: float, channel=0)
Take one new sample and give it back. Do no processing for the generic block.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed sample.

process_frame(frame: list)
Take a list frames of samples and return the processed frames.
A frame is defined as a list of 1-D numpy arrays, where the number of arrays
is equal to the number of channels, and the length of the arrays is equal to the
frame size.
For the generic implementation, just call process for each sample for each
channel.

Parameters

frame
[list] List of frames, where each frame is a 1-D numpy array.

Returns

list
List of processed frames, with the same structure as the input
frame.

process_frame_xcore(frame: list)
Take a list frames of samples and return the processed frames, using an
xcore-like implementation.
A frame is defined as a list of 1-D numpy arrays, where the number of arrays
is equal to the number of channels, and the length of the arrays is equal to the
frame size.

129

lib_audio_dsp: Audio DSP Library

For the generic implementation, just call process for each sample for each
channel.

Parameters

frame
[list] List of frames, where each frame is a 1-D numpy array.

Returns

list
List of processed frames, with the same structure as the input
frame.

process_xcore(sample: float, channel=0)
Take one new sample and return 1 processed sample.
For the generic implementation, scale and quantize the input, call the xcore-
like implementation, then scale back to 1.0 = 0 dB.

Parameters

sample
[float] The input sample to be processed.

channel
[int, optional] The channel index to process the sample on. De-
fault is 0.

Returns

float
The processed output sample.

3.3 Precision

Note: For fixed point Q formats this document uses the format QM.N, where M is the
number of bits before the decimal point (excluding the sign bit), and N is the number of
bits after the decimal point. For an int32 number, M+N=31.

By default, the signal processing in the audio pipeline is carried out at 32 bit fixed point
precision in Q4.27 format. Assuming a 24 bit input signal in Q0.24 format, this gives 4
bits of internal headroom in the audio pipeline, which is equivalent to 24 dB. The output
of the audio pipeline will be clipped back to Q0.24 before returning. For more precision,
the pipeline can be configured to run with no headroom in Q0.31 format, but this requires
manual headroommanagement. More information on setting the Q format can be found
in the Library Q Format section.

DSP algorithms are implemented either on the XS3 CPU or VPU (vector processing unit).

CPU algorithms are typically implemented as 32-bit x 32-bit operations into 64-bit results
and accumulators, before rounding back to 32-bit outputs.

The VPU allows for 8 simultaneous operations, with a small cost in precision. VPU al-
gorithms are typically implemented as 32-bit x 32-bit operations into 34-bit results and
40-bit accumulators, before rounding back to 32-bit outputs.

3.4 Latency

The latency of the DSP pipeline is dependent on the number of threads. By default, the
DSP pipeline is configured for one sample of latency per thread. All current DSPmodules

130

lib_audio_dsp: Audio DSP Library

have zero inbuilt latency (except where specified e.g. delay stages). For pipelines that fit
on a single thread, this means the total pipeline latency is 1 sample.

The pipeline can also be configured to use a higher frame size. This increases latency,
but can reduce compute for simple functions. For a pipeline consisting of just biquads:

· Frame size = 1, latency = 1 sample, compute = 25 biquads per thread @ 48kHz.

· Frame size = 8, latency = 8 samples, compute = 60 biquads per thread @ 48kHz.

4 Run-Time Control User Guide

For many applications, the ability to update the DSP configuration at run time will be
required. A simple example would be a volume control where the end product will update
the volume setting based on user input. This DSP library has been designed with use
cases like this in mind and the generated DSP pipeline provides an interface for writing
and reading the configuration of each stage.

This document details how to use this interface to extend aDSP applicationwith run-time
control of the audio processing. For a complete example of an application that updates
the DSP configuration based on user input refer to application note AN02015.

4.1 Control Interface Walkthrough

Defining a Controllable Pipeline

This section will walk through adding control to a basic DSP pipeline. The following code
snippet describes a simple DSP process with a volume control and a limiter. In the end
application the volume can be set by the application.
from audio_dsp.design.pipeline import Pipeline
from audio_dsp.stages import *

p, edge = Pipeline.begin(4)
edge = p.stage(VolumeControl, edge, "volume")
edge = p.stage(LimiterRMS, edge)
p.set_outputs(edge)

This code snippet will generate the pipeline diagram shown in Fig. 11.

In this example the tuning methods on the stages in the pipeline are not called which
means the code that is generated will intialise the stages with their default configuration
values.

A point of interest in this example is that the label argument to the pipeline stagemethod
is set, but only for the volume control stage. The label for the volume control in this ex-
ample is “volume”. After generating the source code for this pipeline, a file will be created
in the specified directory named “adsp_instance_id_auto.h” (assuming that the pipeline
identifier has been left as its default value of “auto”). The contents of the generated file
are shown below:
#pragma once

#define thread0_stage_index (1)
#define volume_stage_index (2)
#define auto_thread_stage_indices { thread0_stage_index }

In this file themacro volume_stage_index is defined. The value of this macro can be used
by the control interface to find the volume control stage and process control commands.
The benefit of this to an application author is that this header file can be included in the
application and the value of volume_stage_index will always be correct, even when the
pipeline is redesigned.

131

lib_audio_dsp: Audio DSP Library

Fig. 11: The example pipeline diagram

Writing the Configuration of a Stage

Each stage type has a set of controllable parameters that can be read or written. A de-
scription of each parameter along with its type and name can be found in the DSP Stages
section in the DSP components document. For volume control, there is a command
named CMD_VOLUME_CONTROL_TARGET_GAIN that can be updated at run time to set
the volume. This command is defined in the generated header file “cmds.h” which will be
placed into the build directory at “src.autogen/common/cmds.h”. “cmds.h” contains all
the command IDs for all the stage types that CMake found.

It is also possible to see the available control parameters, along with the values they will
be set to, while designing the pipeline in Python. This can be done using the get_config
method of the stage as shown below.
config = p["volume"].get_config()
print(config)

This will print this dictionary of parameters:
{'target_gain': 134217728, 'slew_shift': 7, 'mute_state': 0}

This dictionary does not contain CMD_VOLUME_CONTROL_TARGET_GAIN, but
is does contain “target_gain”. The final command name is constructed as
“CMD_{STAGE_TYPE}_{PARAMETER}” where stage type and parameter should be
replaced with the correct values for each, capitalised. All stages of the same type (e.g.
VolumeControl) will have the same set of parameters.

The format and type of the control parameters for each stage are chosen to optimise pro-
cessing time on the DSP thread. For example, CMD_VOLUME_CONTROL_TARGET_GAIN
is not a floating point value in decibels, but rather a linear fixed point value. For this exam-

132

lib_audio_dsp: Audio DSP Library

ple we can use the convenience function adsp_dB_to_gain() which is defined in dsp/sig-
nal_chain.h.

In order to send a control command, the API defined in stages/adsp_control.h is used.
This API is documented in the Tool User Guide, in the Pipeline Design API section. Com-
plete the following steps:

1. Create a thread that will be updating the DSP configuration. This thread must be on
the same tile as the DSP.

2. Create a new adsp_controller_t from the adsp_pipeline_t that was initialised for the
generated pipeline. If multiple threads will be attempting control, each thread must
have a unique instance of adsp_controller_t to ensure thread safety.

3. Initialise a new adsp_stage_control_cmd_t, specifying the instance ID (vol-
ume_stage_index), the command ID (CMD_VOLUME_CONTROL_TARGET_GAIN),
and payload length (sizeof(int32_t)).

4. Create the command payload; this will be an int32_t containing the computed gain.
Update the command payload pointer to reference the payload.

5. Call adsp_write_module_config until it returns ADSP_CONTROL_SUCCESS. There may
be in-progress write or read commands which have been issued but not completed
when starting the new command. In this scenario the adsp_write_module_config will
return ADSP_CONTROL_BUSY which means that the attempt to write had no effect
and should be attempted again.

A full example of a control thread that does this is shown below.
#include <xcore/parallel.h>
#include "cmds.h"
#include "adsp_generated_auto.h"
#include "adsp_instance_id_auto.h"
#include "dsp/signal_chain.h"
#include "control/signal_chain.h"
#include "stages/adsp_control.h"
#include "stages/adsp_pipeline.h"

void control_thread(adsp_controller_t* control) {
// convert desired value to parameter type
float desired_vol_db = -6;
int32_t desired_vol_raw = adsp_dB_to_gain(desired_vol_db);

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_TARGET_GAIN,
.payload_len = sizeof(desired_vol_raw),
.payload = &desired_vol_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(control, &command));

// DONE!
}

void audio_source_sink(adsp_pipeline_t* p) {
// sends and receives audio to the pipeline

}

void dsp_main(void) {
adsp_pipeline_t* dsp = adsp_auto_pipeline_init();

// created a controller instance for each thread.
adsp_controller_t control;
adsp_controller_init(&control, dsp);

PAR_FUNCS(
PFUNC(audio_source_sink, dsp),
PFUNC(control_thread, &control),
PFUNC(adsp_auto_pipeline_main, dsp)

);
}

133

lib_audio_dsp: Audio DSP Library

Reading the Configuration of a Stage

In some cases it makes sense to read back the configuration of the stage. Some
stages have dynamic values that are updated as the audio is processed and can be
read back to the control thread. Volume control is an example of this as it will smoothly
adjust the gain towards CMD_VOLUME_CONTROL_TARGET_GAIN; the current value of
the gain which is actually being applied can be read by reading from the parameter
CMD_VOLUME_CONTROL_GAIN. The API for reading is largely the same as writing, ex-
cept the control API will write to the payload buffer.

This code example shows how to read the current CMD_VOLUME_CONTROL_GAIN pa-
rameter from the “volume” stage that is created in the example above.
int32_t read_volume_gain(adsp_controller_t* control) {
int32_t gain_raw;

adsp_stage_control_cmd_t command = {
.instance_id = volume_stage_index,
.cmd_id = CMD_VOLUME_CONTROL_GAIN,
.payload_len = sizeof(gain_raw),
.payload = &gain_raw

};

// try write until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(control, &command));

return gain_raw;
}

Control Interface Details This section provides a brief overview of how the control in-
terface works.

Each stage that is included in the generated DSP pipeline has its own state which it will
maintain as it processes audio. It also has a structure that contains its configuration
parameters. Finally, it has a control state variablewhich is used to communicate between
the DSP and control threads. Threads that wish to read or write to the configuration of a
stage use the control API that is discussed above.

For a write command, the controlling threadwill check that a command is not ongoing by
querying the control state of the stage. If the stage is not processing a control command
then the control thread will update the configuration struct for the stage and write to the
control state variable that new parameters are available. When the DSP thread next gets
an opportunity the stage will see that the parameters have been updated and update its
internal state to match. When this is complete the control state variable will be cleared.

For a read command the process is similar. The control thread requests a read by updat-
ing the control state variable. The stage will see this and update the configuration struct
with the latest value and notify the control thread, via the control state variable, that it
has completed the request.

The control API ensures thread safety through the use of the adsp_controller_t struct.
As long as each thread uses a unique instance of adsp_controller_t then the control
APIs will return ADSP_CONTROL_BUSY if a command that was initialised by another
adsp_controller_t is ongoing.

4.2 Run-Time Control Helper Functions

Most DSP Stages have fixed point control parameters. To aid conversion from typical
tuning units (e.g. decibels) to the correct fixed point format, the helper functions below
have been provided.

Biquad helpers

Functions

134

lib_audio_dsp: Audio DSP Library

void adsp_design_biquad_bypass(q2_30 coeffs[5])
Design biquad filter bypass This function creeates a bypass biquad filter. Only the
b0 coefficient is set.

Parameters

· coeffs – Bypass filter coefficients

void adsp_design_biquad_mute(q2_30 coeffs[5])
Design mute biquad filter This function creates a mute biquad filter. All the coeffi-
cients are 0.

Parameters

· coeffs – Mute filter coefficients

left_shift_t adsp_design_biquad_gain(q2_30 coeffs[5], const float gain_db)
Design gain biquad filter This function creates a biquad filter with a specified gain.

Parameters

· coeffs – Gain filter coefficients
· gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

void adsp_design_biquad_lowpass(q2_30 coeffs[5], const float fc, const float fs,
const float filter_Q)

Design lowpass biquad filter This function creates a biquad filter with a lowpass
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Lowpass filter coefficients
· fc – Cutoff frequency
· fs – Sampling frequency
· filter_Q – Filter Q

void adsp_design_biquad_highpass(q2_30 coeffs[5], const float fc, const float
fs, const float filter_Q)

Design highpass biquad filter This function creates a biquad filter with a highpass
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Highpass filter coefficients
· fc – Cutoff frequency
· fs – Sampling frequency
· filter_Q – Filter Q

void adsp_design_biquad_bandpass(q2_30 coeffs[5], const float fc, const float
fs, const float bandwidth)

Design bandpass biquad filter This function creates a biquad filter with a bandpass
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Bandpass filter coefficients

135

lib_audio_dsp: Audio DSP Library

· fc – Central frequency
· fs – Sampling frequency
· bandwidth – Bandwidth

void adsp_design_biquad_bandstop(q2_30 coeffs[5], const float fc, const float
fs, const float bandwidth)

Design bandstop biquad filter This function creates a biquad filter with a bandstop
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Bandstop filter coefficients
· fc – Central frequency
· fs – Sampling frequency
· bandwidth – Bandwidth

void adsp_design_biquad_notch(q2_30 coeffs[5], const float fc, const float fs,
const float filter_Q)

Design notch biquad filter This function creates a biquad filter with an notch re-
sponse fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Notch filter coefficients
· fc – Central frequency
· fs – Sampling frequency
· filter_Q – Filter Q

void adsp_design_biquad_allpass(q2_30 coeffs[5], const float fc, const float fs,
const float filter_Q)

Design allpass biquad filter This function creates a biquad filter with an allpass
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.

Parameters

· coeffs – Allpass filter coefficients
· fc – Central frequency
· fs – Sampling frequency
· filter_Q – Filter Q

left_shift_t adsp_design_biquad_peaking(q2_30 coeffs[5], const float fc, const
float fs, const float filter_Q, const float
gain_db)

Design peaking biquad filter This function creates a biquad filter with a peaking
response fcmust be less than fs/2, otherwise it will be saturated to fs/2.
The gain must be less than 18 dB, otherwise the coefficients may overflow. If the
gain is greater than 18 dB, it is saturated to that value.

Parameters

· coeffs – Peaking filter coefficients
· fc – Central frequency
· fs – Sampling frequency
· filter_Q – Filter Q
· gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

136

lib_audio_dsp: Audio DSP Library

left_shift_t adsp_design_biquad_const_q(q2_30 coeffs[5], const float fc, const
float fs, const float filter_Q, const float
gain_db)

Design constant Q peaking biquad filter This function creates a biquad filter with a
constant Q peaking response.
Constant Q means that the bandwidth of the filter remains constant as the gain
varies. It is commonly used for graphic equalisers. fc must be less than fs/2,
otherwise it will be saturated to fs/2.
The gain must be less than 18 dB, otherwise the coefficients may overflow. If the
gain is greater than 18 dB, it is saturated to that value.

Parameters

· coeffs – Constant Q filter coefficients
· fc – Central frequency
· fs – Sampling frequency
· filter_Q – Filter Q
· gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

left_shift_t adsp_design_biquad_lowshelf(q2_30 coeffs[5], const float fc, const
float fs, const float filter_Q, const
float gain_db)

Design lowshelf biquad filter This function creates a biquad filter with a lowshelf
response.
The Q factor is defined in a similar way to standard low pass, i.e. Q > 0.707 will
yield peakiness (where the shelf response does not monotonically change). The
level change at f will be boost_db/2. fc must be less than fs/2, otherwise it will
be saturated to fs/2.
The gain must be less than 12 dB, otherwise the coefficients may overflow. If the
gain is greater than 12 dB, it is saturated to that value.

Parameters

· coeffs – Lowshelf filter coefficients
· fc – Cutoff frequency
· fs – Sampling frequency
· filter_Q – Filter Q
· gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

left_shift_t adsp_design_biquad_highshelf(q2_30 coeffs[5], const float fc, const
float fs, const float filter_Q, const
float gain_db)

Design highshelf biquad filter This function creates a biquad filter with a highshelf
response.
The Q factor is defined in a similar way to standard high pass, i.e. Q > 0.707 will
yield peakiness. The level change at f will be boost_db/2. fc must be less than
fs/2, otherwise it will be saturated to fs/2.
The gain must be less than 12 dB, otherwise the coefficients may overflow. If the
gain is greater than 12 dB, it is saturated to that value.

Parameters

137

lib_audio_dsp: Audio DSP Library

· coeffs – Highshelf filter coefficients
· fc – Cutoff frequency
· fs – Sampling frequency
· filter_Q – Filter Q
· gain_db – Gain in dB

Returns
left_shift_t Left shift compensation value

void adsp_design_biquad_linkwitz(q2_30 coeffs[5], const float f0, const float
fs, const float q0, const float fp, const float
qp)

Design Linkwitz transform biquad filter This function creates a biquad filter with a
Linkwitz transform response.
The Linkwitz Transform is commonly used to change the low frequency roll off
slope of a loudspeaker. When applied to a loudspeaker, it will change the cutoff
frequency from f0 to fp, and the quality factor from q0 to qp. f0 and fp must be
less than fs/2, otherwise they will be saturated to fs/2.

Parameters

· coeffs – Linkwitz filter coefficients
· f0 – Original cutoff frequency
· fs – Sampling frequency
· q0 – Original quality factor at f0
· fp – Target cutoff frequency
· qp – Target quality factor of the filter

DRC helpers

static inline int32_t calc_alpha(float fs, float time)
Convert an attack or release time in seconds to an EWM alpha value as a fixed
point int32 number in Q_alpha format. If the desired time is too large or small to
be represented in the fixed point format, it is saturated.

Parameters

· fs – sampling frequency in Hz
· time – attack/release time in seconds

Returns
int32_t attack/release alpha as an int32_t

static inline int32_t calculate_peak_threshold(float level_db)
Convert a peak compressor/limiter/expander threshold in decibels to an int32 fixed
point gain in Q_SIG Q format. If the threshold is higher than representable in the
fixed point format, it is saturated. Theminimum threshold returned by this function
is 1.

Parameters

· level_db – the desired threshold in decibels
Returns

int32_t the threshold as a fixed point integer.

static inline int32_t calculate_rms_threshold(float level_db)
Convert an RMS² compressor/limiter/expander threshold in decibels to an int32
fixed point gain in Q_SIG Q format. If the threshold is higher than representable
in the fixed point format, it is saturated. The minimum threshold returned by this
function is 1.

138

lib_audio_dsp: Audio DSP Library

Parameters

· level_db – the desired threshold in decibels
Returns

int32_t the threshold as a fixed point integer.

static inline float rms_compressor_slope_from_ratio(float ratio)
Convert a compressor ratio to the slope, where the slope is defined as (1 - 1 / ratio)
/ 2.0. The division by 2 compensates for the RMS envelope detector returning the
RMS². The ratio must be greater than 1, if it is not the ratio is set to 1.

Parameters

· ratio – the desired compressor ratio
Returns

float slope of the compressor

static inline float peak_expander_slope_from_ratio(float ratio)
Convert an expander ratio to the slope, where the slope is defined as (1 - ratio). The
ratio must be greater than 1, if it is not the ratio is set to 1.

Parameters

· ratio – the desired expander ratio
Returns

float slope of the expander

Reverb helpers

Functions

static inline int32_t adsp_reverb_float2int(float x)
Convert a floating point value to the Q_RVR format, saturate out of range values.
Accepted range is 0 to 1.

Parameters

· x – A floating point number, will be capped to [0, 1]
Returns

Q_RVR int32_t value

static inline int32_t adsp_reverb_db2int(float db)
Convert a floating point gain in decibels into a linear Q_RVR value for use in con-
trolling the reverb gains.

Parameters

· db – Floating point value in dB, values above 0 will be clipped.
Returns

Q_RVR fixed point linear gain.

static inline int32_t adsp_reverb_calculate_damping(float damping)
Convert a user damping value into a Q_RVR fixed point value suitable for passing
to a reverb.

Parameters

· damping – The chose value of damping.

139

lib_audio_dsp: Audio DSP Library

Returns
Damping as a Q_RVR fixed point integer, clipped to the accepted
range.

static inline int32_t adsp_reverb_calculate_feedback(float decay)
Calculate a Q_RVR feedback value for a given decay. Use to calculate the feedback
parameter in reverb_room.

Parameters

· decay – The desired decay value.
Returns

Calculated feedback as a Q_RVR fixed point integer.

static inline int32_t adsp_reverb_room_calc_gain(float gain_db)
Calculate the reverb gain in linear scale.
Will convert a gain in dB to a linear scale in Q_RVR format. To be used for converting
wet and dry gains for the room_reverb.

Parameters

· gain_db – Gain in dB
Returns

int32_t Linear gain in a Q_RVR format

void adsp_reverb_wet_dry_mix(int32_t gains[2], float mix)
Calculate the wet and dry gains according to the mix amount.
When the mix is set to 0, only the dry signal will be output. The wet gain will be 0
and the dry gain will be max. When the mix is set to 1, only they wet signal will be
output. The wet gain ismax, the dry gain will be 0. In order tomaintain a consistent
signal level across all mix values, the signals are pannedwith a -4.5 dB panning law.

Parameters

· gains – Output gains: [0] - Dry; [1] - Wet
· mix – Mix applied from 0 to 1

reverb_room_t adsp_reverb_room_init(float fs, float max_room_size, float
room_size, float decay, float damping,
float wet_gain, float dry_gain, float
pregain, float max_predelay, float predelay,
void *reverb_heap)

Initialise a reverb room object A room reverb effect based on Freeverb by Jezar at
Dreampoint.

Parameters

· fs – Sampling frequency
· max_room_size – Maximum room size of delay filters
· room_size – Room size compared to the maximum room size

[0, 1]
· decay – Length of the reverb tail [0, 1]
· damping – High frequency attenuation
· wet_gain – Wet gain in dB
· dry_gain – Dry gain in dB
· pregain – Linear pre-gain
· max_predelay – Maximum size of the predelay buffer in ms
· predelay – Initial predelay in ms

140

lib_audio_dsp: Audio DSP Library

· reverb_heap – Pointer to heap to allocate reverb memory
Returns

reverb_room_t Initialised reverb room object

void adsp_reverb_room_st_calc_wet_gains(int32_t wet_gains[2], float
wet_gain, float width)

Calculate the stereo wet gains of the stereo reverb room.

Parameters

· wet_gains – Output linear wet_1 and wet_2 gains in Q_RVR
· wet_gain – Input wet gain in dB
· width – Stereo separation of the room [0, 1]

void adsp_reverb_st_wet_dry_mix(int32_t gains[3], float mix, float width)
Calculate the stereo wet and dry gains according to the mix amount.
When the mix is set to 0, only the dry signal will be output. The wet gain will be 0
and the dry gain will be max. When the mix is set to 1, only they wet signal will be
output. The wet gain ismax, the dry gain will be 0. In order tomaintain a consistent
signal level across all mix values, the signals are pannedwith a -4.5 dB panning law.
The width controls the mixing between the left and right wet channels

Parameters

· gains – Output gains: [0] - Dry; [1] - Wet_1; [2] - Wet_2
· mix – Mix applied from 0 to 1
· width – Stereo separation of the room [0, 1]

reverb_room_st_t adsp_reverb_room_st_init(float fs, float max_room_size, float
room_size, float decay, float
damping, float width, float
wet_gain, float dry_gain, float
pregain, float max_predelay, float
predelay, void *reverb_heap)

Initialise a stereo reverb room object A room reverb effect based on Freeverb by
Jezar at Dreampoint.

Parameters

· fs – Sampling frequency
· max_room_size – Maximum room size of delay filters
· room_size – Room size compared to the maximum room size

[0, 1]
· decay – Length of the reverb tail [0, 1]
· damping – High frequency attenuation
· width – Stereo separation of the room [0, 1]
· wet_gain – Wet gain in dB
· dry_gain – Dry gain in dB
· pregain – Linear pre-gain
· max_predelay – Maximum size of the predelay buffer in ms
· predelay – Initial predelay in ms
· reverb_heap – Pointer to heap to allocate reverb memory

Returns
reverb_room_st_t Initialised stereo reverb room object

Signal chain helpers

141

lib_audio_dsp: Audio DSP Library

uint32_t time_to_samples(float fs, float time, time_units_t units)
Convert a time in seconds/milliseconds/samples to samples for a given sampling
frequency.

Parameters

· fs – Sampling frequency
· time – New delay time in specified units
· units – Time units (SAMPLES, MILLISECONDS, SECONDS) . If

an invalid unit is passed, SAMPLES is used.
Returns

uint32_t Time in samples

Copyright & Disclaimer

Copyright © 2024, XMOS Ltd XMOS Ltd. is the owner or licensee of this design, code,
or Information (collectively, the “Information”) and is providing it to you “AS IS” with no
warranty of any kind, express or implied and shall have no liability in relation to its use.
XMOS Ltd makes no representation that the Information, or any particular implementa-
tion thereof, is or will be free from any claims of infringement and again, shall have no
liability in relation to any such claims. XMOS, XCORE, VocalFusion and the XMOS logo
are registered trademarks of XMOS Ltd. in the United Kingdom and other countries and
may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

142

	Tool User Guide
	Setup
	Using the Tool
	Pipeline Design API

	Design Guide
	Summary of the xcore.ai architecture
	The Architecture of the Generated Pipeline
	Resource usage of the Generated Pipeline
	Troubleshooting resource issues
	Exchanging audio with the DSP pipeline blocks for too long

	DSP Components
	DSP Stages
	DSP Modules
	Precision
	Latency

	Run-Time Control User Guide
	Control Interface Walkthrough
	Run-Time Control Helper Functions

