
AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

Publication Date: 2024/8/22
Document Number: XM-015091-AN v1.0.2

IN THIS DOCUMENT

1 Introduction . 1
2 Application Examples . 1

1 Introduction

Audio Weaver (AWE) comprises GUI tools (Designer) and libraries (Core) for implement-
ing audio Digital Signal Processing (DSP) algorithms. Developed by DSP Concepts
(DSPC), it delivers signal processing building blocks, referred to as “modules”. Module
capabilties range from simple filtering to data type conversions all the way tomuchmore
specialised processing. These can be assembled, deleted and rearranged in theDesigner
GUI and then executed on a device. A control library is available that enables on-line con-
trol of the blocks.

xcore.ai is a programmable multi-core device by XMOS, with flexible DSP and IO inter-
faces. The xcore.ai port of Audio Weaver Core is located in lib_awe.

2 Application Examples

The sample application provided alongside this application note is called app_an02016
and has multiple build configurations supporting different features. It is based on the
XMOS USB Audio reference design which uses lib_xua and associated XK-AUDIO-316-
MC hardware. It is very closely related to the standard USB Audio reference design pro-
vided by XMOS in sw_usb_audio. Documentation for this can be found in the USB
Audio User Guide.

The thread diagram for the application example is shown in Fig. 1. Note howmost of the
design is either brought in from lib_xua or lib_awe with only the platform specific
lib_i2c remote thread being part of the application. This is required for configuration
of the audio hardware (i.e. ADCs and DACs) on the board.

DSP Concepts provide a helpful setup guide which can be found in the file
User_Guide_for_XMOS_EVK_with_AWE.pdf provided in the /doc directory of the
AN02016 download. This is designed to help you get up and running as quickly as pos-
sible and help you connect to the Audio Weaver Designer software. A sample design
called playBasic_3thread.awj for use in the Audio Weaver Designer software may
be found in the examples/audioweaver directory of the dependent lib_awe library.

The example application provide three build configurations, each one providing a differ-
ent audio source/sink or tuning data path. These are descibed in Table 1.

1

https://www.xmos.com/file/lib_awe
https://www.xmos.com/file/sw_usb_audio-sw_usb_audio-design-guide/?version=latest
https://www.xmos.com/file/sw_usb_audio-sw_usb_audio-design-guide/?version=latest
https://www.xmos.com/file/lib_awe

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

Table 1: Example Application Builds

Build Data path Tuning path

UA USB Audio to target, Line out
from target

USB / HID and via firmware

UA_FFS USB Audio to target, Line out
from target

USB / HID and via firmware with
FFS enabled

I2S Line in to target, Line out from
target

USB / HID and via firmware

The audio path is handled by the USB Audio callback to
UserBufferManagement(unsigned sampsFromUsbToAudio[], unsigned
sampsFromAudioToUsb[]) which is called from the USB Audio Audio/I2S thread.
void UserBufferManagement(unsigned sampsFromUsbToAudio[], unsigned sampsFromAudioToUsb[])
{
#if(I2S_ONLY)

/* Intercept samples from ADC (destined for the host) and process them.
* Send processed samples to the DAC
*/

awe_offload_data_to_dsp_engine(g_c_to_dspc, sampsFromAudioToUsb, sampsFromUsbToAudio);
#else

/* Intercept samples from the host (destined for the DAC) and process them.
* Send processed samples to the DAC
*/

awe_offload_data_to_dsp_engine(g_c_to_dspc, sampsFromUsbToAudio, sampsFromUsbToAudio);
#endif // I2S_ONLY
} // end_marker_for_rst_literal_include

As per the comments in the above code snippet, samples aremodified on their way from
either the host (UA build) or an external ADC (I2S build) before being passed on to their
destination, an external DAC.
The control path in the example application is handled by both the lib_awe
communications task in awe_tuning_usb_hid.c and the local control task in
awe_standalone_tuning.c.

2.1 USB Audio (UA) Build

The feature set of this build configuration is as follows:
· USB Audio Class 2.0 (High Speed)
· Stereo input to DSP from the host
· Stereo output from DSP on the OUT 1/2 3.5mm analog jack
· Audio from the host is pumped through the AWE framework before being played on

the output jack
· Asynchronous clocking (local audio clock to hardware)
· 24 bit Sample resolution
· 48 kHz sample rate
· Tuning to AWE provided over USBHIDwith VID 0x20b1 and PID 0x0018 supporting live

tuning from the Audio Weaver software. Additionally, AWB files may be loaded (and in
one case controlled) using the buttons on the board.

Note: Any commercial designs based on this app note should use a valid VID/PID pair
as supplied by the USB IF. The XMOS VID should not be used in any circumstance.

The thread diagram for the UA application example is shown in Fig. 1. In
addition to the I2C remote master a new application thread has been added

2

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

awe_standalone_tuningwhich handles loading of the AWB image and volume con-
trol via the buttons. The volume control provides an example of tuning the DSP blocks
from firmware.

Fig. 1: Application thread diagram for app_an02016

The button control is decribed in Table 2.

Table 2: UA_STANDALONE control functions

But-
ton

Function

2 Load the PlayBasic_3thread AWB file which contains the multi-band
compressor example

1 Load the simple_volume AWB file which contains a pass-through with vol-
ume control

0 When the simple_volume AWB is selected, it controls the volume in 10 dB
decrements. No function for other designs.

Note: When the firmware boots, there is no design loaded so you will not hear any
sound played from the host. Please either load a design via Audio Weaver Designer or
press button 2 or 1 to load an AWB and enable audio processing.

2.2 USB Audio with Flash File System (UA_FFS) Build

The UA_FFS build configuration is a superset of the UA configuration. In addition, it has
the internal Flash File System (FFS) enabled. This means, via the Audio Weaver GUI,

3

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

you may add files to a file system that is stored in external flash memory. The files may
include .awb compiled design images which can be loaded or even booted from so that
the AWE system comes up pre-configured with a particular design.
The FFS is stored in the data partition of the flash memory and the boot partition (used
for the boot image(s)) is protected from accidental overwriting.
An additional thread is used on Tile[0] which acts as the FFS server and handles accesses
to the external QSPI Flash via requests from AWE core.
For more details on using the FFS from Audio Weaver please consult the DSP Concepts
documentation.

Note: When using the FFS ensure that the timeout setting in the AWE Server “Change
Connection” dialogue is increased to 5000 ms. This is because some of the low-level
flash operations may exceed the 1500 ms default timeout setting which will cause com-
munications errors.

The thread diagram in Fig. 1 depicts the addition of the optional FFS flash server thread
which manages the low-level flash accesses.

2.3 I2S Build

This build configuration uses I2S for the source of audio data, rather than USB. The fea-
ture set of this build configuration is as follows:
· Stereo input from the IN 1/2 3.5 mm analog jack (line level)
· Stereo output on the OUT 1/2 3.5 mm analog jack (line level)
· Audio from the host is pumped through the AWE framework before being played on

the output jack
· Tuning to AWE provided over USB HID with VID 0x20b1 and PID 0x0018 supporting

live tuning from the Audio Weaver software
· DFU is available via USB

Note: When the firmware boots, there is no design loaded so you will not hear any
sound played from the host. Please load an AWB from the host using the Audio Weaver
software.

2.4 Building the Examples

The following section assumes you have downloaded and installed the XMOS XTC tools
(see README for required version). Installation instuctions can be found here. Be sure
to pay attention the section Installation of required third-party tools.
The application uses the xcommon-cmake build system as bundled with the XTC Tools.
The an02016 software zip-file should be downloaded and unzipped to a chosen direc-
tory.
To configure the build run the following from an XTC command prompt:
cd an02016
cd app_an02016
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software download, however, if any are
missing it is at this configure step that they will be downloaded by the build system.
Ensure you have the libAWECore.a file placed in the lib_awe/lib/xs3a directory. This
is the core archive file containing the AWE library:

4

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

cp libAWECore.a lib_awe/lib_awe/lib/xs3a

Note: The libAWECore.a file is not provided as part of the lib_awe repository for
commercial reasons. This should be obtained from your XMOS or DSPC contact directly.

Finally, build the application binaries using xmake:
xmake -j -C build

This will build both the UA (USB Audio), I2S (I2S only for data transport but with USB/HID
enabled for control) and UA_FFS binaries.
The application uses approximately 50-64 kB of RAM on Tile[0], depending on
build configuration, and 504 kB on Tile[1] when allocating a 50k long-words for
AWE_HEAP_SIZE_LONG_WORDS. Each tile of an xcore.ai device has 512kB of RAM.

Note: It is possible to trade-off the number of AWE modules available versus the avail-
able heap size. This is beyond the scope of this application note - please contact your
XMOS or DSPC support contact for details.

2.5 Running the Examples

To run the application use the following command from the app_an02016 directory
where <build> should be one of UA, I2S or UA_FFS:
xrun bin/<build>/app_an02016_<build>.xe

Alternatively tomake the design non-volatile by programming in to flashmemory use the
following command:
UA, I2S
xflash bin/<build>/app_an02016_<build>.xe

UA_FFS
xflash --factory bin/UA_FFS/app_an02016_UA_FFS.xe --boot-partition-size 0x80000 --data ../audioweaver/awb_files/
↪→data_partition_ffs.bin

The figure 0x80000 equates to 512 kB which is the amount of space reserved for the
boot partition. For this example, the required storage in flash for the application is in the
order of 348 kB leaving around 164 kB of space for the application to grow if needed. A
simple way to determine the required boot partition size if to run the following command
and then inspect the file size of flash.bin:
xflash -o flash.bin app_an02016/bin/UA_FFS/app_an02016_UA_FFS.xe

In this case the rest of the flash beyond the boot partition (for this target 3.5 MB) is
available for the FFS.
Once flashed or run, the USB audio device should appear in your host OS’s audio settings
window (except for the I2S build configuration).

Note: No audio will be passed through from the host to the 3.5 mm jack until an AWE
design is loaded.

For designs which are tuned via USB/HID you may connect the Audio Weaver Designer
software via USB/HID. Launch Audio Weaver Designer and configure the connection to
Audio Weaver Server by selecting “Target” and then “Change Connection”. Select “USB”
and then input the relevant VID and PID values (in decimal) into the dialog box as shown
in Fig. 2.

5

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

Fig. 2: AWE Server Change Connection

For futher steps on running a design etc see documentation in the
User_Guide_for_XMOS_EVK_with_AWE.pdf file which is supplied alongside
this application note.

6

AN02016: Integrating Audio Weaver (AWE) Core into USB Audio

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

7

	Introduction
	Application Examples

