
XCORE RTOS Framework - Programming Guide
Release: 3.0.1
Publication Date: 2023/05/02

Table of Contents

1 XCORE Platform 1
1.1 Architecture & Hardware Guide . 1
1.2 Programming Guide . 1
1.3 XTC Tools . 1

2 Tutorials 2
2.1 FreeRTOS Application Programming . 2

2.1.1 Rationale . 2
2.1.2 SMP FreeRTOS . 2
2.1.3 AMP SMP FreeRTOS . 3
2.1.4 RTOS Drivers . 3
2.1.5 Software Services . 4

2.2 Board Support Configurations . 5
2.2.1 Creating Custom bsp_configs . 5

2.3 RTOS Application DFU . 6
2.3.1 DFU Driver Overview . 6
2.3.2 Reading the Factory Image . 6
2.3.3 Reading the Upgrade Image . 6
2.3.4 Writing the Upgrade Image . 7
2.3.5 Reading the Data Partition Image . 8
2.3.6 Writing the Data Partition Image . 8

3 API Reference 10
3.1 RTOS Drivers . 10

3.1.1 I/O . 10
GPIO RTOS Driver . 10
I2C RTOS Driver . 16
I2S RTOS Driver . 24
Microphone Array RTOS Driver . 29
QSPI Flash RTOS Driver . 32
SPI RTOS Driver . 39
UART RTOS Driver . 47
USB RTOS Driver . 52
Trace Driver . 57

3.1.2 XCORE . 59
Clock Control RTOS Driver . 59
Device Firmware Update RTOS Driver . 63
Intertile RTOS Driver . 65
L2 Cache RTOS Driver . 67
Software Memory RTOS Driver . 68

3.2 RTOS Services . 70
3.2.1 Device Control . 70

Device Control Shared API . 70
Device Control XCORE API . 73
Device Control Host API . 78
Command Transport Protocol . 80

3.2.2 Concurrency Support . 81

iiiiii

Concurrency Support API . 82
3.2.3 Generic Pipeline . 84

Generic Pipeline Example . 84
Generic Pipeline API . 85

4 FAQs 88
4.1 What is the memory overhead of the FreeRTOS kernel? . 88
4.2 How do I determine the number of words to allocate for use as a task’s stack? 88
4.3 Can I use xcore resources like channels, timers and hw_locks? . 88

5 Common Issues 90
5.1 Task Stack Space . 90

6 Copyright & Disclaimer 91

7 Licenses 92
7.1 XMOS . 92
7.2 Third-Party . 92

Index 93

iiiiiiiii

1 XCORE Platform

The xcore platform provides a range of powerful, flexible and economic crossover processors for the use in wide-
ranging applications. The XCore platform provides:

• Fast compute

• Flexibility

• Economy

• Scalablity

• Security

• Fast time to market

1.1 Architecture & Hardware Guide

At the heart of the platform, the Architecture & Hardware Guide describes the multicore processors. Multiple
xcore processors can themselves be “networked” together with seamless communications.

1.2 Programming Guide

The Programming Guide describes how logical cores of an xcore processor can act independently to behave like
highly responsive hardware peripherals, or can work as a team to apply all available CPU cycles onto a single
compute task.

1.3 XTC Tools

The xcore processors are accompanied by the XTCTools. Aswell as providing a powerful toolchain for application
development, the toolkit assists with application deployment and upgrade.

111

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/arch-hw-guide/index.html
https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/index.html
https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/index.html#tools-guide

2 Tutorials

2.1 FreeRTOS Application Programming

This document is intended to help you become familiar with FreeRTOS application programming on xcore.

2.1.1 Rationale

Traditionally, xcoremulti-core processors have been programmedusing theXC language. TheXC language allows
the programmer to statically place tasks on the available hardware cores and wire them together with channels
to provide inter-process communication. The XC language also exposes “events,” which are unique to the xcore
architecture and are a useful alternative to interrupts.

Using the XC language, it is possible to write dedicated application software with deterministic timing and very
low latency between I/O and tasks.

While XC elegantly enables the intrinsic, unique capabilities of the xcore architecture, there often needs to be
higher level application type software running alongside it. The programming model that makes the lower level
deterministic software possible may not be best suited for many higher level parts of an application that do not
require deterministic timing. Where strict real-time execution is not required, higher level abstractions can be
used to manage finite hardware resources, and provide a more familiar programming environment.

A symmetric multiprocessing (SMP) real time operating system (RTOS) can be used to simplify xcore application
designs, as well as to preserve the hard real-time benefits provided by the xcore architecture for the lower level
software functions that require it.

This document assumes familiarity with real time operating systems in general. Familiarity with FreeRTOS specif-
ically should not be required, but will be helpful. For current up to date documentation on FreeRTOS see the
following links on the FreeRTOS website.

• Overview

• Developer Documentation

• API

2.1.2 SMP FreeRTOS

To support this new programming model for xcore, XMOS has extended the popular and free FreeRTOS kernel
to support SMP. This allows for the kernel’s scheduler to be started on any number of available xcore logical
cores per tile, leaving the remaining free to support other program elements that combine to create complete
systems. Once the scheduler is started, FreeRTOS threads are placed on cores dynamically at runtime, rather
than statically at compile time. All the usual FreeRTOS rules for thread scheduling are followed, except that
rather than only running the single highest priority thread that is ready at any given time, multiple threads may
run simultaneously. The threads chosen to run are always the highest priority threads that are ready. When there
are more threads of a single priority that are ready to run than the number of cores available, they are scheduled
in a round robin fashion. Dynamic scheduling allows FreeRTOS to optimize physical core usage based on priority
and availability at runtime, opening up the potential for using tile wide MIPs more efficiently than what could be
manually specified in a static compile time setting.

222

https://www.freertos.org/
https://www.freertos.org/RTOS.html
https://www.freertos.org/features.html
https://www.freertos.org/a00106.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

One of xcore’s primary strengths is its guarantee of deterministic behavior and timing. RTOS threads can also
benefit from this determinism provided by the xcore architecture. An RTOS thread with interrupts disabled and
a high enough priority behaves just as a bare-metal thread. An SMP RTOS kernel does not need to preempt a
high priority thread because it has many other cores to utilize to schedule lower priority threads. Using an SMP
RTOS allows developers to concentrate on specific requirements of their application without worrying about what
affect they might have on non-preemptable thread response times. Furthermore, modification of the program in
the future is much easier because the developer does not have to worry about affecting existing responsive-
ness with changes in unrelated areas. The non-preemptable threads will not be effected by adding lower-priority
functionality.

Another xcore strength is it’s performance. xcore.ai provides lightning fast general purpose compute, AI accelera-
tion, powerful DSP and instantaneous I/O control. RTOS threads can also benefit from the performance provided
by the xcore architecture, allowing an application developer to dynamically shift performance usage from one
application feature to another.

The standard FreeRTOS kernel supports dynamic task priorities, while the FreeRTOS-SMP kernel adds the follow-
ing additional APIs:

• vTaskCoreAffinitySet

• vTaskCoreAffinityGet

• vTaskPreemptionDisable

• vTaskPreemptionEnable

Together, these API enable a developer to take full advantage of xcore’s performance.

Some additional configuration options are also available to the FreeRTOS-SMP Kernel:

• configNUM_CORES

• configRUN_MULTIPLE_PRIORITIES

• configUSE_CORE_AFFINITY

• configUSE_TASK_PREEMPTION_DISABLE

See SymmetricMultiprocessing (SMP)with FreeRTOS for additional information on SMPsupport in the FreeRTOS
kernel and SMP specific considerations.

2.1.3 AMP SMP FreeRTOS

To further leverage the xcore hardware and the FreeRTOS programmingmodel, XMOS provides support for asym-
metric multiprocessing (AMP) per tile. Each XMOS chip contains at least two tiles, which consist of their own set
of logical xcore cores, IO,memory space, andmore. XMOSprovides a buildmethod and variety of software drivers
to allow an application to be created that is an AMP system containing, multiple SMP FreeRTOS kernels.

2.1.4 RTOS Drivers

To help ease development of xcore applications using an SMP RTOS, XMOS provides several SMP RTOS com-
patible drivers. These include, but are not necessarily limited to:

• Common I/O interfaces

– GPIO

– UART

– I2C

333

https://freertos.org/a00112.html
https://freertos.org/symmetric-multiprocessing-introduction.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

– I2S

– PDM microphones

– QSPI flash

– SPI

– USB

– Clock control

• xcore features

– Intertile channel communication

– Software defined memory

– Software defined L2 Cache

• External parts

– Silicon Labs WF200 series WiFi transceiver

These drivers are all found in the RTOS framework under the path modules/rtos/modules/drivers.

Documentation on each of these drivers can be found under the RTOS Drivers section in the RTOS framework
documentation pages.

It is worth noting that most of these drivers utilize a lightweight RTOS abstraction layer, meaning that they are
not dependent on FreeRTOS. Conceivably they should work on any SMP RTOS, provided an abstraction layer for it
is provided. This abstraction layer is found under the path modules/rtos/modules/osal. At the moment the only
available SMP RTOS for xcore is the XMOS SMP FreeRTOS, but more may become available in the future.

2.1.5 Software Services

The RTOS framework also includes some higher level RTOS compatible software services, some of which call
the aforementioned drivers. These include, but are not necessarily limited to:

• DHCP server

• FAT filesystem

• HTTP parser

• JSON parser

• MQTT client

• SNTP client

• TLS

• USB stack

• WiFi connection manager

Documentation on several software services can be found under the RTOS Services section in the RTOS frame-
work documentation pages.

These services are all found in the RTOS framework under the path modules/rtos/modules/sw_services.

444

https://github.com/xmos/fwk_rtos/tree/develop/modules/drivers
https://github.com/xmos/fwk_rtos/tree/develop/modules/osal
https://github.com/xmos/fwk_rtos/tree/develop/modules/sw_services

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

2.2 Board Support Configurations

xcore leverages its architecture to provide a flexible chip wheremany typically silicon based peripherals are found
in software. This allows a chip to be reconfigured in a way that provides the specific IO required for a given
application, thus resulting in a low cost yet incredibly silicon efficient solution. Board support configurations
(bsp_configs) are the description for the hardware IO that exists in a given board. The bsp_configs provide the
application programmer with an API to initialize and start the hardware configuration, as well as the supported
RTOS driver contexts. The programming model in this FreeRTOS architecture is:

• .xn files provide the mapping of ports, pins, and links

• bsp_configs specify, setup, and start hardware IO and provide the application with RTOS driver contexts

• applications use the bsp_config init/start code as well as RTOS driver contexts, similar to conventional
microcontroller programming models.

To support any generic bsp_config, applications should call platform_init() before starting the scheduler, and
then platform_start() after the scheduler is running and before any RTOS drivers are used.

The bsp_configs provided with the RTOS framework in modules/rtos/modules/bsp_config are an excellent start-
ing point. They provide the most common peripheral drivers that are supported by the boards that support RTOS
framework based applications. For advanced users, it is recommended that you copy one of these bsp_config
into your application project and customize as needed.

2.2.1 Creating Custom bsp_configs

To enable hardware portability, a minimal bsp_config should contain the following:

custom_config/

platform/

driver_instances.c

driver_instances.h

platform_conf.h

platform_init.c

platform_init.h

platform_start.c

custom_config.cmake

custom_config_xn_file.xn

custom_config.cmake provides the CMake target of the configuration. This target should link the required RTOS
framework libraries to support the configuration it defines.

custom_config_xn_file.xn provides various hardware parameters including but not limited to the chip package,
IO mapping, and network information.

platform_conf.h provides default configuration of all header defined configuration macros. Thesemay be over-
ridden by compile definitions or application headers.

driver_instances.h provides the declaration of all RTOS drivers in the configuration. It may define XCORE
hardware resources, such as ports and clockblocks. It may also define tile placements.

driver_instances.c provides the definition of all RTOS drivers in the configuration.

platform_init.h provides the declaration of platform_init(chanend_t other_tile_c) and
platform_start(void)

555

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/formats/xn-spec/xn-spec.html?highlight=xn
https://github.com/xmos/fwk_rtos/tree/develop/modules/bsp_config

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

platform_init.c provides the initialization of all drivers defined in the configuration through the definition of
platform_init(chanend_t other_tile_c). This code is run before the scheduler is started and therefore will
not be able to access all RTOS driver functionalities nor kernel objects.

platform_start.c provides the starting of all drivers defined in the configuration through the definition of
platform_start(void). It may also perform any initialization setup, such as configuring the app_pll or setting
up an on board DAC. This code is run once the kernel is running and is therefore subject to preemption and other
dynamic scheduling SMP programming considerations.

2.3 RTOS Application DFU

This document is intended to help you use the RTOS DFU driver and RTOS QSPI flash driver in an application.

2.3.1 DFU Driver Overview

This driver provides the applicationwith the boot partition and data partition layout of the flash used by the second
stage bootloader. The driver provides a subset of the functionality of libquadflash enabling the application to use
any transportmethod and the RTOS qspi flash driver to read the factory image, read/write a single upgrade image,
and read/write the data partition.

2.3.2 Reading the Factory Image

To read back the factory image:

unsigned addr = rtos_dfu_image_get_factory_addr(dfu_image_ctx);

unsigned size = rtos_dfu_image_get_factory_size(dfu_image_ctx);

unsigned char *buf = pvPortMalloc(sizeof(unsigned char) * size);

rtos_qspi_flash_read(

qspi_flash_ctx,

(uint8_t *)buf,

addr,

size);

// buf now contains the factory image contents

It is advised to perform this operation in blocks rather than full image size to reduce memory usage. Once the
buffer is populated from flash, it can be sent over the desired transport method, such as USB, I2C, etc.

2.3.3 Reading the Upgrade Image

To read back the upgrade image:

unsigned addr = rtos_dfu_image_get_upgrade_addr(dfu_image_ctx);

unsigned size = rtos_dfu_image_get_upgrade_size(dfu_image_ctx);

unsigned char *buf = pvPortMalloc(sizeof(unsigned char) * size);

(continues on next page)

666

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/libquadflash-api/libquadflash-api.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

(continued from previous page)

rtos_qspi_flash_read(

qspi_flash_ctx,

(uint8_t *)buf,

addr,

size);

// buf now contains the upgrade image contents

It is advised to perform this operation in blocks rather than full image size to reduce memory usage. Once the
buffer is populated from flash, it can be sent over the desired transport method, such as USB, I2C, etc.

2.3.4 Writing the Upgrade Image

To overwrite the current upgrade image:

// Assuming buf contains the image data

// and size contains the size in bytes

unsigned addr = rtos_dfu_image_get_upgrade_addr(dfu_image_ctx);

unsigned data_partition_base_addr = rtos_dfu_image_get_data_partition_addr(dfu_image_ctx);

unsigned bytes_avail = data_partition_base_addr - addr;

size_t sector_size = rtos_qspi_flash_sector_size_get(qspi_flash_ctx);

if(size < bytes_avail) {

unsigned char *tmp_buf = pvPortMalloc(sizeof(unsigned char) * sector_size);

unsigned cur_offset = 0;

do {

unsigned length = (size - (cur_offset - addr)) >= sector_size ? sector_size : (size -␣

→˓(cur_offset - addr));

rtos_qspi_flash_lock(qspi_flash_ctx);

{

rtos_qspi_flash_read(

qspi_flash_ctx,

tmp_buf,

addr + cur_offset,

sector_size);

memcpy(tmp_buf, data + cur_offset, length);

rtos_qspi_flash_erase(

qspi_flash_ctx,

addr + cur_offset,

sector_size);

rtos_qspi_flash_write(

qspi_flash_ctx,

(uint8_t *) tmp_buf,

addr + cur_offset,

sector_size);

}

rtos_qspi_flash_unlock(qspi_flash_ctx);

cur_offset += length;

(continues on next page)

777

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

(continued from previous page)

} while(cur_offset < (size - 1));

vPortFree(tmp_buf);

} else {

rtos_printf("Insufficient space for upgrade image\n");

}

It is advised to perform this operation in blocks rather than full image size to reduce memory usage. The buffer
can be populated over the desired transport method, such as USB, I2C, etc.

2.3.5 Reading the Data Partition Image

To read back the data partition image:

unsigned addr = rtos_dfu_image_get_data_partition_addr(dfu_image_ctx);

unsigned size = rtos_qspi_flash_size_get(qspi_flash_ctx);

unsigned char *buf = pvPortMalloc(sizeof(unsigned char) * size);

rtos_qspi_flash_read(

qspi_flash_ctx,

(uint8_t *)buf,

addr,

size);

// buf now contains the data partition image contents

It is advised to perform this operation in blocks rather than full image size to reduce memory usage. The data
partition will likely be too large to read into SRAM in a read single operation. Once the buffer is populated from
flash, it can be sent over the desired transport method, such as USB, I2C, etc.

2.3.6 Writing the Data Partition Image

To overwrite the current data partition image:

// Assuming buf contains the image data

// and size contains the size in bytes

unsigned addr = rtos_dfu_image_get_data_partition_addr(dfu_image_ctx);

unsigned end_addr = rtos_qspi_flash_size_get(qspi_flash_ctx);

unsigned bytes_avail = end_addr - addr;

size_t sector_size = rtos_qspi_flash_sector_size_get(qspi_flash_ctx);

if(size < bytes_avail) {

unsigned char *tmp_buf = pvPortMalloc(sizeof(unsigned char) * sector_size);

unsigned cur_offset = 0;

do {

unsigned length = (size - (cur_offset - addr)) >= sector_size ? sector_size : (size -␣

→˓(cur_offset - addr));

(continues on next page)

888

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

(continued from previous page)

rtos_qspi_flash_lock(qspi_flash_ctx);

{

rtos_qspi_flash_read(

qspi_flash_ctx,

tmp_buf,

addr + cur_offset,

sector_size);

memcpy(tmp_buf, data + cur_offset, length);

rtos_qspi_flash_erase(

qspi_flash_ctx,

addr + cur_offset,

sector_size);

rtos_qspi_flash_write(

qspi_flash_ctx,

(uint8_t *) tmp_buf,

addr + cur_offset,

sector_size);

}

rtos_qspi_flash_unlock(qspi_flash_ctx);

cur_offset += length;

} while(cur_offset < (size - 1));

vPortFree(tmp_buf);

} else {

rtos_printf("Insufficient space for data partition image\n");

}

It is advised to perform this operation in blocks rather than full image size to reduce memory usage. The buffer
can be populated over the desired transport method, such as USB, I2C, etc.

999

3 API Reference

3.1 RTOS Drivers

3.1.1 I/O

GPIO RTOS Driver

This driver can be used to operate GPIO ports on xcore in an RTOS application.

Initialization API The following structures and functions are used to initialize and start a GPIO driver instance.

enum rtos_gpio_port_id_t

Enumerator type representing each available GPIO port.

To be used with the RTOS GPIO driver functions.

Values:

enumerator rtos_gpio_port_none

enumerator rtos_gpio_port_1A

enumerator rtos_gpio_port_1B

enumerator rtos_gpio_port_1C

enumerator rtos_gpio_port_1D

enumerator rtos_gpio_port_1E

enumerator rtos_gpio_port_1F

enumerator rtos_gpio_port_1G

enumerator rtos_gpio_port_1H

enumerator rtos_gpio_port_1I

enumerator rtos_gpio_port_1J

enumerator rtos_gpio_port_1K

101010

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

enumerator rtos_gpio_port_1L

enumerator rtos_gpio_port_1M

enumerator rtos_gpio_port_1N

enumerator rtos_gpio_port_1O

enumerator rtos_gpio_port_1P

enumerator rtos_gpio_port_4A

enumerator rtos_gpio_port_4B

enumerator rtos_gpio_port_4C

enumerator rtos_gpio_port_4D

enumerator rtos_gpio_port_4E

enumerator rtos_gpio_port_4F

enumerator rtos_gpio_port_8A

enumerator rtos_gpio_port_8B

enumerator rtos_gpio_port_8C

enumerator rtos_gpio_port_8D

enumerator rtos_gpio_port_16A

enumerator rtos_gpio_port_16B

enumerator rtos_gpio_port_16C

enumerator rtos_gpio_port_16D

enumerator rtos_gpio_port_32A

enumerator rtos_gpio_port_32B

111111

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

enumerator RTOS_GPIO_TOTAL_PORT_CNT
Total number of I/O ports

typedef struct rtos_gpio_struct rtos_gpio_t
Typedef to the RTOS GPIO driver instance struct.

typedef void (*rtos_gpio_isr_cb_t)(rtos_gpio_t *ctx, void *app_data, rtos_gpio_port_id_t port_id, uint32_t value)
Function pointer type for application provided RTOS GPIO interrupt callback functions.

These callback functions are called when there is a GPIO port interrupt.

Note: this is the latched value that triggered the interrupt, not the current value.

Param ctx
A pointer to the associated GPIO driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param port_id
The GPIO port that triggered the interrupt.

Param value
The value on the GPIO port that caused the interrupt.

inline rtos_gpio_port_id_t rtos_gpio_port(port_t p)
Helper function to convert an xcore I/O port resource ID to an RTOS GPIO driver port ID.

Parameters

• p – An xcore I/O port resource ID.

Returns
the equivalent RTOS GPIO driver port ID.

void rtos_gpio_start(rtos_gpio_t *ctx)
Starts an RTOS GPIO driver instance. This must only be called by the tile that owns the driver instance. It
may be called either before or after starting the RTOS, but must be called before any of the core GPIO driver
functions are called with this instance.

rtos_gpio_init() must be called on this GPIO driver instance prior to calling this.

Parameters

• ctx – A pointer to the GPIO driver instance to start.

void rtos_gpio_init(rtos_gpio_t *ctx)
Initializes an RTOS GPIO driver instance. There should only be one per tile. This instance represents all the
GPIO ports owned by the calling tile. This must only be called by the tile that owns the driver instance. It
may be called either before or after starting the RTOS, but must be called before calling rtos_gpio_start() or
any of the core GPIO driver functions with this instance.

Parameters

• ctx – A pointer to the GPIO driver instance to initialize.

121212

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

RTOS_GPIO_ISR_CALLBACK_ATTR

This attribute must be specified on all RTOS GPIO interrupt callback functions provided by the application.

struct rtos_gpio_isr_info_t
#include <rtos_gpio.h> Struct to hold interrupt state data for GPIO ports.

The members in this struct should not be accessed directly.

struct rtos_gpio_struct
#include <rtos_gpio.h> Struct representing an RTOS GPIO driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core GPIO driver functions that are used after it has been initialized
and started.

inline void rtos_gpio_port_enable(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Enables a GPIO port. This must be called on a port before using it with any other GPIO driver function.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to enable.

inline uint32_t rtos_gpio_port_in(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Inputs the value present on a GPIO port’s pins.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to read from.

Returns
the value on the port’s pins.

inline void rtos_gpio_port_out(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id, uint32_t value)
Outputs a value to a GPIO port’s pins.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to write to.

• value – The value to write to the GPIO port.

inline void rtos_gpio_isr_callback_set(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id, rtos_gpio_isr_cb_t cb,
void *app_data)

Sets the application callback function to be called when there is an interrupt on a GPIO port.

This must be called prior to enabling interrupts on port_id. It is also safe to be called while interrupts are
enabled on it.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – Interrupts triggered by this port will call the application callback function cb.

131313

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• cb – The application callback function to call when there is an interrupt triggered by the
port port_id.

• app_data–A pointer to application specific data to pass to the application callback func-
tion cb.

inline void rtos_gpio_interrupt_enable(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Enables interrupts on a GPIO port. Interrupts are triggered whenever the value on the port changes.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to enable interrupts on.

inline void rtos_gpio_interrupt_disable(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Disables interrupts on a GPIO port.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to disable interrupts on.

inline void rtos_gpio_port_drive(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Configures a port in drive mode. Output values will be driven on the pins. This is the default drive state of a
port. This has the side effect of disabling the port’s internal pull-up and pull down resistors.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to drive mode.

inline void rtos_gpio_port_drive_low(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Configures a port in drive low mode. When the output value is 0 the pin is driven low, otherwise no value is
driven. This has the side effect of enabled the port’s internal pull-up resistor.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to drive mode low.

inline void rtos_gpio_port_drive_high(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Configures a port in drive high mode. When the output value is 1 the pin is driven high, otherwise no value
is driven. This has the side effect of enabled the port’s internal pull-down resistor.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to drive mode high.

inline void rtos_gpio_port_pull_none(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Disables the port’s internal pull-up and pull down resistors.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to pull none mode.

141414

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline void rtos_gpio_port_pull_up(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Enables the port’s internal pull-up resistor.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to pull up mode.

inline void rtos_gpio_port_pull_down(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id)
Enables the port’s internal pull-down resistor.

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to set to pull down mode.

inline void rtos_gpio_write_control_word(rtos_gpio_t *ctx, rtos_gpio_port_id_t port_id, uint32_t value)
Configures the port control word value

Parameters

• ctx – A pointer to the GPIO driver instance to use.

• port_id – The GPIO port to modify

• value – The value to set the control word to

RPC Initialization API The following functions may be used to share a GPIO driver instance with other xcore
tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_gpio_rpc_client_init(rtos_gpio_t *gpio_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*host_intertile_ctx)

Initializes an RTOS GPIO driver instance on a client tile. This allows a tile that does not own the actual driver
instance to use a driver instance on another tile. This will be called instead of rtos_gpio_init(). The host tile
that owns the actual instance must simultaneously call rtos_gpio_rpc_host_init().

Parameters

• gpio_ctx – A pointer to the GPIO driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
gpio_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as gpio_ctx.

void rtos_gpio_rpc_host_init(rtos_gpio_t *gpio_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on a GPIO driver instance to allow client tiles to use the GPIO driver in-
stance. Each client tile that will use this instance must simultaneously call rtos_gpio_rpc_client_init().

Parameters

• gpio_ctx – A pointer to the GPIO driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
gpio_ctx.

151515

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as gpio_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_gpio_rpc_config(rtos_gpio_t *gpio_ctx, unsigned intertile_port, unsigned host_task_priority)
Configures the RPC for a GPIO driver instance. This must be called by both the host tile and all client tiles.

On the client tiles this must be called after calling rtos_gpio_rpc_client_init(). After calling this, the client tile
may immediately begin to call the core GPIO functions on this driver instance. It does not need to wait for
the host to call rtos_gpio_start().

On the host tile this must be called both after calling rtos_gpio_rpc_host_init() and before calling
rtos_gpio_start().

Parameters

• gpio_ctx – A pointer to the GPIO driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

I2C RTOS Driver

This driver can be used to instantiate and control an I2C master or slave mode I/O interface on xcore in an RTOS
application.

I2C Master RTOS Driver This driver can be used to instantiate and control an I2C master I/O interface on xcore
in an RTOS application.

I2CMaster Initialization API The following structures and functions are used to initialize and start an I2C driver
instance.

typedef struct rtos_i2c_master_struct rtos_i2c_master_t
Typedef to the RTOS I2C master driver instance struct.

void rtos_i2c_master_start(rtos_i2c_master_t *i2c_master_ctx)
Starts an RTOS I2Cmaster driver instance. Thismust only be called by the tile that owns the driver instance.
Itmay be called either before or after starting the RTOS, butmust be called before any of the core I2Cmaster
driver functions are called with this instance.

rtos_i2c_master_init() must be called on this I2C master driver instance prior to calling this.

Parameters

• i2c_master_ctx – A pointer to the I2C master driver instance to start.

void rtos_i2c_master_init(rtos_i2c_master_t *i2c_master_ctx, const port_t p_scl, const uint32_t
scl_bit_position, const uint32_t scl_other_bits_mask, const port_t p_sda, const
uint32_t sda_bit_position, const uint32_t sda_other_bits_mask, hwtimer_t tmr,
const unsigned kbits_per_second)

161616

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Initializes an RTOS I2C master driver instance. This must only be called by the tile that owns the driver
instance. It may be called either before or after starting the RTOS, but must be called before calling
rtos_i2c_master_start() or any of the core I2C master driver functions with this instance.

Parameters

• i2c_master_ctx – A pointer to the I2C master driver instance to initialize.

• p_scl– The port containing SCL. Thismay be either the same as or different than p_sda.

• scl_bit_position – The bit number of the SCL line on the port p_scl.

• scl_other_bits_mask – A value that is ORed into the port value driven to p_scl both
when SCL is high and low. The bit representing SCL (as well as SDA if they share the
same port) must be set to 0.

• p_sda– The port containing SDA. Thismay be either the same as or different than p_scl.

• sda_bit_position – The bit number of the SDA line on the port p_sda.

• sda_other_bits_mask – A value that is ORed into the port value driven to p_sda both
when SDA is high and low. The bit representing SDA (as well as SCL if they share the
same port) must be set to 0.

• tmr – This is unused and should be set to 0. This will be removed.

• kbits_per_second – The speed of the I2C bus. The maximum value allowed is 400.

struct rtos_i2c_master_struct
#include <rtos_i2c_master.h> Struct representing an RTOS I2C master driver instance.

The members in this struct should not be accessed directly.

I2C Master Core API The following functions are the core I2C driver functions that are used after it has been
initialized and started.

inline i2c_res_t rtos_i2c_master_write(rtos_i2c_master_t *ctx, uint8_t device_addr, uint8_t buf[], size_t n,
size_t *num_bytes_sent, int send_stop_bit)

Writes data to an I2C bus as a master.

Parameters

• ctx – A pointer to the I2C master driver instance to use.

• device_addr – The address of the device to write to.

• buf – The buffer containing data to write.

• n – The number of bytes to write.

• num_bytes_sent – The function will set this value to the number of bytes actually sent.
On success, this will be equal to n but it will be less if the slave sends an early NACK on
the bus and the transaction fails.

• send_stop_bit – If this is non-zero then a stop bit will be sent on the bus after the trans-
action. This is usually required for normal operation. If this parameter is zero then no
stop bit will be omitted. In this case, no other task can use the component until a stop
bit has been sent.

Return values

• <tt>I2C_ACK</tt> – if the write was acknowledged by the device.

171717

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• <tt>I2C_NACK</tt>otherwise. –

inline i2c_res_t rtos_i2c_master_read(rtos_i2c_master_t *ctx, uint8_t device_addr, uint8_t buf[], size_t n, int
send_stop_bit)

Reads data from an I2C bus as a master.

Parameters

• ctx – A pointer to the I2C master driver instance to use.

• device_addr – The address of the device to read from.

• buf – The buffer to fill with data.

• n – The number of bytes to read.

• send_stop_bit – If this is non-zero then a stop bit. will be sent on the bus after the
transaction. This is usually required for normal operation. If this parameter is zero then
no stop bit will be omitted. In this case, no other task can use the component until a stop
bit has been sent.

Return values

• <tt>I2C_ACK</tt> – if the read was acknowledged by the device.

• <tt>I2C_NACK</tt>otherwise. –

inline void rtos_i2c_master_stop_bit_send(rtos_i2c_master_t *ctx)
Send a stop bit to an I2C bus as a master.

This function will cause a stop bit to be sent on the bus. It should be used to complete/abort a
transaction if the send_stop_bit argument was not set when calling the rtos_i2c_master_read() or
rtos_i2c_master_write() functions.

Parameters

• ctx – A pointer to the I2C master driver instance to use.

inline i2c_regop_res_t rtos_i2c_master_reg_write(rtos_i2c_master_t *ctx, uint8_t device_addr, uint8_t
reg_addr, uint8_t data)

Write to an 8-bit register on an I2C device.

This function writes to an 8-bit addressed, 8-bit register in an I2C device. The function writes the data by
sending the register address followed by the register data to the device at the specified device address.

Parameters

• ctx – A pointer to the I2C master driver instance to use.

• device_addr – The address of the device to write to.

• reg_addr – The address of the register to write to.

• data – The 8-bit value to write.

Return values

• <tt>I2C_REGOP_DEVICE_NACK</tt> – if the address is NACKed.

• <tt>I2C_REGOP_INCOMPLETE</tt> – if not all data was ACKed.

• <tt>I2C_REGOP_SUCCESS</tt> – on successful completion of the write.

181818

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline i2c_regop_res_t rtos_i2c_master_reg_read(rtos_i2c_master_t *ctx, uint8_t device_addr, uint8_t
reg_addr, uint8_t *data)

Reads from an 8-bit register on an I2C device.

This function reads from an 8-bit addressed, 8-bit register in an I2C device. The function reads the data
by sending the register address followed reading the register data from the device at the specified device
address.

Note that no stop bit is transmitted between the write and the read. The operation is performed as one
transaction using a repeated start.

Parameters

• ctx – A pointer to the I2C master driver instance to use.

• device_addr – The address of the device to read from.

• reg_addr – The address of the register to read from.

• data – A pointer to the byte to fill with data read from the register.

Return values

• <tt>I2C_REGOP_DEVICE_NACK</tt> – if the device NACKed.

• <tt>I2C_REGOP_SUCCESS</tt> – on successful completion of the read.

I2CMaster RPC Initialization API The following functionsmay be used to share a I2C driver instance with other
xcore tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_i2c_master_rpc_client_init(rtos_i2c_master_t *i2c_master_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *host_intertile_ctx)

Initializes an RTOS I2Cmaster driver instance on a client tile. This allows a tile that does not own the actual
driver instance to use a driver instance on another tile. This will be called instead of rtos_i2c_master_init().
The host tile that owns the actual instance must simultaneously call rtos_i2c_master_rpc_host_init().

Parameters

• i2c_master_ctx – A pointer to the I2C master driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
i2c_master_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as i2c_master_ctx.

void rtos_i2c_master_rpc_host_init(rtos_i2c_master_t *i2c_master_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on an I2C master driver instance to allow client tiles to use the
I2C master driver instance. Each client tile that will use this instance must simultaneously call
rtos_i2c_master_rpc_client_init().

Parameters

• i2c_master_ctx – A pointer to the I2C master driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
i2c_master_ctx.

191919

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as i2c_master_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_i2c_master_rpc_config(rtos_i2c_master_t *i2c_master_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for an I2Cmaster driver instance. This must be called by both the host tile and all client
tiles.

On the client tiles this must be called after calling rtos_i2c_master_rpc_client_init(). After calling this, the
client tile may immediately begin to call the core I2C master functions on this driver instance. It does not
need to wait for the host to call rtos_i2c_master_start().

On the host tile this must be called both after calling rtos_i2c_master_rpc_host_init() and before calling
rtos_i2c_master_start().

Parameters

• i2c_master_ctx – A pointer to the I2C master driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

I2C Slave RTOS Driver This driver can be used to instantiate and control an I2C slave I/O interface on xcore in
an RTOS application.

I2C Slave API The following structures and functions are used to initialize and start an I2C driver instance.

typedef struct rtos_i2c_slave_struct rtos_i2c_slave_t
Typedef to the RTOS I2C slave driver instance struct.

typedef void (*rtos_i2c_slave_start_cb_t)(rtos_i2c_slave_t *ctx, void *app_data)
Function pointer type for application provided RTOS I2C slave start callback functions.

These callback functions are optionally called by an I2C slave driver’s thread when it is first started. This
gives the application a chance to perform startup initialization from within the driver’s thread.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

typedef void (*rtos_i2c_slave_rx_cb_t)(rtos_i2c_slave_t *ctx, void *app_data, uint8_t *data, size_t len)
Function pointer type for application provided RTOS I2C slave receive callback functions.

These callback functions are called when an I2C slave driver instance has received data from a master
device.

202020

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param data
A pointer to the data received from the master.

Param len
The number of valid bytes in data.

typedef size_t (*rtos_i2c_slave_tx_start_cb_t)(rtos_i2c_slave_t *ctx, void *app_data, uint8_t **data)
Function pointer type for application provided RTOS I2C slave transmit start callback functions.

These callback functions are called when an I2C slave driver instance needs to transmit data to a master
device. This callback must provide the data to transmit and the length.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param data
A pointer to the data buffer to transmit to the master. The driver sets this to its internal data
buffer, which has a size of RTOS_I2C_SLAVE_BUF_LEN, prior to calling this callback. This
may be set to a different buffer by the callback. The callback must fill this buffer with the
data to send to the master.

Return
The number of bytes to transmit to the master from data. If the master reads more bytes
than this, the driver will wrap around to the start of the buffer and send it again.

typedef void (*rtos_i2c_slave_tx_done_cb_t)(rtos_i2c_slave_t *ctx, void *app_data, uint8_t *data, size_t len)
Function pointer type for application provided RTOS I2C slave transmit done callback functions.

These callback functions are optionally called when an I2C slave driver instance is done transmitting data to
a master device. A buffer to the data sent and the actual number of bytes sent are provided to the callback.

The application may want to use this, for example, if the buffer that was sent was malloc’d. This callback
can be used to free the buffer.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param data
A pointer to the data transmitted to the master.

Param len
The number of bytes transmitted to the master from data.

typedef void (*rtos_i2c_slave_rx_byte_check_cb_t)(rtos_i2c_slave_t *ctx, void *app_data, uint8_t data,
i2c_slave_ack_t *cur_status)

212121

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Function pointer type for application provided function to check bytes received from master individually.

This callback function is called once per byte received from the master device.

The applicationmaywant to use this, for example, to check byte by byte and force aNACK for an unexpected
payload.

The user provided functionsmust bemarkedwithRTOS_I2C_SLAVE_MASTER_SENT_BYTE_CHECK_CALLBACK_ATTR.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param data
A copy of the most recent byte of data transmitted from the master.

Param cur_status
Apointer to the current ACK/NACK response for this byte. The applicationmay change this to
I2C_SLAVE_ACK or I2C_SLAVE_NACK. If cur_status is returned as an invalid value, the driver
will implicitly NACK.

typedef void (*rtos_i2c_slave_write_addr_request_cb_t)(rtos_i2c_slave_t *ctx, void *app_data,
i2c_slave_ack_t *cur_status)

Function pointer type for application provided function to alert application that there is a write transaction
incoming from master

This allows an application to NACK if it is not ready for handling write requests.

The user provided functionsmust bemarkedwithRTOS_I2C_SLAVE_WRITE_ADDR_REQUEST_CALLBACK_ATTR.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param cur_status
Apointer to the current ACK/NACK response for this byte. The applicationmay change this to
I2C_SLAVE_ACK or I2C_SLAVE_NACK. If cur_status is returned as an invalid value, the driver
will implicitly NACK. By default the driver will implicitly ACK.

void rtos_i2c_slave_start(rtos_i2c_slave_t *i2c_slave_ctx, void *app_data, rtos_i2c_slave_start_cb_t start,
rtos_i2c_slave_rx_cb_t rx, rtos_i2c_slave_tx_start_cb_t tx_start,
rtos_i2c_slave_tx_done_cb_t tx_done, rtos_i2c_slave_rx_byte_check_cb_t
rx_byte_check, rtos_i2c_slave_write_addr_request_cb_t write_addr_req, unsigned
interrupt_core_id, unsigned priority)

Starts an RTOS I2C slave driver instance. This must only be called by the tile that owns the driver instance.
It must be called after starting the RTOS from an RTOS thread.

rtos_i2c_slave_init() must be called on this I2C slave driver instance prior to calling this.

Parameters

• i2c_slave_ctx – A pointer to the I2C slave driver instance to start.

• app_data – A pointer to application specific data to pass to the callback functions.

222222

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• start – The callback function that is called when the driver’s thread starts. This is op-
tional and may be NULL.

• rx – The callback function to receive data from the bus master.

• tx_start – The callback function to transmit data to the bus master.

• tx_done – The callback function that is notified when transmits are complete. This is
optional and may be NULL.

• rx_byte_check – The callback function to check received bytes individually.

• write_addr_req – The callback function to alert an incoming write request

• interrupt_core_id – The ID of the core on which to enable the I2C interrupt.

• priority – The priority of the task that gets created by the driver to call the callback
functions.

void rtos_i2c_slave_init(rtos_i2c_slave_t *i2c_slave_ctx, uint32_t io_core_mask, const port_t p_scl, const
port_t p_sda, uint8_t device_addr)

Initializes an RTOS I2C slave driver instance. This must only be called by the tile that owns the driver in-
stance. It should be called before starting the RTOS, andmust be called before calling rtos_i2c_slave_start().

Parameters

• i2c_slave_ctx – A pointer to the I2C slave driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level I2C I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• p_scl – The port containing SCL. This must be a 1-bit port and different than p_sda.

• p_sda – The port containing SDA. This must be a 1-bit port and different than p_scl.

• device_addr – The 7-bit address of the slave device.

RTOS_I2C_SLAVE_BUF_LEN

The maximum number of bytes that a the RTOS I2C slave driver can receive from a master in a single write
transaction.

RTOS_I2C_SLAVE_CALLBACK_ATTR

This attribute must be specified on all RTOS I2C slave callback functions provided by the application.

RTOS_I2C_SLAVE_RX_BYTE_CHECK_CALLBACK_ATTR

This attribute must be specified on all RTOS I2C slave rtos_i2c_slave_rx_byte_check_cb_t provided by the
application.

RTOS_I2C_SLAVE_WRITE_ADDR_REQUEST_CALLBACK_ATTR

This attribute must be specified on all RTOS I2C slave rtos_i2c_slave_write_addr_request_cb_t provided by
the application.

struct rtos_i2c_slave_struct
#include <rtos_i2c_slave.h> Struct representing an RTOS I2C slave driver instance.

The members in this struct should not be accessed directly.

232323

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

I2S RTOS Driver

This driver can be used to instantiate and control an I2S master or slave mode I/O interface on xcore in an RTOS
application.

Initialization API The following structures and functions are used to initialize and start an I2S driver instance.

I2SMaster Initialization API The following structures and functions are used to initialize and start an I2Smaster
driver instance.

void rtos_i2s_master_init(rtos_i2s_t *i2s_ctx, uint32_t io_core_mask, port_t p_dout[], size_t num_out, port_t
p_din[], size_t num_in, port_t p_bclk, port_t p_lrclk, port_t p_mclk, xclock_t bclk)

Initializes an RTOS I2S driver instance in master mode. This must only be called by the tile that owns
the driver instance. It should be called before starting the RTOS, and must be called before calling
rtos_i2s_start() or any of the core I2S driver functions with this instance.

Parameters

• i2s_ctx – A pointer to the I2S driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level I2S I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• p_dout – An array of data output ports.

• num_out – The number of output data ports.

• p_din – An array of data input ports.

• num_in – The number of input data ports.

• p_bclk – The bit clock output port.

• p_lrclk – The word clock output port.

• p_mclk – Input port which supplies the master clock.

• bclk – A clock that will get configured for use with the bit clock.

void rtos_i2s_master_ext_clock_init(rtos_i2s_t *i2s_ctx, uint32_t io_core_mask, port_t p_dout[], size_t
num_out, port_t p_din[], size_t num_in, port_t p_bclk, port_t p_lrclk,
xclock_t bclk)

Initializes an RTOS I2S driver instance in master mode but that uses an externally generated bit clock. This
must only be called by the tile that owns the driver instance. It should be called before starting the RTOS,
and must be called before calling rtos_i2s_start() or any of the core I2S driver functions with this instance.

Parameters

• i2s_ctx – A pointer to the I2S driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level I2S I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• p_dout – An array of data output ports.

• num_out – The number of output data ports.

• p_din – An array of data input ports.

• num_in – The number of input data ports.

• p_bclk – The bit clock output port.

242424

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• p_lrclk – The word clock output port.

• bclk – A clock that is configured externally to be used as the bit clock

I2S Slave Initialization API The following structures and functions are used to initialize and start an I2S slave
driver instance.

void rtos_i2s_slave_init(rtos_i2s_t *i2s_ctx, uint32_t io_core_mask, port_t p_dout[], size_t num_out, port_t
p_din[], size_t num_in, port_t p_bclk, port_t p_lrclk, xclock_t bclk)

Initializes an RTOS I2S driver instance in slavemode. Thismust only be called by the tile that owns the driver
instance. It should be called before starting the RTOS, and must be called before calling rtos_i2s_start() or
any of the core I2S driver functions with this instance.

Parameters

• i2s_ctx – A pointer to the I2S driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level I2S I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• p_dout – An array of data output ports.

• num_out – The number of output data ports.

• p_din – An array of data input ports.

• num_in – The number of input data ports.

• p_bclk – The bit clock input port.

• p_lrclk – The word clock input port.

• bclk – A clock that will get configured for use with the bit clock.

typedef struct rtos_i2s_struct rtos_i2s_t
Typedef to the RTOS I2S driver instance struct.

typedef size_t (*rtos_i2s_send_filter_cb_t)(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t
i2s_frame_size, int32_t *send_buf, size_t samples_available)

Function pointer type for application provided RTOS I2S send filter callback functions.

These callback functions are called when an I2S driver instance needs output the next audio frame to its
interface. By default, audio frames in the driver’s send buffer are output directly to its interface. However,
this gives the application an opportunity to override this and provide filtering.

These functions must not block.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param i2s_frame
A pointer to the buffer where the callback should write the next frame to send.

Param i2s_frame_size
The number of samples that should be written to i2s_frame.

252525

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Param send_buf
A pointer to the next frame in the driver’s send buffer. The callback should use this as the
input to its filter.

Param samples_available
The number of samples available in send_buf.

Return
the number of samples read out of send_buf.

typedef size_t (*rtos_i2s_receive_filter_cb_t)(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t
i2s_frame_size, int32_t *receive_buf, size_t sample_spaces_free)

Function pointer type for application provided RTOS I2S receive filter callback functions.

These callback functions are called when an I2S driver instance has received the next audio frame from its
interface. By default, audio frames received from the driver’s interface are put directly into its receive buffer.
However, this gives the application an opportunity to override this and provide filtering.

These functions must not block.

Param ctx
A pointer to the associated I2C slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param i2s_frame
A pointer to the buffer where the callback should read the next received frame from The
callback should use this as the input to its filter.

Param i2s_frame_size
The number of samples that should be read from i2s_frame.

Param receive_buf
A pointer to the next frame in the driver’s send buffer. The callback should use this as the
input to its filter.

Param sample_spaces_free
The number of sample spaces free in receive_buf.

Return
the number of samples written to receive_buf.

inline int rtos_i2s_mclk_bclk_ratio(const unsigned audio_clock_frequency, const unsigned sample_rate)
Helper function to calculate the MCLK/BCLK ratio given the audio clock frequency at the master clock pin
and the desired sample rate.

Parameters

• audio_clock_frequency – The frequency of the audio clock at the port p_mclk.

• sample_rate – The desired sample rate.

Returns
the MCLK/BCLK ratio that should be provided to rtos_i2s_start().

inline void rtos_i2s_send_filter_cb_set(rtos_i2s_t *ctx, rtos_i2s_send_filter_cb_t send_filter_cb, void
*send_filter_app_data)

262626

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline void rtos_i2s_receive_filter_cb_set(rtos_i2s_t *ctx, rtos_i2s_receive_filter_cb_t receive_filter_cb, void
*receive_filter_app_data)

void rtos_i2s_start(rtos_i2s_t *i2s_ctx, unsigned mclk_bclk_ratio, i2s_mode_t mode, size_t recv_buffer_size,
size_t send_buffer_size, unsigned interrupt_core_id)

Starts an RTOS I2S driver instance. This must only be called by the tile that owns the driver instance. It
must be called after starting the RTOS from an RTOS thread, and must be called before any of the core I2S
driver functions are called with this instance.

One of rtos_i2s_master_init(), rtos_i2s_master_ext_clock_init, or rtos_i2s_slave_init() must be called on this
I2S driver instance prior to calling this.

Parameters

• i2s_ctx – A pointer to the I2S driver instance to start.

• mclk_bclk_ratio – The master clock to bit clock ratio. This may be computed by the
helper function rtos_i2s_mclk_bclk_ratio(). This is only used if the I2S instance was ini-
tialized with rtos_i2s_master_init(). Otherwise it is ignored.

• mode – The mode of the LR clock. See i2s_mode_t.

• recv_buffer_size – The size in frames of the input buffer. Each frame is two samples
(left and right channels) per input port. For example, a size of two here when num_in is
three would create a buffer that holds up to 12 samples.

• send_buffer_size – The size in frames of the output buffer. Each frame is two sam-
ples (left and right channels) per output port. For example, a size of two here when
num_out is three would create a buffer that holds up to 12 samples. Frames transmitted
by rtos_i2s_tx() are stored in this buffers before they are sent out to the I2S interface.

• interrupt_core_id – The ID of the core on which to enable the I2S interrupt.

RTOS_I2S_APP_SEND_FILTER_CALLBACK_ATTR

This attribute must be specified on all RTOS I2S send filter callback functions provided by the application.

RTOS_I2S_APP_RECEIVE_FILTER_CALLBACK_ATTR

This attribute must be specified on all RTOS I2S receive filter callback functions provided by the application.

struct rtos_i2s_struct
#include <rtos_i2s.h> Struct representing an RTOS I2S driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core I2S driver functions that are used after it has been initialized and
started.

inline size_t rtos_i2s_rx(rtos_i2s_t *ctx, int32_t *i2s_sample_buf, size_t frame_count, unsigned timeout)
Receives sample frames from the I2S interface.

This function will block until new frames are available.

Parameters

• ctx – A pointer to the I2S driver instance to use.

• i2s_sample_buf – A buffer to copy the received sample frames into.

272727

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• frame_count – The number of frames to receive from the buffer. This must be less than
or equal to the size of the input buffer specified to rtos_i2s_start().

• timeout – The amount of time to wait before the requested number of frames becomes
available.

Returns
The number of frames actually received into i2s_sample_buf.

inline size_t rtos_i2s_tx(rtos_i2s_t *ctx, int32_t *i2s_sample_buf, size_t frame_count, unsigned timeout)
Transmits sample frames out to the I2S interface.

The samples are stored into a buffer and are not necessarily sent out to the I2S interface before this function
returns.

Parameters

• ctx – A pointer to the I2S driver instance to use.

• i2s_sample_buf – A buffer containing the sample frames to transmit out to the I2S in-
terface.

• frame_count – The number of frames to transmit out from the buffer. This must be less
than or equal to the size of the output buffer specified to rtos_i2s_start().

• timeout – The amount of time to wait before there is enough space in the send buffer
to accept the frames to be transmitted.

Returns
The number of frames actually stored into the buffer.

RPC Initialization API The following functions may be used to share a I2S driver instance with other xcore tiles.
Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_i2s_rpc_client_init(rtos_i2s_t *i2s_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*host_intertile_ctx)

Initializes an RTOS I2S driver instance on a client tile. This allows a tile that does not own the actual driver
instance to use a driver instance on another tile. This will be called instead of on of the RTOS I2S init
functions. The host tile that owns the actual instance must simultaneously call rtos_i2s_rpc_host_init().

Parameters

• i2s_ctx – A pointer to the I2S driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
i2s_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as i2s_ctx.

void rtos_i2s_rpc_host_init(rtos_i2s_t *i2s_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on a I2S driver instance to allow client tiles to use the I2S driver instance.
Each client tile that will use this instance must simultaneously call rtos_i2s_rpc_client_init().

Parameters

• i2s_ctx – A pointer to the I2S driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
i2s_ctx.

282828

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as i2s_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_i2s_rpc_config(rtos_i2s_t *i2s_ctx, unsigned intertile_port, unsigned host_task_priority)
Configures the RPC for a I2S driver instance. This must be called by both the host tile and all client tiles.

On the client tiles this must be called after calling rtos_i2s_rpc_client_init(). After calling this, the client tile
may immediately begin to call the core I2S functions on this driver instance. It does not need to wait for the
host to call rtos_i2s_start().

On the host tile this must be called both after calling rtos_i2s_rpc_host_init() and before calling
rtos_i2s_start().

Parameters

• i2s_ctx – A pointer to the I2S driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

Microphone Array RTOS Driver

This driver can be used to instantiate and control a dual DDR PDM microphone interface on xcore in an RTOS
application.

Initialization API The following structures and functions are used to initialize and start a microphone array
driver instance.

enum rtos_mic_array_format_t

Typedef for the RTOS mic array driver audio format

Values:

enumerator RTOS_MIC_ARRAY_CHANNEL_SAMPLE

enumerator RTOS_MIC_ARRAY_SAMPLE_CHANNEL

enumerator RTOS_MIC_ARRAY_FORMAT_COUNT

typedef struct rtos_mic_array_struct rtos_mic_array_t
Typedef to the RTOS mic array driver instance struct.

void rtos_mic_array_start(rtos_mic_array_t *mic_array_ctx, size_t buffer_size, unsigned interrupt_core_id)
Starts an RTOS mic array driver instance. This must only be called by the tile that owns the driver instance.
It must be called after starting the RTOS from an RTOS thread, and must be called before any of the core
mic array driver functions are called with this instance.

rtos_mic_array_init() must be called on this mic array driver instance prior to calling this.

292929

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• mic_array_ctx – A pointer to the mic array driver instance to start.

• buffer_size – The size in frames of the input buffer. Each frame is two samples (one
for each microphone) plus one sample per reference channel. This must be at least
MIC_ARRAY_CONFIG_SAMPLES_PER_FRAME. Samples are pulled out of this buffer by
the application by calling rtos_mic_array_rx().

• interrupt_core_id – The ID of the core on which to enable the mic array interrupt.

void rtos_mic_array_init(rtos_mic_array_t *mic_array_ctx, uint32_t io_core_mask, rtos_mic_array_format_t
format)

Initializes an RTOS mic array driver instance. This must only be called by the tile that owns the driver in-
stance. It should be called before starting the RTOS, andmust be called before calling rtos_mic_array_start()
or any of the core mic array driver functions with this instance.

Parameters

• mic_array_ctx – A pointer to the mic array driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level mic array I/O
thread created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• format – Format of the output data

struct rtos_mic_array_struct
#include <rtos_mic_array.h> Struct representing an RTOS mic array driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core microphone array driver functions that are used after it has been
initialized and started.

inline size_t rtos_mic_array_rx(rtos_mic_array_t *ctx, int32_t **sample_buf, size_t frame_count, unsigned
timeout)

Receives sample frames from the PDM mic array interface.

This function will block until new frames are available.

Parameters

• ctx – A pointer to the mic array driver instance to use.

• sample_buf – A buffer to copy the received sample frames into.

• frame_count – The number of frames to receive from the buffer. This
must be less than or equal to the size of the buffer specified to
rtos_mic_array_start() if in RTOS_MIC_ARRAY_SAMPLE_CHANNEL mode.
This must be equal to MIC_ARRAY_CONFIG_SAMPLES_PER_FRAME if in
RTOS_MIC_ARRAY_CHANNEL_SAMPLE mode.

• timeout – The amount of time to wait before the requested number of frames becomes
available.

Returns
The number of frames actually received into sample_buf.

303030

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

RPC Initialization API The following functions may be used to share a microphone array driver instance with
other xcore tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_mic_array_rpc_client_init(rtos_mic_array_t *mic_array_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *host_intertile_ctx)

Initializes an RTOS mic array driver instance on a client tile. This allows a tile that does not own the actual
driver instance to use a driver instance on another tile. This will be called instead of rtos_mic_array_init().
The host tile that owns the actual instance must simultaneously call rtos_mic_array_rpc_host_init().

Parameters

• mic_array_ctx – A pointer to the mic array driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
mic_array_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as mic_array_ctx.

void rtos_mic_array_rpc_host_init(rtos_mic_array_t *mic_array_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on amic array driver instance to allow client tiles to use themic array driver
instance. Each client tile that will use this instancemust simultaneously call rtos_mic_array_rpc_client_init().

Parameters

• mic_array_ctx – A pointer to the mic array driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
mic_array_ctx.

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as mic_array_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_mic_array_rpc_config(rtos_mic_array_t *mic_array_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for a mic array driver instance. This must be called by both the host tile and all client
tiles.

On the client tiles thismust be called after calling rtos_mic_array_rpc_client_init(). After calling this, the client
tile may immediately begin to call the core mic array functions on this driver instance. It does not need to
wait for the host to call rtos_mic_array_start().

On the host tile this must be called both after calling rtos_mic_array_rpc_host_init() and before calling
rtos_mic_array_start().

Parameters

• mic_array_ctx – A pointer to the mic array driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

313131

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

QSPI Flash RTOS Driver

This driver can be used to instantiate and control a Quad SPI flash I/O interface on xcore in an RTOS application.

Initialization API The following structures and functions are used to initialize and start a QSPI flash driver in-
stance.

typedef struct rtos_qspi_flash_struct rtos_qspi_flash_t
Typedef to the RTOS QSPI flash driver instance struct.

void rtos_qspi_flash_start(rtos_qspi_flash_t *ctx, unsigned priority)
Starts an RTOS QSPI flash driver instance. This must only be called by the tile that owns the driver instance.
It may be called either before or after starting the RTOS, but must be called before any of the core QSPI
flash driver functions are called with this instance.

rtos_qspi_flash_init() must be called on this QSPI flash driver instance prior to calling this.

Parameters

• ctx – A pointer to the QSPI flash driver instance to start.

• priority – The priority of the task that gets created by the driver to handle the QSPI
flash interface.

void rtos_qspi_flash_op_core_affinity_set(rtos_qspi_flash_t *ctx, uint32_t op_core_mask)
Sets the core affinity for a RTOS QSPI flash driver instance. This must only be called by the tile that owns
the driver instance. It may be called either before or after starting the RTOS, and should be called before
any of the core QSPI flash driver functions are called with this instance.

Since interrupts are disabled during the QSPI transaction on the op thread, a core mask is provided to allow
users to avoid collisions with application ISRs.

rtos_qspi_flash_start() must be called on this QSPI flash driver instance prior to calling this.

Parameters

• ctx – A pointer to the QSPI flash driver instance to start.

• op_core_mask – A bitmask representing the cores on which the QSPI I/O thread created
by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

void rtos_qspi_flash_init(rtos_qspi_flash_t *ctx, xclock_t clock_block, port_t cs_port, port_t sclk_port, port_t
sio_port, fl_QuadDeviceSpec *spec)

Initializes an RTOS QSPI flash driver instance. This must only be called by the tile that owns the driver
instance. It may be called either before or after starting the RTOS, but must be called before calling
rtos_qspi_flash_start() or any of the core QSPI flash driver functions with this instance.

This function will initialize a flash driver using lib_quadflash for all operations.

Parameters

• ctx – A pointer to the QSPI flash driver instance to initialize.

• clock_block – The clock block to use for the qspi_io interface.

• cs_port – The chip select port. MUST be a 1-bit port.

• sclk_port – The SCLK port. MUST be a 1-bit port.

• sio_port – The SIO port. MUST be a 4-bit port.

323232

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• spec – A pointer to the flash part specification. This may be set to NULL to use the XTC
default

void rtos_qspi_flash_fast_read_init(rtos_qspi_flash_t *ctx, xclock_t clock_block, port_t cs_port, port_t
sclk_port, port_t sio_port, fl_QuadDeviceSpec *spec,
qspi_fast_flash_read_transfer_mode_t read_mode, uint8_t
read_divide, uint32_t calibration_pattern_addr)

Initializes an RTOS QSPI flash driver instance. This must only be called by the tile that owns the driver
instance. It may be called either before or after starting the RTOS, but must be called before calling
rtos_qspi_flash_start() or any of the core QSPI flash driver functions with this instance.

This function will initialize a flash driver using lib_quadflash for erase and writes, and lib_qspi_fast_read for
reads. If calibration fails the driver will enable lib_quadflash for reads and allow the application to decide
what to do about the failed calibration. The status of the calibration can be checked at runtime by calling
rtos_qspi_flash_calibration_valid_get().

Parameters

• ctx – A pointer to the QSPI flash driver instance to initialize.

• clock_block – The clock block to use for the qspi_io interface.

• cs_port – The chip select port. MUST be a 1-bit port.

• sclk_port – The SCLK port. MUST be a 1-bit port.

• sio_port – The SIO port. MUST be a 4-bit port.

• spec – A pointer to the flash part specification. This may be set to NULL to use the XTC
default

• read_mode – The transfer mode to use for port reads. Invalid values will default to
qspi_fast_flash_read_transfer_raw

• read_divide – The divisor to use for QSPI SCLK.

• calibration_pattern_addr– The address of the default calibration pattern. This driver
requires the default calibration pattern suppliedwith lib_qspi_fast_read and does not sup-
port custom patterns.

RTOS_QSPI_FLASH_READ_CHUNK_SIZE

struct rtos_qspi_flash_struct
#include <rtos_qspi_flash.h> Struct representing an RTOS QSPI flash driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core QSPI flash driver functions that are used after it has been initial-
ized and started.

inline void rtos_qspi_flash_lock(rtos_qspi_flash_t *ctx)
Obtains a lock for exclusive access to the QSPI flash. This allows a thread to perform a sequence of op-
erations (such as read, modify, erase, write) without the risk of another thread issuing a command in the
middle of the sequence and corrupting the data in the flash.

If only a single atomic operation needs to be performed, such as a read, it is not necessary to call this
to obtain the lock first. Each individual operation obtains and releases the lock automatically so that they
cannot run while another thread has the lock.

The lock MUST be released when it is no longer needed by calling rtos_qspi_flash_unlock().

333333

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• ctx – A pointer to the QSPI flash driver instance to lock.

inline void rtos_qspi_flash_unlock(rtos_qspi_flash_t *ctx)
Releases a lock for exclusive access to the QSPI flash. The lock must have already been obtained by calling
rtos_qspi_flash_lock().

Parameters

• ctx – A pointer to the QSPI flash driver instance to unlock.

inline void rtos_qspi_flash_read(rtos_qspi_flash_t *ctx, uint8_t *data, unsigned address, size_t len)
This reads data from the flash in quad I/O mode. All four lines are used to send the address and to read the
data.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the buffer to save the read data to.

• address – The byte address in the flash to begin reading at. Only bits 23:0 contain the
address. Bits 31:24 are ignored.

• len – The number of bytes to read and save to data.

inline void rtos_qspi_flash_read_mode(rtos_qspi_flash_t *ctx, uint8_t *data, unsigned address, size_t len,
qspi_fast_flash_read_transfer_mode_t mode)

This reads data from the flash in quad I/O mode. All four lines are used to send the address and to read the
data.

Note: This only works with fast flash read and successful calibration. See rtos_qspi_flash_fast_read_init()
versus rtos_qspi_flash_init()

If used with non fast flash read setups, this function will behave exactly the same as rtos_qspi_flash_read(),
regardless of the value of mode.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the buffer to save the read data to.

• address – The byte address in the flash to begin reading at. Only bits 23:0 contain the
address. Bits 31:24 are ignored.

• len – The number of bytes to read and save to data.

• mode – The transfer mode for this read operation data.

int rtos_qspi_flash_read_ll(rtos_qspi_flash_t *ctx, uint8_t *data, unsigned address, size_t len)
This is a lower level version of rtos_qspi_flash_read() that is safe to call from within ISRs. If a task currently
own the flash lock, or if another core is actively doing a read with this function, then the read will not be
performed and an error returned. It is up to the application to determine what it should do in this situation
and to avoid a potential deadlock.

This function may only be called on the same tile as the underlying peripheral.

This function uses the lib_quadflash API to perform the read. It is up to the application to ensure that XCORE
resources are properly configured.

343434

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Note: It is not possible to call this from a task that currently owns the flash lock taken with
rtos_qspi_flash_lock(). In general it is not advisable to call this from an RTOS task unless the small amount
of overhead time that is introduced by rtos_qspi_flash_read() is unacceptable.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the buffer to save the read data to.

• address – The byte address in the flash to begin reading at. Only bits 23:0 contain the
address. Bits 31:24 are ignored.

• len – The number of bytes to read and save to data.

Return values

• 0 – if the flash was available and the read operation was performed.

• -1 – if the flash was unavailable and the read could not be performed.

int rtos_qspi_flash_fast_read_ll(rtos_qspi_flash_t *ctx, uint8_t *data, unsigned address, size_t len)
This is a lower level version of rtos_qspi_flash_read() that is safe to call from within ISRs. If a task currently
own the flash lock, or if another core is actively doing a read with this function, then the read will not be
performed and an error returned. It is up to the application to determine what it should do in this situation
and to avoid a potential deadlock.

This function may only be called on the same tile as the underlying peripheral.

This function uses the lib_qspi_fast_read API to perform the read. It is up to the application to ensure that
XCORE resources are properly configured.

Note: It is not possible to call this from a task that currently owns the flash lock taken with
rtos_qspi_flash_lock(). In general it is not advisable to call this from an RTOS task unless the small amount
of overhead time that is introduced by rtos_qspi_flash_read() is unacceptable.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the buffer to save the read data to.

• address – The byte address in the flash to begin reading at. Only bits 23:0 contain the
address. Bits 31:24 are ignored.

• len – The number of bytes to read and save to data.

Return values

• 0 – if the flash was available and the read operation was performed.

• -1 – if the flash was unavailable and the read could not be performed.

int rtos_qspi_flash_fast_read_mode_ll(rtos_qspi_flash_t *ctx, uint8_t *data, unsigned address, size_t len,
qspi_fast_flash_read_transfer_mode_t mode)

This is a lower level version of rtos_qspi_flash_read_mode() that is safe to call from within ISRs. If a task
currently own the flash lock, or if another core is actively doing a read with this function, then the read will

353535

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

not be performed and an error returned. It is up to the application to determine what it should do in this
situation and to avoid a potential deadlock.

This function may only be called on the same tile as the underlying peripheral.

This function uses the lib_qspi_fast_read API to perform the read. It is up to the application to ensure that
XCORE resources are properly configured.

Note: It is not possible to call this from a task that currently owns the flash lock taken with
rtos_qspi_flash_lock(). In general it is not advisable to call this from an RTOS task unless the small amount
of overhead time that is introduced by rtos_qspi_flash_read_mode() is unacceptable.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the buffer to save the read data to.

• address – The byte address in the flash to begin reading at. Only bits 23:0 contain the
address. Bits 31:24 are ignored.

• len – The number of bytes to read and save to data.

• mode – The transfer mode for this read operation data.

Return values

• 0 – if the flash was available and the read operation was performed.

• -1 – if the flash was unavailable and the read could not be performed.

void rtos_qspi_flash_fast_read_setup_ll(rtos_qspi_flash_t *ctx)
This is a lower level function that enables the user to setup the ports for fast flash access.

This function may only be called on the same tile as the underlying peripheral.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

void rtos_qspi_flash_fast_read_shutdown_ll(rtos_qspi_flash_t *ctx)
This is a lower level function that enables the user to shutdown low level usage to resume normal QSPI
thread operation.

This function may only be called on the same tile as the underlying peripheral.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

inline void rtos_qspi_flash_write(rtos_qspi_flash_t *ctx, const uint8_t *data, unsigned address, size_t len)
This writes data to the QSPI flash. The standard page program command is sent and only SIO0 (MOSI) is
used to send the address and data.

The driver handles sending the write enable command, as well as waiting for the write to complete.

This functionmay return before the write operation is complete, as the actual write operation is queued and
executed by a thread created by the driver.

363636

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Note: this function does NOT erase the flash first. Erase operations must be explicitly requested by the
application.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• data – Pointer to the data to write to the flash.

• address – The byte address in the flash to begin writing at. Only bits 23:0 contain the
address. The byte in bits 31:24 is not sent.

• len – The number of bytes to write to the flash.

inline void rtos_qspi_flash_erase(rtos_qspi_flash_t *ctx, unsigned address, size_t len)
This erases data from the QSPI flash. If the address range to erase spans multiple sectors, then all of these
sectors will be erased by issuing multiple erase commands.

The driver handles sending the write enable command, as well as waiting for the write to complete.

This function may return before the write operation is complete, as the actual erase operation is queued
and executed by a thread created by the driver.

Note: The smallest amount of data that can be erased is a 4k sector. This means that data outside the
address range specified by address and len will be erased if the address range does not both begin and
end at 4k sector boundaries.

Parameters

• ctx – A pointer to the QSPI flash driver instance to use.

• address – The byte address to begin erasing. This does not need to begin at a sector
boundary, but if it does not, note that the entire sector that contains this address will still
be erased.

• len – The minimum number of bytes to erase. If address + len - 1 does not correspond
to the last address within a sector, note that the entire sector that contains this address
will still be erased.

inline size_t rtos_qspi_flash_size_get(rtos_qspi_flash_t *qspi_flash_ctx)
This gets the size in bytes of the flash chip.

Parameters

• A – pointer to the QSPI flash driver instance to query.

Returns
the size in bytes of the flash chip.

inline size_t rtos_qspi_flash_page_size_get(rtos_qspi_flash_t *qspi_flash_ctx)
This gets the size in bytes of each page in the flash chip.

Parameters

• A – pointer to the QSPI flash driver instance to query.

Returns
the size in bytes of the flash page.

373737

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline size_t rtos_qspi_flash_page_count_get(rtos_qspi_flash_t *qspi_flash_ctx)
This gets the number of pages in the flash chip.

Parameters

• A – pointer to the QSPI flash driver instance to query.

Returns
the number of pages in the flash chip.

inline size_t rtos_qspi_flash_sector_size_get(rtos_qspi_flash_t *qspi_flash_ctx)
This gets the sector size of the flash chip

Parameters

• A – pointer to the QSPI flash driver instance to query.

Returns
the size in bytes of the smallest sector

inline unsigned rtos_qspi_flash_calibration_valid_get(rtos_qspi_flash_t *qspi_flash_ctx)
Gets the value of the calibration valid.

Parameters

• A – pointer to the QSPI flash driver instance to query.

Returns
1 if calibration was successful 0 otherwise

RPC Initialization API The following functions may be used to share a QSPI flash driver instance with other
xcore tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_qspi_flash_rpc_client_init(rtos_qspi_flash_t *qspi_flash_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *host_intertile_ctx)

Initializes an RTOS QSPI flash driver instance on a client tile. This allows a tile that does not own the actual
driver instance to use a driver instance on another tile. This will be called instead of rtos_qspi_flash_init().
The host tile that owns the actual instance must simultaneously call rtos_qspi_flash_rpc_host_init().

Parameters

• qspi_flash_ctx – A pointer to the QSPI flash driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
qspi_flash_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as qspi_flash_ctx.

void rtos_qspi_flash_rpc_host_init(rtos_qspi_flash_t *qspi_flash_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on a QSPI flash driver instance to allow client tiles to use the
QSPI flash driver instance. Each client tile that will use this instance must simultaneously call
rtos_qspi_flash_rpc_client_init().

Parameters

• qspi_flash_ctx – A pointer to the QSPI flash driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
qspi_flash_ctx.

383838

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as qspi_flash_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_qspi_flash_rpc_config(rtos_qspi_flash_t *qspi_flash_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for a QSPI flash driver instance. This must be called by both the host tile and all client
tiles.

On the client tiles thismust be called after calling rtos_qspi_flash_rpc_client_init(). After calling this, the client
tile may immediately begin to call the core QSPI flash functions on this driver instance. It does not need to
wait for the host to call rtos_qspi_flash_start().

On the host tile this must be called both after calling rtos_qspi_flash_rpc_host_init() and before calling
rtos_qspi_flash_start().

Parameters

• qspi_flash_ctx – A pointer to the QSPI flash driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

SPI RTOS Driver

This driver can be used to instantiate and control a SPI master or slave mode I/O interface on xcore in an RTOS
application.

SPI Master RTOS Driver This driver can be used to instantiate and control a SPI master I/O interface on xcore
in an RTOS application.

SPIMaster Initialization API The following structures and functions are used to initialize and start a SPImaster
driver instance.

typedef struct rtos_spi_master_struct rtos_spi_master_t
Typedef to the RTOS SPI master driver instance struct.

typedef struct rtos_spi_master_device_struct rtos_spi_master_device_t
Typedef to the RTOS SPI device instance struct.

void rtos_spi_master_start(rtos_spi_master_t *spi_master_ctx, unsigned priority)
Starts an RTOS SPImaster driver instance. Thismust only be called by the tile that owns the driver instance.
Itmay be called either before or after starting the RTOS, butmust be called before any of the core SPImaster
driver functions are called with this instance.

rtos_spi_master_init() must be called on this SPI master driver instance prior to calling this.

Parameters

393939

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• spi_master_ctx – A pointer to the SPI master driver instance to start.

• priority–Thepriority of the task that gets created by the driver to handle the SPImaster
interface.

void rtos_spi_master_init(rtos_spi_master_t *bus_ctx, xclock_t clock_block, port_t cs_port, port_t sclk_port,
port_t mosi_port, port_t miso_port)

Initializes an RTOS SPI master driver instance. This must only be called by the tile that owns the driver
instance. It may be called either before or after starting the RTOS, but must be called before calling
rtos_spi_master_start() or any of the core SPI master driver functions with this instance.

Parameters

• bus_ctx – A pointer to the SPI master driver instance to initialize.

• clock_block – The clock block to use for the SPI master interface.

• cs_port – The SPI interface’s chip select port. This may be a multi-bit port.

• sclk_port – The SPI interface’s SCLK port. Must be a 1-bit port.

• mosi_port – The SPI interface’s MOSI port. Must be a 1-bit port.

• miso_port – The SPI interface’s MISO port. Must be a 1-bit port.

void rtos_spi_master_device_init(rtos_spi_master_device_t *dev_ctx, rtos_spi_master_t *bus_ctx, uint32_t
cs_pin, int cpol, int cpha, spi_master_source_clock_t source_clock,
uint32_t clock_divisor, spi_master_sample_delay_t miso_sample_delay,
uint32_t miso_pad_delay, uint32_t cs_to_clk_delay_ticks, uint32_t
clk_to_cs_delay_ticks, uint32_t cs_to_cs_delay_ticks)

Initialize a SPI device. Multiple SPI devices may be initialized per RTOS SPI master driver instance. Each
must be on a unique pin of the interface’s chip select port. This must only be called by the tile that owns the
driver instance. It may be called either before or after starting the RTOS, but must be called before calling
rtos_spi_master_start() or any of the core SPI master driver functions with this instance.

Parameters

• dev_ctx – A pointer to the SPI device instance to initialize.

• bus_ctx – A pointer to the SPI master driver instance to attach the device to.

• cs_pin – The bit number of the chip select port that is connected to the device’s chip
select pin.

• cpol – The clock polarity required by the device.

• cpha – The clock phase required by the device.

• source_clock – The source clock to derive SCLK from. See spi_master_source_clock_t.

• clock_divisor – The value to divide the source clock by. The frequency of SCLK will be
set to:

– (F_src) / (4 * clock_divisor) when clock_divisor > 0

– (F_src) / (2) when clock_divisor = 0 Where F_src is the frequency of the source clock.

• miso_sample_delay – When to sample MISO. See spi_master_sample_delay_t.

• miso_pad_delay – The number of core clock cycles to delay sampling the MISO pad
during a transaction. This allows for more fine grained adjustment of sampling time.
The value may be between 0 and 5.

• cs_to_clk_delay_ticks – The minimum number of reference clock ticks between as-
sertion of chip select and the first clock edge.

404040

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• clk_to_cs_delay_ticks – The minimum number of reference clock ticks between the
last clock edge and de-assertion of chip select.

• cs_to_cs_delay_ticks – Theminimum number of reference clock ticks between trans-
actions, which is between de-assertion of chip select and the end of one transaction, and
its re-assertion at the beginning of the next.

struct rtos_spi_master_struct
#include <rtos_spi_master.h> Struct representing an RTOS SPI master driver instance.

The members in this struct should not be accessed directly.

struct rtos_spi_master_device_struct
#include <rtos_spi_master.h> Struct representing an RTOS SPI device instance.

The members in this struct should not be accessed directly.

SPI Master Core API The following functions are the core SPI master driver functions that are used after it has
been initialized and started.

inline void rtos_spi_master_transaction_start(rtos_spi_master_device_t *ctx)
Starts a transaction with the specified SPI device on a SPI bus. This leaves chip select asserted.

Note: When this is called, the servicer thread will be locked to the core that it executed on until
rtos_spi_master_transaction_end() is called. This is because the underlying I/O software utilized fast mode
and high priority.

Parameters

• ctx – A pointer to the SPI device instance.

inline void rtos_spi_master_transfer(rtos_spi_master_device_t *ctx, uint8_t *data_out, uint8_t *data_in, size_t
len)

Transfers data to and from the specified SPI device on a SPI bus. The transaction must already have been
started by calling rtos_spi_master_transaction_start() on the same device instance. This may be called mul-
tiple times during a single transaction.

This function may return before the transfer is complete when data_in is NULL, as the actual transfer oper-
ation is queued and executed by a thread created by the driver.

Parameters

• ctx – A pointer to the SPI device instance.

• data_out – Pointer to the data to transfer to the device. This may be NULL if there is no
data to send.

• data_in – Pointer to the buffer to save the received data to. This may be NULL if the
received data is not needed.

• len – The number of bytes to transfer in each direction. This number of bytes must be
available in both the data_out and data_in buffers if they are not NULL.

inline void rtos_spi_master_delay_before_next_transfer(rtos_spi_master_device_t *ctx, uint32_t
delay_ticks)

If there is a minimum amount of idle time that is required by the device between transfers within a single
transaction, then this may be called between each transfer where a delay is required.

414141

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

This function will return immediately. If the call for the next transfer happens before the minimum time
specified has elapsed, the delay will occur then before the transfer begins.

Note: This must be called during a transaction, otherwise the behavior is unspecified.

Note: Technically the next transfer will occur no earlier than delay_ticks after this function is called, so
this should be called immediately following a transfer, rather than immediately before the next.

Parameters

• ctx – A pointer to the SPI device instance.

• delay_ticks – The number of reference clock ticks to delay.

inline void rtos_spi_master_transaction_end(rtos_spi_master_device_t *ctx)
Ends a transaction with the specified SPI device on a SPI bus. This leaves chip select de-asserted.

Parameters

• ctx – A pointer to the SPI device instance.

SPI Master RPC Initialization API The following functions may be used to share a SPI master driver instance
with other xcore tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_spi_master_rpc_client_init(rtos_spi_master_t *spi_master_ctx, rtos_spi_master_device_t
*spi_device_ctx[], size_t spi_device_count, rtos_driver_rpc_t
*rpc_config, rtos_intertile_t *host_intertile_ctx)

Initializes an RTOS SPImaster driver instance on a client tile, as well as any number of SPI device instances.
This allows a tile that does not own the actual driver instance to use a driver instance on another tile. This
will be called instead of rtos_spi_master_init() and rtos_spi_master_device_init(). The host tile that owns the
actual instances must simultaneously call rtos_spi_master_rpc_host_init().

Parameters

• spi_master_ctx – A pointer to the SPI master driver instance to initialize.

• spi_device_ctx – An array of pointers to SPI device instances to initialize.

• spi_device_count – The number of SPI device instances to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
spi_master_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as spi_master_ctx.

void rtos_spi_master_rpc_host_init(rtos_spi_master_t *spi_master_ctx, rtos_spi_master_device_t
*spi_device_ctx[], size_t spi_device_count, rtos_driver_rpc_t
*rpc_config, rtos_intertile_t *client_intertile_ctx[], size_t
remote_client_count)

Performs additional initialization on a SPI master driver instance to allow client tiles to use the
SPI master driver instance. Each client tile that will use this instance must simultaneously call
rtos_spi_master_rpc_client_init().

424242

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• spi_master_ctx – A pointer to the SPI master driver instance to share with clients.

• spi_device_ctx – An array of pointers to SPI device instances to share with clients.

• spi_device_count – The number of SPI device instances to share.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
spi_master_ctx.

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as spi_master_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_spi_master_rpc_config(rtos_spi_master_t *spi_master_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for a SPI master driver instance. This must be called by both the host tile and all client
tiles.

On the client tiles this must be called after calling rtos_spi_master_rpc_client_init(). After calling this, the
client tile may immediately begin to call the core SPI master functions on this driver instance. It does not
need to wait for the host to call rtos_spi_master_start().

On the host tile this must be called both after calling rtos_spi_master_rpc_host_init() and before calling
rtos_spi_master_start().

Parameters

• spi_master_ctx – A pointer to the SPI master driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

SPI Slave RTOS Driver This driver can be used to instantiate and control a SPI slave I/O interface on xcore in
an RTOS application.

SPI Slave API The following structures and functions are used to initialize and start a SPI slave driver instance.

typedef struct rtos_spi_slave_struct rtos_spi_slave_t
Typedef to the RTOS SPI slave driver instance struct.

typedef void (*rtos_spi_slave_start_cb_t)(rtos_spi_slave_t *ctx, void *app_data)
Function pointer type for application provided RTOS SPI slave start callback functions.

These callback functions are optionally called by a SPI slave driver’s thread when it is first started. This
gives the application a chance to perform startup initialization from within the driver’s thread. It is a good
place for the first call to spi_slave_xfer_prepare().

Param ctx
A pointer to the associated SPI slave driver instance.

434343

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

typedef void (*rtos_spi_slave_xfer_done_cb_t)(rtos_spi_slave_t *ctx, void *app_data)
Function pointer type for application provided RTOS SPI slave transfer done callback functions.

These callback functions are optionally called when a SPI slave driver instance is done transferring data
with a master device.

An application can use this to be notified immediately when a transfer has completed. It can then call
spi_slave_xfer_complete() with a timeout of 0 from within this callback to get the transfer results.

Param ctx
A pointer to the associated SPI slave driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

typedef struct xfer_done_queue_item xfer_done_queue_item_t

Internally used struct representing an received data packet.

The members in this struct should not be accessed directly.

void spi_slave_xfer_prepare(rtos_spi_slave_t *ctx, void *rx_buf, size_t rx_buf_len, void *tx_buf, size_t
tx_buf_len)

Prepares an RTOS SPI slave driver instance with buffers for subsequent transfers. Before this is called for
the first time, any transfers initiated by a master device with result in all received data over MOSI being
dropped, and all data sent over MISO being zeros.

This only needs to be called when the buffers need to be changed. If all transfers will use the same buffers,
then this only needs to be called once during initialization.

If the application has not processed the previous transaction, the buffers will be held, and default buffers
set by spi_slave_xfer_prepare_default_buffers() will be used if a new transaction starts.

Parameters

• ctx – A pointer to the SPI slave driver instance to use.

• rx_buf – The buffer to receive data into for any subsequent transfers.

• rx_buf_ – The length in bytes of rx_buf. If the master transfers more than this during a
single transfer, then the bytes that do not fit within rx_buf will be lost.

• tx_buf – The buffer to send data from for any subsequent transfers.

• tx_buf_len–The length in bytes of tx_buf. If themaster transfersmore than this during
a single transfer, zeros will be sent following the last byte tx_buf.

void spi_slave_xfer_prepare_default_buffers(rtos_spi_slave_t *ctx, void *rx_buf, size_t rx_buf_len, void
*tx_buf, size_t tx_buf_len)

Prepares an RTOS SPI slave driver instance with default buffers for subsequent transfers. Before this is
called for the first time, any transfers initiated by a master device with result in all received data over MOSI
being dropped, and all data sent over MISO being zeros.

This only needs to be called when the buffers need to be changed.

444444

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

The default buffer will be used in the event that the application has not yet processed the previous transfer.
This enables the application to have a default buffer to implement a sort of NACK over SPI in the event that
the device was busy and had not yet finished handling the previous transaction before a new one started.

Parameters

• ctx – A pointer to the SPI slave driver instance to use.

• rx_buf – The buffer to receive data into for any subsequent transfers.

• rx_buf_ – The length in bytes of rx_buf. If the master transfers more than this during a
single transfer, then the bytes that do not fit within rx_buf will be lost.

• tx_buf – The buffer to send data from for any subsequent transfers.

• tx_buf_len–The length in bytes of tx_buf. If themaster transfersmore than this during
a single transfer, zeros will be sent following the last byte tx_buf.

int spi_slave_xfer_complete(rtos_spi_slave_t *ctx, void **rx_buf, size_t *rx_len, void **tx_buf, size_t *tx_len,
unsigned timeout)

Waits for a SPI transfer to complete. Returns either when the timeout is reached, or when a transfer com-
pletes, whichever comes first. If a transfer does complete, then the buffers and the number of bytes read
from or written to them are returned via the parameters.

Note: The duration of this callback will effect the minimum duration between SPI transactions

Parameters

• ctx – A pointer to the SPI slave driver instance to use.

• rx_buf – The receive buffer used for the completed transfer. This is set by the function
upon completion of a transfer.

• rx_len – The number of bytes written to rx_buf. This is set by the function upon com-
pletion of a transfer.

• tx_buf – The transmit buffer used for the completed transfer. This is set by the function
upon completion of a transfer.

• tx_len – The number of bytes sent from tx_buf. This is set by the function upon com-
pletion of a transfer.

• timeout – The number of RTOS ticks to wait before the next transfer is complete. When
called from within the “xfer_done” callback, this should be 0.

Return values

• 0 – if a transfer completed. All buffers and lengths are set in this case.

• -1 – if no transfer completed before the timeout expired. No buffers or lengths are re-
turned in this case.

void spi_slave_default_buf_xfer_ended_enable(rtos_spi_slave_t *ctx)
Sets the driver to use callbacks for all default transactions. This will result in transfers done with the default
buffer generating callbacks to the application to xfer_done. This will require default buffer transaction items
to be processed with spi_slave_xfer_complete()

Note: This is the default setting

454545

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• ctx – A pointer to the SPI slave driver instance to use.

void spi_slave_default_buf_xfer_ended_disable(rtos_spi_slave_t *ctx)
Sets the driver to drop all default transactions. This will result in transfers done with the default buffer not
generating callbacks to the application to xfer_done. This will also stop default buffer transaction items
from being required to be processed with spi_slave_xfer_complete()

Parameters

• ctx – A pointer to the SPI slave driver instance to use.

void rtos_spi_slave_start(rtos_spi_slave_t *spi_slave_ctx, void *app_data, rtos_spi_slave_start_cb_t start,
rtos_spi_slave_xfer_done_cb_t xfer_done, unsigned interrupt_core_id, unsigned
priority)

Starts an RTOS SPI slave driver instance. This must only be called by the tile that owns the driver instance.
It must be called after starting the RTOS from an RTOS thread.

rtos_spi_slave_init() must be called on this SPI slave driver instance prior to calling this.

Parameters

• spi_slave_ctx – A pointer to the SPI slave driver instance to start.

• app_data – A pointer to application specific data to pass to the callback functions.

• start – The callback function that is called when the driver’s thread starts. This is op-
tional and may be NULL.

• xfer_done – The callback function that is notified when transfers are complete. This is
optional and may be NULL.

• interrupt_core_id – The ID of the core on which to enable the SPI interrupt. This core
should not be shared with threads that disable interrupts for long periods of time, nor
enable other interrupts.

• priority – The priority of the task that gets created by the driver to call the callback
functions. If both callback functions are NULL, then this is unused.

void rtos_spi_slave_init(rtos_spi_slave_t *spi_slave_ctx, uint32_t io_core_mask, xclock_t clock_block, int
cpol, int cpha, port_t p_sclk, port_t p_mosi, port_t p_miso, port_t p_cs)

Initializes an RTOS SPI slave driver instance. This must only be called by the tile that owns the driver in-
stance. It should be called before starting the RTOS, andmust be called before calling rtos_spi_slave_start().

For timing parameters and maximum clock rate, refer to the underlying HIL IO API.

Parameters

• spi_slave_ctx – A pointer to the SPI slave driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low level SPI I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• clock_block – The clock block to use for the SPI slave.

• cpol – The clock polarity to use.

• cpha – The clock phase to use.

• p_sclk – The SPI slave’s SCLK port. Must be a 1-bit port.

• p_mosi – The SPI slave’s MOSI port. Must be a 1-bit port.

• p_miso – The SPI slave’s MISO port. Must be a 1-bit port.

464646

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• p_cs – The SPI slave’s CS port. Must be a 1-bit port.

RTOS_SPI_SLAVE_CALLBACK_ATTR

This attribute must be specified on all RTOS SPI slave callback functions provided by the application.

HIL_IO_SPI_SLAVE_HIGH_PRIO

Set SPI Slave thread to high priority

HIL_IO_SPI_SLAVE_FAST_MODE

Set SPI Slave thread to run in fast mode

struct xfer_done_queue_item
#include <rtos_spi_slave.h> Internally used struct representing an received data packet.

The members in this struct should not be accessed directly.

struct rtos_spi_slave_struct
#include <rtos_spi_slave.h> Struct representing an RTOS SPI slave driver instance.

The members in this struct should not be accessed directly.

UART RTOS Driver

This driver can be used to instantiate and control an UART Rx or UART Tx I/O interface on xCORE in an RTOS
application.

UART Tx RTOS Driver This driver can be used to instantiate and control an UART Tx I/O interface on xCORE in
an RTOS application.

UART Tx API The following structures and functions are used to initialize and start a UART Tx driver instance.

typedef struct rtos_uart_tx_struct rtos_uart_tx_t
Typedef to the RTOS UART tx driver instance struct.

inline void rtos_uart_tx_write(rtos_uart_tx_t *ctx, const uint8_t buf[], size_t n)
Writes data to an initialized and started UART instance. Unlike the UART rx, an xcore logical core is not
reserved. The UART transmission is a function call and the the function blocks until the stop bit of the last
byte to be transmittted has completed. Interrupts are masked during this time to avoid stretching of the
waveform. Consequently, the tx consumes cycles from the caller thread.

Parameters

• ctx – A pointer to the UART Tx driver instance to use.

• buf – The buffer containing data to write.

• n – The number of bytes to write.

474747

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

void rtos_uart_tx_init(rtos_uart_tx_t *ctx, const port_t tx_port, const uint32_t baud_rate, const uint8_t
num_data_bits, const uart_parity_t parity, const uint8_t stop_bits, hwtimer_t tmr)

Initialises an RTOSUART tx driver instance. Thismust only be called by the tile that owns the driver instance.
It may be called either before or after starting the RTOS, butmust be called before calling rtos_uart_tx_start()
or any of the core UART tx driver functions with this instance.

Parameters

• ctx – A pointer to the UART tx driver instance to initialise.

• tx_port – The port containing the transmit pin

• baud_rate – The baud rate of the UART in bits per second.

• num_data_bits – The number of data bits per frame sent.

• parity – The type of parity used. See uart_parity_t above.

• stop_bits – The number of stop bits asserted at the of the frame.

• tmr – The resource id of the timer to be used by the UART tx.

void rtos_uart_tx_start(rtos_uart_tx_t *ctx)
Starts an RTOS UART tx driver instance. This must only be called by the tile that owns the driver instance.
It may be called either before or after starting the RTOS, but must be called before any of the core UART tx
driver functions are called with this instance.

rtos_uart_tx_init() must be called on this UART tx driver instance prior to calling this.

Parameters

• ctx – A pointer to the UART tx driver instance to start.

struct rtos_uart_tx_struct
#include <rtos_uart_tx.h> Struct representing an RTOS UART tx driver instance.

The members in this struct should not be accessed directly.

UART Tx RPC Initialization API The following functions may be used to share a UART Tx driver instance with
other xCORE tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_uart_tx_rpc_client_init(rtos_uart_tx_t *uart_tx_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*host_intertile_ctx)

Initializes an RTOS UART tx driver instance on a client tile. This allows a tile that does not own the actual
driver instance to use a driver instance on another tile. This will be called instead of rtos_uart_tx_init(). The
host tile that owns the actual instance must simultaneously call rtos_uart_tx_rpc_host_init().

Parameters

• uart_tx_ctx – A pointer to the UART tx driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
uart_tx_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as uart_tx_ctx.

484848

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

void rtos_uart_tx_rpc_host_init(rtos_uart_tx_t *uart_tx_ctx, rtos_driver_rpc_t *rpc_config, rtos_intertile_t
*client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on an UART tx driver instance to allow client tiles to use the UART tx driver
instance. Each client tile that will use this instance must simultaneously call rtos_uart_tx_rpc_client_init().

Parameters

• uart_tx_ctx – A pointer to the UART tx driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
uart_tx_ctx.

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as uart_tx_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_uart_tx_rpc_config(rtos_uart_tx_t *uart_tx_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for an UART tx driver instance. This must be called by both the host tile and all client
tiles.

On the client tiles this must be called after calling rtos_uart_tx_rpc_client_init(). After calling this, the client
tile may immediately begin to call the core UART tx functions on this driver instance. It does not need to
wait for the host to call rtos_uart_tx_start().

On the host tile this must be called both after calling rtos_uart_tx_rpc_host_init() and before calling
rtos_uart_tx_start().

Parameters

• uart_tx_ctx – A pointer to the UART tx driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

UART Rx RTOS Driver This driver can be used to instantiate and control an UART Rx I/O interface on xcore in
an RTOS application.

UART Rx API The following structures and functions are used to initialize and start a UART Rx driver instance.

typedef struct rtos_uart_rx_struct rtos_uart_rx_t
Typedef to the RTOS UART rx driver instance struct.

typedef void (*rtos_uart_rx_started_cb_t)(rtos_uart_rx_t *ctx)
Function pointer type for application provided RTOS UART rx start callback functions.

This callback function is optionally (may beNULL) called by anUART rx driver’s threadwhen it is first started.
This gives the application a chance to perform startup initialization from within the driver’s thread.

Param ctx
A pointer to the associated UART rx driver instance.

494949

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

typedef void (*rtos_uart_rx_complete_cb_t)(rtos_uart_rx_t *ctx)
Function pointer type for application provided RTOS UART rx receive callback function.

This callback functions are called when an UART rx driver instance has received data to a specified depth.
Please use the xStreamBufferReceive(rtos_uart_rx_ctx->isr_byte_buffer, . . . to read the bytes.

Param ctx
A pointer to the associated UART rx driver instance.

typedef void (*rtos_uart_rx_error_t)(rtos_uart_rx_t *ctx, uint8_t err_flags)
Function pointer type for application provided RTOS UART rx error callback functions.

This callback function is optionally (may be NULL_ called when an UART rx driver instance experiences an
error in reception. These error types are defined in uart.h of the underlying HIL driver but can be of the fol-
lowing types for the RTOS rx: UART_START_BIT_ERROR, UART_PARITY_ERROR, UART_FRAMING_ERROR,
UART_OVERRUN_ERROR.

Param ctx
A pointer to the associated UART rx driver instance.

Param err_flags
An 8b word containing error flags set during reception of last frame. See rtos_uart_rx.h for
the bit field definitions.

size_t rtos_uart_rx_read(rtos_uart_rx_t *uart_rx_ctx, uint8_t *buf, size_t n, rtos_osal_tick_t timeout)
Reads data from a UART Rx instance. It will read up to n bytes or timeout, whichever comes first.

Parameters

• uart_rx_ctx – A pointer to the UART Rx driver instance to use.

• buf – The buffer to be written with the read UART bytes.

• n – The number of bytes to write.

• timeout – How long in ticks before the read operation should timeout.

Returns
The number of bytes read.

void rtos_uart_rx_reset_buffer(rtos_uart_rx_t *uart_rx_ctx)
Resets the receive buffer. Clears the contents and sets number of items rto zero.

Parameters

• uart_rx_ctx – A pointer to the UART Rx driver instance to use.

void rtos_uart_rx_init(rtos_uart_rx_t *uart_rx_ctx, uint32_t io_core_mask, port_t rx_port, uint32_t baud_rate,
uint8_t data_bits, uart_parity_t parity, uint8_t stop_bits, hwtimer_t tmr)

Initializes an RTOSUART rx driver instance. Thismust only be called by the tile that owns the driver instance.
It should be called before starting the RTOS, andmust be called before calling rtos_uart_rx_start(). Note that
UART rx requires a whole logical core for the underlying HIL UART Rx instance.

Parameters

• uart_rx_ctx – A pointer to the UART rx driver instance to initialize.

• io_core_mask – A bitmask representing the cores on which the low UART Rx thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• rx_port – The port containing the receive pin

505050

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• baud_rate – The baud rate of the UART in bits per second.

• data_bits – The number of data bits per frame sent.

• parity – The type of parity used. See uart_parity_t above.

• stop_bits – The number of stop bits asserted at the of the frame.

• tmr – The resource id of the timer to be used by the UART Rx.

void rtos_uart_rx_start(rtos_uart_rx_t *uart_rx_ctx, void *app_data, rtos_uart_rx_started_cb_t start,
rtos_uart_rx_complete_cb_t rx_complete, rtos_uart_rx_error_t error, unsigned
interrupt_core_id, unsigned priority, size_t app_rx_buff_size)

Starts an RTOS UART rx driver instance. This must only be called by the tile that owns the driver instance.
It must be called after starting the RTOS and from an RTOS thread.

rtos_uart_rx_init() must be called on this UART rx driver instance prior to calling this.

Parameters

• uart_rx_ctx – A pointer to the UART rx driver instance to start.

• app_data – A pointer to application specific data to pass to the callback functions avail-
able in rtos_uart_rx_struct.

• start – The callback function that is called when the driver’s thread starts. This is op-
tional and may be NULL.

• rx_complete – The callback function to indicate data received by the UART.

• error – The callback function called when a reception error has occured.

• interrupt_core_id – The ID of the core on which to enable the UART rx interrupt.

• priority – The priority of the task that gets created by the driver to call the callback
functions.

• app_rx_buff_size–The size in bytes of the RTOS xstreambuffer used to buffer received
words for the application.

UR_COMPLETE_CB_CODE

The callback code bit positions available for RTOS UART Rx.

UR_STARTED_CB_CODE

UR_START_BIT_ERR_CB_CODE

UR_PARITY_ERR_CB_CODE

UR_FRAMING_ERR_CB_CODE

UR_OVERRUN_ERR_CB_CODE

UR_COMPLETE_CB_FLAG

The callback code flag masks available for RTOS UART Rx.

515151

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

UR_STARTED_CB_FLAG

UR_START_BIT_ERR_CB_FLAG

UR_PARITY_ERR_CB_FLAG

UR_FRAMING_ERR_CB_FLAG

UR_OVERRUN_ERR_CB_FLAG

RX_ERROR_FLAGS

RX_ALL_FLAGS

RTOS_UART_RX_BUF_LEN

The size of the byte buffer between the ISR and the appthread. It needs to be able to hold sufficient bytes
received until the app_thread is able to service it. This is not the same as app_byte_buffer_size which can
be of any size, specified by the user at device start. At 1Mbps we get a byte every 10us so 64B allows 640us
for the app thread to respond. Note buffer is size n+1 as required by lib_uart.

RTOS_UART_RX_CALLBACK_ATTR

This attribute must be specified on all RTOS UART rx callback functions provided by the application to allow
compiler stack calculation.

RTOS_UART_RX_CALL_ATTR

This attribute must be specified on all RTOS UART functions provided by the application to allow compiler
stack calculation.

struct rtos_uart_rx_struct
#include <rtos_uart_rx.h> Struct representing an RTOS UART rx driver instance.

The members in this struct should not be accessed directly.

USB RTOS Driver

This driver can be used to instantiate and control a USB device interface on xcore in an RTOS application.

Unlike most other xcore I/O interface RTOS drivers, only a single USB driver instance may be started. It also does
not require an initialization step prior to starting the driver. This is due to an implementation detail in lib_xud,
which is what the RTOS USB driver uses at its core.

Driver API The following structures and functions are used to start and use a USB driver instance.

RTOS_USB_OUT_EP

This is used to index into the second dimension of many of the RTOS USB driver’s endpoint arrays.

525252

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

RTOS_USB_IN_EP

enum rtos_usb_packet_type_t

Values:

enumerator rtos_usb_data_packet

enumerator rtos_usb_setup_packet

enumerator rtos_usb_sof_packet

typedef struct rtos_usb_struct rtos_usb_t
Typedef to the RTOS USB driver instance struct.

typedef void (*rtos_usb_isr_cb_t)(rtos_usb_t *ctx, void *app_data, uint32_t ep_address, size_t xfer_len,
rtos_usb_packet_type_t packet_type, XUD_Result_t res)

Function pointer type for application provided RTOS USB interrupt callback function.

This callback function is called when there is a USB transfer interrupt.

Param ctx
A pointer to the associated USB driver instance.

Param app_data
A pointer to application specific data provided by the application. Used to share data between
this callback function and the application.

Param ep_address
The address of the USB endpoint that the transfer has completed on.

Param xfer_len
The length of the data transferred.

Param packet_type
The type of packet transferred. See rtos_usb_packet_type_t.

Param res
The result of the transfer. See XUD_Result_t.

int rtos_usb_endpoint_ready(rtos_usb_t *ctx, uint32_t endpoint_addr, unsigned timeout)
Checks to see if a particular endpoint is ready to use.

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to check.

• timeout–Themaximumamount of time towait for the endpoint to become ready before
returning.

Return values

• XUD_RES_OKAY – if the endpoint is ready to use.

• XUD_RES_ERR – if the endpoint is not ready to use.

535353

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

XUD_Result_t rtos_usb_all_endpoints_ready(rtos_usb_t *ctx, unsigned timeout)
Checks to see if all endpoints are ready to use.

Parameters

• ctx – A pointer to the USB driver instance to use.

• timeout – The maximum amount of time to wait for all endpoints to become ready be-
fore returning.

Return values

• XUD_RES_OKAY – if all the endpoints are ready to use.

• XUD_RES_ERR – if not all the endpoints are ready to use.

XUD_Result_t rtos_usb_endpoint_transfer_start(rtos_usb_t *ctx, uint32_t endpoint_addr, uint8_t *buffer,
size_t len, bool is_setup)

Requests a transfer on a USB endpoint. This function returns immediately. When the transfer is complete,
the application’s ISR callback provided to rtos_usb_start() will be called.

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to perform the transfer on.

• buffer – A pointer to the buffer to transfer data into for OUT endpoints, or from for
IN endpoints. For OUT endpoint, the buffer needs an additional +4 bytes of space, this
additional data should not be reflected in the len parameter.

• len – Themaximum number of bytes to receive for OUT endpoints, or the actual number
of bytes to send for IN endpoints.

• is_setup – To be set when preparing for the transfer of a setup packet.

Return values

• XUD_RES_OKAY – if the transfer was requested successfully.

• XUD_RES_RST – if the transfer was not requested and the USB bus needs to be reset. In
this case, the application should reset the USB bus.

XUD_BusSpeed_t rtos_usb_endpoint_reset(rtos_usb_t *ctx, uint32_t endpoint_addr)
This function will complete a reset on an endpoint. The address of the endpoint to reset must be provided,
andmay be either direction (IN or OUT) endpoint. If there is an associated endpoint of the opposite direction,
however, it will also be reset.

The return value should be inspected to find the new bus-speed.

Parameters

• endpoint_addr – IN or OUT endpoint address to reset.

Return values

• XUD_SPEED_HS – the host has accepted that this device can execute at high speed.

• XUD_SPEED_FS – the device is running at full speed.

static inline XUD_Result_t rtos_usb_device_address_set(rtos_usb_t *ctx, uint32_t addr)
Sets the USB device’s bus address. This functionmust be called after a setDeviceAddress request ismade
by the host, and after the ZLP status is sent.

Parameters

545454

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• ctx – A pointer to the USB driver instance to use.

• addr – The device address requested by the host.

static inline void rtos_usb_endpoint_state_reset(rtos_usb_t *ctx, uint32_t endpoint_addr)
Reset a USB endpoint’s state including data PID toggle.

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to reset.

static inline void rtos_usb_endpoint_stall_set(rtos_usb_t *ctx, uint32_t endpoint_addr)
Stalls a USB endpoint. The stall is cleared automatically when a setup packet is received on the endpoint.
Otherwise it can be cleared manually with rtos_usb_endpoint_stall_clear().

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to stall.

static inline void rtos_usb_endpoint_stall_clear(rtos_usb_t *ctx, uint32_t endpoint_addr)
Clears the stall condition on USB endpoint.

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to clear the stall on.

void rtos_usb_start(rtos_usb_t *ctx, size_t endpoint_count, XUD_EpType endpoint_out_type[], XUD_EpType
endpoint_in_type[], XUD_BusSpeed_t speed, XUD_PwrConfig power_source, unsigned
interrupt_core_id, int sof_interrupt_core_id)

Starts the USB driver instance’s low level USB I/O thread and enables its interrupts on the requested core.
This must only be called by the tile that owns the driver instance. It must be called after starting the RTOS
from an RTOS thread.

rtos_usb_init() must be called on this USB driver instance prior to calling this.

Parameters

• ctx – A pointer to the USB driver instance to start.

• endpoint_count – The number of endpoints that will be used by the application. A
single endpoint here includes both its IN and OUT endpoints. For example, if the ap-
plication uses EP0_IN, EP0_OUT, EP1_IN, EP2_IN, EP2_OUT, EP3_OUT, then the endpoint
count specified here should be 4 (endpoint 0 through endpoint 3) regardless of the lack
of EP1_OUT and EP3_IN. If these two endpoints were used, the count would still be 4.

If for whatever reason, the application needs to use a particular endpoint number, say
only EP6 in addition to EP0, then the count here needs to be 7, even though endpoints
1 through 5 are unused. All unused endpoints must be marked as disabled in the two
endpoint type lists endpoint_out_type and endpoint_in_type.

• endpoint_out_type – A list of the endpoint types for each output endpoint. Index 0
represents the type for EP0_OUT, and so on. See XUD_EpType in lib_xud. If the endpoint
is unused, it must be set to XUD_EPTYPE_DIS.

• endpoint_in_type – A list of the endpoint types for each input endpoint. Index 0 rep-
resents the type for EP0_IN, and so on. See XUD_EpType in lib_xud. If the endpoint is
unused, it must be set to XUD_EPTYPE_DIS.

555555

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• speed – The speed at which the bus should operate. Either XUD_SPEED_FS or
XUD_SPEED_HS. See XUD_BusSpeed_t in lib_xud.

• power_source – The source of the device’s power. Either bus powered (XUD_PWR_BUS)
or self powered (XUD_PWR_SELF). See XUD_PwrConfig in lib_xud.

• interrupt_core_id – The ID of the core on which to enable the USB interrupts.

• sof_interrupt_core_id – The ID of the core on which to enable the SOF interrupt. Set
to < 0 to disable the SoF interrupt if it is not needed.

void rtos_usb_init(rtos_usb_t *ctx, uint32_t io_core_mask, rtos_usb_isr_cb_t isr_cb, void *isr_app_data)
Initializes an RTOS USB driver instance. This must only be called by the tile that owns the driver instance. It
should be called prior to starting the RTOS, and must be called before any of the core USB driver functions
are called with this instance.

This will create an RTOS thread that runs lib_xud’s main loop. This thread is created with the highest priority
and with preemption disabled.

Note: Due to implementation details of lib_xud, it is only possible to have one USB instance per application.
Functionally this is not an issue, as no xcore chips have more than one USB interface.

Note: If using the Tiny USB stack, then this function should not be called directly by the application. The
xcore device port for Tiny USB takes care of calling this, as well as all other USB driver functions.

Parameters

• ctx – A pointer to the USB driver instance to start.

• io_core_mask – A bitmask representing the cores on which the low level USB I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

• isr_cb – The callback function for the driver to call when transfers are completed.

• isr_app_data – A pointer to application specific data to pass to the application’s ISR
callback function isr_cb.

XUD_Result_t rtos_usb_simple_transfer_complete(rtos_usb_t *ctx, uint32_t endpoint_addr, size_t *len,
unsigned timeout)

This function may be called to wait for a transfer on a particular endpoint to complete. This requires that
the USB instance was initialized with rtos_usb_simple_init().

Parameters

• ctx – A pointer to the USB driver instance to use.

• endpoint_addr – The address of the endpoint to wait for.

• len – The actual number of bytes transferred. For IN endpoints, this will be the same as
the length requested by rtos_usb_endpoint_transfer_start(). For OUT endpoints, it may be
less.

• timeout – The maximum amount of time to wait for the transfer to complete before
returning.

Return values

• XUD_RES_OKAY – if the transfer was completed successfully.

565656

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• XUD_RES_RST – if the transfer was not able to complete and the USB bus needs to be
reset. In this case, the application should reset the USB bus.

• XUD_RES_ERR – if there was an unexpected error transferring the data.

void rtos_usb_simple_init(rtos_usb_t *ctx, uint32_t io_core_mask)
Initializes an RTOS USB driver instance. This must only be called by the tile that owns the driver instance. It
should be called prior to starting the RTOS, and must be called before any of the core USB driver functions
are called with this instance.

This initialization function may be used instead of rtos_usb_init() if the application is not us-
ing a USB stack. This allows application threads to wait for transfers to complete with the
rtos_usb_simple_transfer_complete() function. The application cannot provide its own ISR callback when
initialized with this function. This provides a similar programming interface as a traditional bare metal
xcore application using lib_xud.

This will create an RTOS thread that runs lib_xud’s main loop. This thread is created with the highest priority
and with preemption disabled.

Note: Due to implementation details of lib_xud, it is only possible to have one USB instance per application.
Functionally this is not an issue, as no xcore chips have more than one USB interface.

Parameters

• ctx – A pointer to the USB driver instance to start.

• io_core_mask – A bitmask representing the cores on which the low level USB I/O thread
created by the driver is allowed to run. Bit 0 is core 0, bit 1 is core 1, etc.

RTOS_USB_ENDPOINT_COUNT_MAX

The maximum number of USB endpoint numbers supported by the RTOS USB driver.

RTOS_USB_ISR_CALLBACK_ATTR

This attribute must be specified on the RTOS USB interrupt callback function provided by the application.

struct rtos_usb_ep_xfer_info_t
#include <rtos_usb.h> Struct to hold USB transfer state data per endpoint, used as the argument to the ISR.

The members in this struct should not be accessed directly.

struct rtos_usb_struct
#include <rtos_usb.h> Struct representing an RTOS USB driver instance.

The members in this struct should not be accessed directly.

Trace Driver

This driver can be used to instantiate an xscope-based trace module in an RTOS application. The trace module
currently supports both a demonstrative ASCII-mode and Percepio’s Tracealzyer on FreeRTOS. Both modes are
dependent on RTOS-specific hooks/macros to handle the majority of RTOS event recording and integration.

For general usage of the FreeRTOS trace functionality please refer to FreeRTOS’ documentation here: RTOS Trace
Macros

575757

https://www.freertos.org/rtos-trace-macros.html
https://www.freertos.org/rtos-trace-macros.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

For basic information on printf debugging using xscope please refer to the tools guide here: XSCOPE debugging

Trace Configuration In order to use the trace driver module, the following common steps must be performed:

1. Add rtos::drivers::trace as a linked library for the desired CMake target application.

2. The target application’s compiler arguments must include the -fxscope option.

3. The target application’s list of sources must include an .xscope file with the first probe specified as:

<Probe name="freertos_trace" type="CONTINUOUS" datatype="NONE" units="NONE" enabled=

→˓"true"/>

4. Include xcore_trace.h at the end of the RTOS configuration file (i.e. FreeRTOSConfig.h).

5. Enable both configUSE_TRACE_FACILITY and configGENERATE_RUN_TIME_STATS in FreeRTOSConfig.h.

6. Continue reading the following sections based on which trace mode is to be used. Additional configuration
steps are required.

Tracealyzer Mode The trace driver supports Percepio’s Tracealyzer, a feature rich tool for working with trace
files. This implementation supports Tracealyzer’s streaming mode; currently, snapshot mode is not supported.
The current underlying trace recording implementation interfaces with the xscope_core_bytes API function (on
Probe 0).

To select Tracealyzer as the trace module’s event recorder, the following must be set. This can be applied at the
CMake project level:

define USE_TRACE_MODE TRACE_MODE_TRACEALYZER_STREAMING

Note: xcore_trace.h contains the definition for these modes.

Tracealyzer Initialization In addition to the configuration steps outlined above, Percepio’s Tracealyzer stream-
ing mode needs additional function calls to start recording trace data. In the most basic use-case, the following
functions should be called on the XCORE tile that is to record trace data:

xTraceInitialize();

xTraceEnable(TRC_START);

Note: xTraceInitializemust be called before any RTOS interaction (before any traced objects are being interacted
with). It is advisable to call it as soon as possible in the application.

Tracealyzer Usage The Percepio’s Tracealzyer C-unit outputs to a stream-able file format called Percepio
Streaming Format (PSF). The xscope2psf utility aids in the extraction of the PSF file from the underlying xscope
communication (making it readily available on the host’s filesystem). This tool can be configured to read from
a VCD (value change dump) file that is generated when specifying the xgdb option –xscope-port <ip:port>, or it
can be configured as an xscope-endpoint when specifying the –xscope-port <ip:port> option. Both options can
be processed by the Tracealyzer graphical tool either as a post processing step or live.

585858

https://www.xmos.ai/documentation/XM-014363-PC-6/html/tools-guide/quick-start/fast-printf.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Note: xscope2psf currently resides in a Tracealyzer example application here: example. This is likely to change
in the future. Refer to either the README or the application’s help documentation for usage details.

Note: Currently, the only supported PSF Streaming target connection type is File System. Ensure this connection
type is specified under Tracealyzer’s Recording Settings.

For general usage of Tracealyzer please refer to the Percepio’s documentation here: Manual

ASCII Mode The trace driver supports a basic ASCII mode that is primarily meant as an example for expanding
support to other tracing tools/frameworks. In this mode, only the following FreeRTOS trace hooks are supported:

• traceTASK_SWITCHED_IN

• traceTASK_SWITCHED_OUT

This implementation will produce xscope logs for the RTOS task switching. The underlying xscope API xs-
cope_core_bytes is used for communicating this information.

To select ASCII mode as the trace module’s event recorder, the following must be set. This can be applied at the
CMake project level:

define USE_TRACE_MODE TRACE_MODE_XSCOPE_ASCII

Note: xcore_trace.h contains the definition for these modes.

ASCII Mode Initialization No additional steps are required for ASCII mode to start recording trace events to
xscope.

ASCIIMode Usage To begin capturing ASCIImode traces, run xgdbwith the–xscope-file option. Task switching
events will be recorded to the specified VCD (value change dump) file.

3.1.2 XCORE

Clock Control RTOS Driver

This driver can be used to operate GPIO ports on xcore in an RTOS application.

Initialization API The following structures and functions are used to initialize and start a GPIO driver instance.

typedef struct rtos_clock_control_struct rtos_clock_control_t
Typedef to the RTOS Clock Control driver instance struct.

595959

https://github.com/xmos/xcore_sdk/tree/main/examples/freertos/tracealyzer
https://percepio.com/docs/FreeRTOS/manual/index.html#Introduction___Welcome_to_Tracealyzer

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

void rtos_clock_control_start(rtos_clock_control_t *ctx)
Starts an RTOS clock control driver instance. This must only be called by the tile that owns the driver
instance. It may be called either before or after starting the RTOS, but must be called before any of the core
clock control driver functions are called with this instance.

rtos_clock_control_init() must be called on this clock control driver instance prior to calling this.

Parameters

• ctx – A pointer to the clock control driver instance to start.

void rtos_clock_control_init(rtos_clock_control_t *ctx)
Initializes an RTOS clock control driver instance. There should only be one per tile. This must only be called
by the tile that owns the driver instance. It may be called either before or after starting the RTOS, but must
be called before calling rtos_clock_control_start() or any of the core clock control driver functions with this
instance.

Parameters

• ctx – A pointer to the GPIO driver instance to initialize.

struct rtos_clock_control_struct
#include <rtos_clock_control.h> Struct representing an RTOS clock control driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core GPIO driver functions that are used after it has been initialized
and started.

inline void rtos_clock_control_set_ref_clk_div(rtos_clock_control_t *ctx, unsigned divider)
Sets the reference clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• divider – The value + 1 to write to XS1_SSWITCH_REF_CLK_DIVIDER_NUM

inline unsigned rtos_clock_control_get_ref_clk_div(rtos_clock_control_t *ctx)
Gets the reference clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline void rtos_clock_control_set_processor_clk_div(rtos_clock_control_t *ctx, unsigned divider)
Sets the tile clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• divider – The value + 1 to write to XS1_PSWITCH_PLL_CLK_DIVIDER_NUM

inline unsigned rtos_clock_control_get_processor_clk_div(rtos_clock_control_t *ctx)
Gets the tile clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

606060

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline void rtos_clock_control_set_switch_clk_div(rtos_clock_control_t *ctx, unsigned divider)
Sets the switch clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• divider – The value + 1 to write to XS1_SSWITCH_CLK_DIVIDER_NUM

inline unsigned rtos_clock_control_get_switch_clk_div(rtos_clock_control_t *ctx)
Gets the switch clock divider register value for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline unsigned rtos_clock_control_get_ref_clock(rtos_clock_control_t *ctx)
Gets the calculated reference clock frequency for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline unsigned rtos_clock_control_get_processor_clock(rtos_clock_control_t *ctx)
Gets the calculated core clock frequency for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline unsigned rtos_clock_control_get_switch_clock(rtos_clock_control_t *ctx)
Gets the calculated switch clock frequency for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline void rtos_clock_control_scale_links(rtos_clock_control_t *ctx, unsigned start_addr, unsigned
end_addr, unsigned delay_intra, unsigned delay_inter)

Sets the intra token delay and inter token delay to the xlinks within an address range, inclusive, for the tile
that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• start_addr – The starting link address

• end_addr – The ending address

• delay_intra – The intra token delay value

• delay_inter – The inter token delay value

inline void rtos_clock_control_reset_links(rtos_clock_control_t *ctx, unsigned start_addr, unsigned
end_addr)

Resets the xlinks within an address range, inclusive for the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• start_addr – The starting link address

• end_addr – The ending address

616161

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

inline void rtos_clock_control_set_node_pll_ratio(rtos_clock_control_t *ctx, unsigned pre_div, unsigned
mul, unsigned post_div)

Sets the tile clock PLL control register value on the tile that owns this driver instance. The value set is
calculated from the divider stage 1, multiplier stage, and divider stage 2 values provided.

VCO freq = fosc * (F + 1) / (2 * (R + 1)) VCO must be between 260MHz and 1.3GHz for XS2 Core freq = VCO
/ (OD + 1)

Refer to the xcore Clock Frequency Control document for more details.

Note: This function will not reset the chip and wait for the PLL to settle before re-enabling the chip to allow
for large frequency jumps. This will cause a delay during settings.

Note: It is up to the application to ensure that it is safe to change the clock.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• pre_div – The value of R

• mul – The value of F

• post_div – The value of OD

inline void rtos_clock_control_get_node_pll_ratio(rtos_clock_control_t *ctx, unsigned *pre_div, unsigned
*mul, unsigned *post_div)

Gets the divider stage 1, multiplier stage, and divider stage 2 values from the tile clock PLL control register
values on the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

• pre_div – A pointer to be populated with the value of R

• mul – A pointer to be populated with the value of F

• post_div – A pointer to be populated with the value of OD

inline void rtos_clock_control_get_local_lock(rtos_clock_control_t *ctx)
Gets the local lock for clock control on the tile that owns this driver instance. This is intended for applications
to use to prevent clock changes around critical sections.

Parameters

• ctx – A pointer to the clock control driver instance to use.

inline void rtos_clock_control_release_local_lock(rtos_clock_control_t *ctx)
Releases the local lock for clock control on the tile that owns this driver instance.

Parameters

• ctx – A pointer to the clock control driver instance to use.

RPC Initialization API The following functions may be used to share a GPIO driver instance with other xcore
tiles. Tiles that the driver instance is shared with may call any of the core functions listed above.

void rtos_clock_control_rpc_client_init(rtos_clock_control_t *cc_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *host_intertile_ctx)

Initializes anRTOS clock control driver instance on a client tile. This allows a tile that does not own the actual
driver instance to use a driver instance on another tile. This will be called instead of rtos_clock_control_init().
The host tile that owns the actual instance must simultaneously call rtos_clock_control_rpc_host_init().

626262

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• cc_ctx – A pointer to the clock control driver instance to initialize.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
cc_ctx.

• host_intertile_ctx – A pointer to the intertile driver instance to use for performing
the communication between the client and host tiles. This must have the same scope
as cc_ctx.

void rtos_clock_control_rpc_host_init(rtos_clock_control_t *cc_ctx, rtos_driver_rpc_t *rpc_config,
rtos_intertile_t *client_intertile_ctx[], size_t remote_client_count)

Performs additional initialization on a clock control driver instance to allow client tiles to use the
clock control driver instance. Each client tile that will use this instance must simultaneously call
rtos_clock_control_rpc_client_init().

Parameters

• cc_ctx – A pointer to the clock control driver instance to share with clients.

• rpc_config – A pointer to an RPC config struct. This must have the same scope as
cc_ctx.

• client_intertile_ctx – An array of pointers to the intertile driver instances to use for
performing the communication between the host tile and each client tile. This must have
the same scope as cc_ctx.

• remote_client_count – The number of client tiles to share this driver instance with.

void rtos_clock_control_rpc_config(rtos_clock_control_t *cc_ctx, unsigned intertile_port, unsigned
host_task_priority)

Configures the RPC for a clock control driver instance. Thismust be called by both the host tile and all client
tiles.

On the client tiles this must be called after calling rtos_clock_control_rpc_client_init(). After calling this, the
client tile may immediately begin to call the core clock control functions on this driver instance. It does not
need to wait for the host to call rtos_clock_control_start().

On the host tile this must be called both after calling rtos_clock_control_rpc_host_init() and before calling
rtos_clock_control_start().

Parameters

• cc_ctx – A pointer to the clock control driver instance to configure the RPC for.

• intertile_port – The port number on the intertile channel to use for transferring the
RPC requests and responses for this driver instance. This port must not be shared by
any other functions. The port must be the same for the host and all its clients.

• host_task_priority – The priority to use for the task on the host tile that handles RPC
requests from the clients.

Device Firmware Update RTOS Driver

This driver can be used to instantiate and manipulate various flash partitions on xcore in an RTOS application.

For application usage refer to the tutorial RTOS Application DFU.

636363

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Initialization API The following structures and functions are used to initialize and start a DFU driver instance.

void rtos_dfu_image_init(rtos_dfu_image_t *dfu_image_ctx, fl_QSPIPorts *qspi_ports, fl_QuadDeviceSpec
*qspi_specs, unsigned int len)

Initializes an RTOS DFU image driver instance. This must be called before initializing the RTOS QSPI driver
instance.

This will search the flash for program images via libquadflash and store then for application DFU use.

Parameters

• dfu_image_ctx – A pointer to the DFU image driver instance to initialize.

• qspi_ports–A pointer to the fl_QSPIPorts context to determine which resources to use.

• qspi_specs – A pointer to an array of fl_QuadDeviceSpec to try to connect to.

• len – The number of fl_QuadDeviceSpec contained in qspi_specs

struct rtos_dfu_image_t
#include <rtos_dfu_image.h> Struct representing an RTOS DFU image driver instance.

The members in this struct should not be accessed directly.

Core API The following functions are the core DFU driver functions that are used after it has been initialized and
started.

inline unsigned rtos_dfu_image_get_data_partition_addr(rtos_dfu_image_t *dfu_image_ctx)
Get the starting address of the data partition

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The byte address

inline unsigned rtos_dfu_image_get_factory_addr(rtos_dfu_image_t *dfu_image_ctx)
Get the starting address of the factory image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The byte address

inline unsigned rtos_dfu_image_get_factory_size(rtos_dfu_image_t *dfu_image_ctx)
Get the size of the factory image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The size in bytes

inline unsigned rtos_dfu_image_get_factory_version(rtos_dfu_image_t *dfu_image_ctx)
Get the version of the factory image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

646464

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Returns
The version

inline unsigned rtos_dfu_image_get_upgrade_addr(rtos_dfu_image_t *dfu_image_ctx)
Get the starting address of the upgrade image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The byte address

inline unsigned rtos_dfu_image_get_upgrade_size(rtos_dfu_image_t *dfu_image_ctx)
Get the size of the upgrade image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The size in bytes

inline unsigned rtos_dfu_image_get_upgrade_version(rtos_dfu_image_t *dfu_image_ctx)
Get the version of the upgrade image

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Returns
The version

void rtos_dfu_image_print_debug(rtos_dfu_image_t *dfu_image_ctx)
Print debug information

Parameters

• ctx – A pointer to the DFU image driver instance to use.

Intertile RTOS Driver

This driver allows for communication between AMP RTOS instances running on different xcore tiles.

Initialization API The following structures and functions are used to initialize and start an intertile driver in-
stance.

void rtos_intertile_start(rtos_intertile_t *intertile_ctx)
Starts an RTOS intertile driver instance. It may be called either before or after starting the RTOS, but must
be called before any of the core intertile driver functions are called with this instance.

rtos_intertile_init() must be called on this intertile driver instance prior to calling this.

Parameters

• intertile_ctx – A pointer to the intertile driver instance to start.

656565

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

void rtos_intertile_init(rtos_intertile_t *intertile_ctx, chanend_t c)
Initializes an RTOS intertile driver instance. This must be called simultaneously on the two tiles establishing
an intertile link. It may be called either before or after starting the RTOS, but must be called before calling
rtos_intertile_start() or any of the core RTOS intertile functions with this instance.

This establishes a new streaming channel between the two tiles, using the provided non-streaming channel
to bootstrap this.

Parameters

• intertile_ctx – A pointer to the intertile driver instance to initialize.

• c – A channel end that is already allocated and connected to channel end on the tile
with which to establish an intertile link. After this function returns, this channel end is no
longer needed and may be deallocated or used for other purposes.

struct rtos_intertile_t
#include <rtos_intertile.h> Struct representing an RTOS intertile driver instance.

The members in this struct should not be accessed directly.

struct rtos_intertile_address_t
#include <rtos_intertile.h> Struct to hold an address to a remote function, consisting of both an intertile
instance and a port number. Primarily used by the RPC mechanism in the RTOS drivers.

Core API The following functions are the core intertile driver functions that are used after it has been initialized
and started.

void rtos_intertile_tx_len(rtos_intertile_t *ctx, uint8_t port, size_t len)

size_t rtos_intertile_tx_data(rtos_intertile_t *ctx, void *data, size_t len)

void rtos_intertile_tx(rtos_intertile_t *ctx, uint8_t port, void *msg, size_t len)
Transmits data to an intertile link.

Parameters

• ctx – A pointer to the intertile driver instance to use.

• port – The number of the port to send the data to. Only the thread listening on this
particular port on the remote tile will receive this data.

• msg – A pointer to the data buffer to transmit.

• len – The number of bytes from the buffer to transmit.

size_t rtos_intertile_rx_len(rtos_intertile_t *ctx, uint8_t port, unsigned timeout)

size_t rtos_intertile_rx_data(rtos_intertile_t *ctx, void *data, size_t len)

size_t rtos_intertile_rx(rtos_intertile_t *ctx, uint8_t port, void **msg, unsigned timeout)
Receives data from an intertile link.

Note: the buffer returned via msg must be freed by the application using rtos_osal_free().

666666

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Note: It is important that no other thread listen on this port simultaneously. If this happens, it is undefined
which one will receive the data, and it is possible for a resource exception to occur.

Parameters

• ctx – A pointer to the intertile driver instance to use.

• port – The number of the port to listen for data on. Only data sent to this port by the
remote tile will be received.

• msg – A pointer to the received data is written to this pointer variable. This buffer is
obtained from the heap and must be freed by the application using rtos_osal_free().

• timeout – The amount of time to wait before data become available.

Returns
the number of bytes received.

L2 Cache RTOS Driver

This driver can be used to instantiate a software defined L2 Cache for code and data.

Initialization API The following structures and functions are used to initialize and start an L2 cache driver in-
stance.

typedef struct rtos_l2_cache_struct rtos_l2_cache_t
Typedef to the RTOS l2 cache driver instance struct.

void rtos_l2_cache_start(rtos_l2_cache_t *ctx)
Starts the RTOS l2 cache memory driver.

void rtos_l2_cache_init(rtos_l2_cache_t *ctx, l2_cache_setup_fn setup_fn, l2_cache_thread_fn thread_fn,
l2_cache_swmem_read_fn read_func, uint32_t io_core_mask, void *cache_buffer)

Initializes the l2 cache for use by the RTOS l2 cache memory driver.

Cache buffer must be dword aligned

RTOS_L2_CACHE_DIRECT_MAP

Convenience macro that may be used to specify the direct map cache to rtos_l2_cache_init() in place of
setup_fn and thread_fn.

RTOS_L2_CACHE_TWO_WAY_ASSOCIATIVE

Convenience macro that may be used to specify the two way associative cache to rtos_l2_cache_init() in
place of setup_fn and thread_fn.

RTOS_L2_CACHE_BUFFER_WORDS_DIRECT_MAP

Convenience macro that may be used to specify the size of the cache buffer for a direct map cache. A
pointer to the buffer of size RTOS_L2_CACHE_BUFFER_WORDS_DIRECT_MAP should be passed to the
cache_buffer argument of rtos_l2_cache_init().

676767

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

RTOS_L2_CACHE_BUFFER_WORDS_TWO_WAY

Convenience macro that may be used to specify the size of the cache buffer for a two way associative
cache. A pointer to the buffer of size RTOS_L2_CACHE_BUFFER_WORDS_TWO_WAY should be passed to
the cache_buffer argument of rtos_l2_cache_init().

struct rtos_l2_cache_struct
#include <rtos_l2_cache.h> Struct representing an RTOS l2 cache driver instance.

The members in this struct should not be accessed directly.

Software Memory RTOS Driver

This driver allows for implementing application defined software memory in an RTOS.

bool rtos_swmem_read_request_isr(unsigned offset, uint32_t *buf)
Services a software memory read request from within the software memory fill interrupt handler. This
function may be provided by the application when the software memory driver is initialized with the
RTOS_SWMEM_READ_FLAG flag. If the application code to satisfy a fill request requires being run from
within an RTOS thread, then rtos_swmem_read_request() should be used instead. Both this handler and
rtos_swmem_read_request()may be used together. If the ISR handler is able to satisfy the request it should
return true. If it is not, but the request can be satisfied from within rtos_swmem_read_request(), then it
should return false.

Parameters

• offset–The byte offset into the softwarememory of the cache line that has had a cache
miss.

• buf – This function must fill this with SWMEM_EVICT_SIZE_WORDS words of data.
Where this data comes from is up to the application. One example is from a flash mem-
ory.

Return values

• true – if the fill request was satisfied.

• false – if the fill request was not satisfied. This requires that
rtos_swmem_read_request() also be provided.

bool rtos_swmem_write_request_isr(unsigned offset, uint32_t dirty_mask, const uint32_t *buf)
Services a software memory write request from within the software memory fill interrupt handler. This
function may be provided by the application when the software memory driver is initialized with the
RTOS_SWMEM_WRITE_FLAG flag. If the application code to satisfy an evict request requires being run
from within an RTOS thread, then rtos_swmem_write_request() should be used instead. Both this handler
and rtos_swmem_write_request() may be used together. If the ISR handler is able to satisfy the request it
should return true. If it is not, but the request can be satisfied fromwithin rtos_swmem_write_request(), then
it should return false.

Parameters

• offset–The byte offset into the softwarememory of the cache line that is being evicted.

• dirty_mask – A bytewise dirty mask for the data in buf. The least significant bit corre-
sponds to the lowest byte address in buf and each subsequent byte address corresponds
to the next least significant bit.

686868

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• buf – A pointer to a buffer containing SWMEM_EVICT_SIZE_WORDS words of data from
the cache line being evicted. It is up to the application what it does with this data. One
example is to write it to flash memory.

Return values

• true – if the evict request was satisifed.

• false – if the evict request was not satisfied. This requires that
rtos_swmem_write_request() also be provided.

void rtos_swmem_read_request(unsigned offset, uint32_t *buf)
Services a software memory read request from within the software memory RTOS thread. This
function may be provided by the application when the software memory driver is initialized with the
RTOS_SWMEM_READ_FLAG flag. If rtos_swmem_read_request_isr() is also implemented, then it will be
called first. If it is unable to satisfy the request, then this handler will be called. See the description for
rtos_swmem_read_request_isr().

Parameters

• offset–The byte offset into the softwarememory of the cache line that has had a cache
miss.

• buf – This function must fill this with SWMEM_EVICT_SIZE_WORDS words of data.
Where this data comes from is up to the application. One example is from a flash mem-
ory.

void rtos_swmem_write_request(unsigned offset, uint32_t dirty_mask, const uint32_t *buf)
Services a software memory write request from within the software memory RTOS thread. This
function may be provided by the application when the software memory driver is initialized with the
RTOS_SWMEM_WRITE_FLAG flag. If rtos_swmem_write_request_isr() is also implemented, then it will be
called first. If it is unable to satisfy the request, then this handler will be called. See the description for
rtos_swmem_write_request_isr().

Parameters

• offset–The byte offset into the softwarememory of the cache line that is being evicted.

• dirty_mask – A bytewise dirty mask for the data in buf. The least significant bit corre-
sponds to the lowest byte address in buf and each subsequent byte address corresponds
to the next least significant bit.

• buf – A pointer to a buffer containing SWMEM_EVICT_SIZE_WORDS words of data from
the cache line being evicted. It is up to the application what it does with this data. One
example is to write it to flash memory.

void rtos_swmem_start(unsigned priority)
Starts the RTOS software memory driver.

Parameters

• priority – The priority of the task that gets created by the driver to service the software
memory.

void rtos_swmem_init(uint32_t init_flags)
Initializes the software memory for use by the RTOS software memory driver.

Parameters

• init_flags – A bitfield consisting of initialization flags.

– RTOS_SWMEM_READ_FLAG enables swmem reads.

696969

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

– RTOS_SWMEM_WRITE_FLAG enables swmem writes.

unsigned int rtos_swmem_offset_get()
Return the offset from XS1_SWMEM_BASE to the start of the software memory.

RTOS_SWMEM_READ_FLAG

Flag indicating that software memory reads should be enabled. This should probably always be set when
using software memory.

RTOS_SWMEM_WRITE_FLAG

Flag indicating that software memory writes should be enabled. This will not always need to be set, espe-
cially if flash is backing the software memory and intended to be read only.

3.2 RTOS Services

Several RTOS software services are included to accelerate development of new applications.

3.2.1 Device Control

TheDeviceControl Service provides the ability to configure and control an XMOSdevice fromahost over a number
of transport layers. Features of the service include:

• Simple read/write API

• Fully acknowledged protocol

• Includes different transports including I2C and USB.

The table below shows combinations of host and transport mechanisms that are currently supported. Adding
new transport layers and/or hosts is straightforward where the hardware supports it.

Table 3.1: Supported Device Control Library Transports

Host I2C USB
PC / Windows Yes
PC / OSX Yes
Raspberry Pi / Linux Yes Yes
xCORE Yes

Device Control Shared API

The following structures and functions are common to the control instance on the xcore device and the host.

typedef uint8_t control_resid_t
These types are used in control functions to identify the resource id, command, version, and status.

typedef uint8_t control_cmd_t

707070

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

typedef uint8_t control_version_t

typedef uint8_t control_status_t

enum control_ret_t

This type enumerates the possible outcomes from a control transaction.

Values:

enumerator CONTROL_SUCCESS

enumerator CONTROL_REGISTRATION_FAILED

enumerator CONTROL_BAD_COMMAND

enumerator CONTROL_DATA_LENGTH_ERROR

enumerator CONTROL_OTHER_TRANSPORT_ERROR

enumerator CONTROL_BAD_RESOURCE

enumerator CONTROL_MALFORMED_PACKET

enumerator CONTROL_COMMAND_IGNORED_IN_DEVICE

enumerator CONTROL_ERROR

enumerator SERVICER_COMMAND_RETRY

enumerator SERVICER_WRONG_COMMAND_ID

enumerator SERVICER_WRONG_COMMAND_LEN

enumerator SERVICER_WRONG_PAYLOAD

enumerator SERVICER_QUEUE_FULL

enumerator SERVICER_SPECIAL_COMMAND_ALREADY_ONGOING

enumerator SERVICER_SPECIAL_COMMAND_BUFFER_OVERFLOW

enumerator SERVICER_RESOURCE_ERROR

717171

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

enumerator SERVICER_SPECIAL_COMMAND_WRONG_ORDER

enumerator SERVICER_SPECIAL_COMMAND_BUF_SIZE_ERROR

enum control_direction_t

This type is used to inform the control library the direction of a control transfer from the transport layer.

Values:

enumerator CONTROL_HOST_TO_DEVICE

enumerator CONTROL_DEVICE_TO_HOST

CONTROL_VERSION

This is the version of control protocol. Used to check compatibility

IS_CONTROL_CMD_READ(c)
Checks if the read bit is set in a command code.

Parameters

• c – [in] The command code to check

Returns
true if the read bit in the command is set

Returns
false if the read bit is not set

CONTROL_CMD_SET_READ(c)
Sets the read bit on a command code

Parameters

• c – [inout] The command code to set the read bit on.

CONTROL_CMD_SET_WRITE(c)
Clears the read bit on a command code

Parameters

• c – [inout] The command code to clear the read bit on.

CONTROL_SPECIAL_RESID

This is the special resource ID owned by the control library. It can be used to check the version of the control
protocol. Servicers may not register this resource ID.

CONTROL_MAX_RESOURCE_ID

The maximum resource ID. IDs greater than this cannot be registered.

CONTROL_GET_VERSION

The command to read the version of the control protocol. It must be sent to resource ID CON-
TROL_SPECIAL_RESID.

727272

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

CONTROL_GET_LAST_COMMAND_STATUS

The command to read the return status of the last command. It must be sent to resource ID CON-
TROL_SPECIAL_RESID.

DEVICE_CONTROL_HOST_MODE

The mode value to use when initializing a device control instance that is on the same tile as its associated
transport layer. Thesemay be connected to device control instances on other tiles that have been initialized
with DEVICE_CONTROL_CLIENT_MODE.

DEVICE_CONTROL_CLIENT_MODE

The mode value to use when initializing a device control instance that is not on the same tile as its associ-
ated transport layer. These must be connected to a device control instance on another tile that has been
initialized with DEVICE_CONTROL_HOST_MODE.

DEVICE_CONTROL_CALLBACK_ATTR

This attribute must be specified on all device control command handler callback functions provided by the
application.

Device Control XCORE API

The following structures and functions are used to initialize and start a control instance on the xcore device.

typedef control_ret_t (*device_control_read_cmd_cb_t)(control_resid_t resid, control_cmd_t cmd, uint8_t
*payload, size_t payload_len, void *app_data)

Function pointer type for application provided device control read command handler callback functions.

Called by device_control_servicer_cmd_recv() when a read command is received from the transport layer.
The command consists of a resource ID, command value, and a payload_len. This handler must respond
with a payload of the requested length.

Param resid
[in] Resource ID. Indicates which resource the command is intended for.

Param cmd
[in] Command code. Note that this will be in the range 0x80 to 0xFF because bit 7 set indi-
cates a read command.

Param payload
[out] Payload bytes of length payload_len that will be sent back over the transport layer in
response to this read command.

Param payload_len
[in] Requested size of the payload in bytes.

Param app_data
[inout] A pointer to application specific data provided to device_control_servicer_cmd_recv().
How and if this is used is entirely up to the application.

Return
CONTROL_SUCCESS if the handling of the read data by the device was successful. An error
code otherwise.

737373

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

typedef control_ret_t (*device_control_write_cmd_cb_t)(control_resid_t resid, control_cmd_t cmd, const
uint8_t *payload, size_t payload_len, void *app_data)

Function pointer type for application provided device control write command handler callback functions.

Called by device_control_servicer_cmd_recv() when a write command is received from the transport layer.
The command consists of a resource ID, command value, payload, and the payload’s length.

Param resid
[in] Resource ID. Indicates which resource the command is intended for.

Param cmd
[in] Command code. Note that this will be in the range 0x80 to 0xFF because bit 7 set indi-
cates a read command.

Param payload
[in] Payload bytes of length payload_len.

Param payload_len
[in] The number of bytes in payload.

Param app_data
[inout] A pointer to application specific data provided to device_control_servicer_cmd_recv().
How and if this is used is entirely up to the application.

Return
CONTROL_SUCCESS if the handling of the read data by the device was successful. An error
code otherwise.

control_ret_t device_control_request(device_control_t *ctx, control_resid_t resid, control_cmd_t cmd, size_t
payload_len)

Must be called by the transport layer when a new request is received.

Precisely how each of the three command parameters resid, cmd, and payload_len are received is specific
to the transport layer and not defined by this library.

Parameters

• ctx – A pointer to the associated device control instance.

• resid – The received resource ID.

• cmd – The received command value.

• payload_len – The length in bytes of the payload that will follow.

Return values

• CONTROL_SUCCESS – if resid has been registered by a servicer.

• CONTROL_BAD_COMMAND – if resid has not been registered by a servicer.

control_ret_t device_control_payload_transfer(device_control_t *ctx, uint8_t *payload_buf, size_t *buf_size,
control_direction_t direction)

Must be called by the transport layer either when it receives a payload, or when it requires a payload to
transmit.

Parameters

• ctx – A pointer to the associated device control instance.

• payload_buf – A pointer to the payload buffer.

• buf_size – A pointer to a variable containing the size of payload_buf.

747474

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

When \p direction is CONTROL_HOST_TO_DEVICE, no more␣

→˓than this

number of bytes will be read from it.

When \p direction is CONTROL_DEVICE_TO_HOST, this will␣

→˓be updated

to the number of bytes actually written to \p payload_

→˓buf.

• direction – The direction of the payload transfer.

This must be CONTROL_HOST_TO_DEVICE when a payload has␣

→˓already

been received and is inside \p payload_buf.

This must be CONTROL_DEVICE_TO_HOST when a payload needs␣

→˓to be

written into \p payload_buf by device_control_payload_

→˓transfer()

before sending it.

Returns
CONTROL_SUCCESS if everything works and the command is successfully handled by a reg-
istered servicer. An error code otherwise.

void device_control_payload_transfer_bidir(device_control_t *ctx, uint8_t *rx_buf, const size_t rx_size,
uint8_t *tx_buf, size_t *tx_size)

Must be called by the transport layer when it receives a payload and requires a payload to transmit, for
example, in a SPI transfer. The error status returned by the servicer handling the command is updated in
the first byte of the tx_buf.

Parameters

• ctx – A pointer to the associated device control instance.

• rx_buf – A pointer to the receive payload buffer.

• rx_size – A variable containing the size of rx_buf.

No more than this

number of bytes will be read from it.

• tx_buf – A pointer to the transmitr payload buffer.

• tx_size – A pointer variable containing the size of tx_buf.

This will be updated

to the number of bytes actually written to \p tx_buf.

control_ret_t device_control_servicer_cmd_recv(device_control_servicer_t *ctx,
device_control_read_cmd_cb_t read_cmd_cb,
device_control_write_cmd_cb_t write_cmd_cb, void
*app_data, unsigned timeout)

This is called by servicers to wait for and receive any commands received by the transport layer contain one
of the resource IDs registered by the servicer. This is also responsible for responding to read commands.

Parameters

757575

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• ctx – A pointer to the device control servicer context to receive commands for.

• read_cmd_cb – The callback function to handle read commands for all resource IDs as-
sociated with the given servicer.

• write_cmd_cb – The callback function to handle write commands for all resource IDs
associated with the given servicer.

• app_data – A pointer to application specific data to pass along to the provided callback
functions. How and if this is used is entirely up to the application.

• timeout – The number of RTOS ticks to wait before returning if no command is received.

Return values

• CONTROL_SUCCESS – if a command successfully received and responded to.

• CONTROL_ERROR – if no command is received before the function times out, or if there
was a problem communicating back to the transport layer thread.

control_ret_t device_control_resources_register(device_control_t *ctx, unsigned timeout)
Thismust be called on the tile that runs the transport layer for the device control instance, and has initialized
it with DEVICE_CONTROL_HOST_MODE. This must be called after calling device_control_start() and before
the transport layer is started. It is to be run simultaneously with device_control_servicer_register() fromother
threads on any tiles associated with the device control instance. The number of servicers thatmust register
is specified by the servicer_count parameter of device_control_init().

Parameters

• ctx – A pointer to the device control instance to register resources for.

• timeout – The amount of time in RTOS ticks to wait before all servicers register their
resource IDs with device_control_servicer_register().

Return values

• CONTROL_SUCCESS – if all servicers successfully register their resource IDs before the
timeout.

• CONTROL_REGISTRATION_FAILED – otherwise.

control_ret_t device_control_servicer_register(device_control_servicer_t *ctx, device_control_t
*device_control_ctx[], size_t device_control_ctx_count,
const control_resid_t resources[], size_t num_resources)

Registers a servicer for a device control instance. Each servicer is responsible for handling any number of
resource IDs. All commands received from the transport layer will be forwarded to the servicer that has
registered the resource ID that is found in the command.

Servicers may be registered on any tile that has initialized a device control instance. This must be called
after calling device_control_start().

Parameters

• ctx – A pointer to the device control servicer context to initialize.

• device_control_ctx – An array of pointers to the device control instance to register the
servicer with.

• device_control_ctx_count – The number of device control instances to register the
servicer with.

• resources – Array of resource IDs to associate with this servicer.

• num_resources – The number of resource IDs within resources.

767676

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

control_ret_t device_control_start(device_control_t *ctx, uint8_t intertile_port, unsigned priority)
Starts a device control instance. This must be called by all tiles that have called device_control_init(). It may
be called either before or after starting the RTOS, but must be called before registering the resources and
servicers for this instance.

device_control_init() must be called on this device control instance prior to calling this.

Parameters

• ctx – A pointer to the device control instance to start.

• intertile_port – The port to use with any and all associated intertile instances associ-
ated with this device control instance. If this device control instance is only used by one
tile then this is unused.

• priority – The priority of the task that will be created if the device control instance was
initialized with DEVICE_CONTROL_CLIENT_MODE. This is unused on the tiles where this
has been initialized with DEVICE_CONTROL_HOST_MODE. This task is used to listen for
commands for a resource ID registered by a servicer running on this tile, but received by
the transport layer that is running on another.

control_ret_t device_control_init(device_control_t *ctx, int mode, size_t servicer_count, rtos_intertile_t
*intertile_ctx[], size_t intertile_count)

Initializes a device control instance.

This must be called by the tile that runs the transport layer (I2C, USB, etc) for the device control instance, as
well as all tiles that will register device control servicers for it. It may be called either before or after starting
the RTOS, but must be called before calling device_control_start().

Parameters

• ctx – A pointer to the device control context to initialize.

• mode – Set to DEVICE_CONTROL_HOST_MODE if the command transport layer is on the
same tile. Set to DEVICE_CONTROL_CLIENT_MODE if the command transport layer is
on another tile.

• servicer_count – The number of servicers that will be associated with this device con-
trol instance.

• intertile_ctx – An array of intertile contexts used to communicate with other tiles.

• intertile_count – The number of intertile contexts in the intertile_ctx array.

When \p mode is DEVICE_CONTROL_HOST_MODE, this may␣

→˓be 0 if there are

no servicers on other tiles, up to one per device␣

→˓control instance that

has been initialized with DEVICE_CONTROL_CLIENT_MODE␣

→˓on other tiles.

When \p mode is DEVICE_CONTROL_CLIENT_MODE then this␣

→˓must be 1,

and the intertile context must connect to a device␣

→˓control instance

on another tile that has been initialized with␣

→˓DEVICE_CONTROL_HOST_MODE.

Returns
CONTROL_SUCCESS if the initialization was successful. An error status otherwise.

777777

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

struct device_control_t
#include <device_control.h> Struct representing a device control instance.

The members in this struct should not be accessed directly.

struct device_control_client_t
#include <device_control.h> A device_control_t pointer may be cast to a pointer to this structure type and
used with the device control API, provided it is initialized with DEVICE_CONTROL_CLIENT_MODE. This is
not necessary to do, but will save a small amount of memory.

struct device_control_servicer_t
#include <device_control.h> Struct representing a device control servicer instance.

The members in this struct should not be accessed directly.

Device Control Host API

The following structures and functions are used to initialize and call a control instance on the host.

control_ret_t control_init_i2c(unsigned char i2c_slave_address)
Initialize the I2C host (master) interface

Parameters

• i2c_slave_address – I2C address of the slave (controlled device)

Returns
Whether the initialization was successful or not

control_ret_t control_cleanup_i2c(void)
Shutdown the I2C host (master) interface connection

Returns
Whether the shutdown was successful or not

control_ret_t control_init_usb(int vendor_id, int product_id, int interface_num)

Initialize the USB host interface

Parameters

• vendor_id – Vendor ID of controlled USB device

• product_id – Product ID of controlled USB device

• interface_num – USB Control interface number of controlled device

Returns
Whether the initialization was successful or not

control_ret_t control_cleanup_usb(void)
Shutdown the USB host interface connection

Returns
Whether the shutdown was successful or not

control_ret_t control_init_spi_pi(spi_mode_t spi_mode, bcm2835SPIClockDivider clock_divider, long
intertransation_delay_ns)

Initialize the SPI host (master) interface for the Raspberry Pi

787878

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• spi_mode – Mode that the SPI will run in

• clock_divider – The amount to divide the Raspberry Pi’s clock by, e.g.
BCM2835_SPI_CLOCK_DIVIDER_1024 gives a clock of ~122kHz on the RPI 2.

• intertransaction_delay – Delay in nanoseconds that will be applied between each spi
transaction. This is implemented with nanosleep() from time.h.

Returns
Whether the initialization was successful or not

control_ret_t control_cleanup_spi(void)
Shutdown the SPI host (master) interface connection

Returns
Whether the shutdown was successful or not

control_ret_t control_query_version(control_version_t *version)
Checks to see that the version of control library in the device is the same as the host

Parameters

• version – Reference to control version variable that is set on this call

Returns
Whether the checking of control library version was successful or not

control_ret_t control_write_command(control_resid_t resid, control_cmd_t cmd, const uint8_t payload[], size_t
payload_len)

Request to write to controllable resource inside the device. The command consists of a resource ID, com-
mand and a byte payload of length payload_len.

Parameters

• resid – Resource ID. Indicates which resource the command is intended for

• cmd – Command code. Note that this will be in the range 0x80 to 0xFF because bit 7 set
indiciates a write command

• payload – Array of bytes which constitutes the data payload

• payload_len – Size of the payload in bytes

Returns
Whether the write to the device was successful or not

control_ret_t control_read_command(control_resid_t resid, control_cmd_t cmd, uint8_t payload[], size_t
payload_len)

Request to read from controllable resource inside the device. The command consists of a resource ID,
command and a byte payload of length payload_len.

Parameters

• resid – Resource ID. Indicates which resource the command is intended for

• cmd – Command code. Note that this will be in the range 0x80 to 0xFF because bit 7 set
indiciates a write command

• payload – Array of bytes which constitutes the data payload

• payload_len – Size of the payload in bytes

797979

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Returns
Whether the read from the device was successful or not

Command Transport Protocol

Transport protocol for control parameters Control parameters are converted to an array of bytes in network
byte order (big endian) before they’re sent over the transport protocol. For example, to set a control parameter
to integer value 305419896 which corresponds to hex 0x12345678, the array of bytes sent over the transport
protocol would be {0x12, 0x34, 0x56, 0x78}. Similarly, a 4 byte payload {0x00, 0x01, 0x23, 0x22} read over the
transport protocol is interpreted as an integer value 0x00012322.

In addition to the control parameters values, commands include Resource ID, the Command ID and Payload
Length fields that must be communicated from the host to the device. The Resource ID is an 8-bit identifier that
identifies the resource within the device that the command is for. The Command ID is an 8-bit identifier used to
identify a command for a resource in the device. Payload length is the length of the data in bytes that the host
wants to write to the device or read from the device.

The payload length is interpreted differently for GET_ and SET_ commands. For SET_commands, the payload
length is simply the number of bytes worth of control parameters to write to the device. For example, the payload
length for a SET_ command to set a control parameter of type int32 to a certain value, would be set to 4. For
GET_ commands the payload length is 1 more than the number of bytes of control parameters to read from the
device. For example, a GET_ command to read a parameter of type int32, payload length would be set to 5. The
one extra byte is used for status and is the first byte (payload[0]) of the payload received from the device. In the
example above, payload[0] would be the status byte and payload[1]..payload[4] would be the 4 bytes that make
up the value of the control parameter.

The table below lists the different values of the status byte and the action the user is expected to take for each
status:

Table 3.2: Values for returned status byte

Return code Values Description

ctrl_done 0 Read command successful. The payload bytes contain valid payload re-
turned from the device

ctrl_wait 1 Read command not serviced. Retry until ctrl_done status returned
ctrl_invalid 3 Error in read command. Abort and debug

The GET_commands need the extra status byte since the device might not return the control parameter value
immediately due to timing constraints. If that is the case the status byte would indicate the status as ctrl_wait
and the user would need to retry the command. When returned a ctrl_wait, the user is expected to retry the GET_
command until the status is returned as ctrl_done. The first GET_command is placed in a queue and it will be
serviced by the end of each 15ms audio frame. Once the status byte indicates ctrl_done, the rest of the bytes in
the payload indicate the control parameter value.

Transporting control parameters over I2C This section describes the I2C command sequence when issuing
read and write commands to the device.

The first byte sent over I2C after start contains the device address and information about whether this is an I2C
read transaction or a write transaction. This byte is 0x58 for a write command or 0x59 for a read command.
These values are derived by left shifting the device address (0x2c) by 1 and doing a logical OR of the resulting
value with 0 for an I2C write and 1 for an I2C read.

The bytes sequence sent between I2C start and stop for SET_ commands is shown in the figure below.

808080

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

For GET_ commands, the I2C commands sequence consists of a write command followed by a read command
with a repeated start between the 2 commands. The write command writes the resource ID, command ID and
the expected data length to the device and the read command reads the status byte followed by the rest of the
payload that makes up the control parameter value. The figure below shows the I2C bytes sequence sent and
received for a GET_ command.

Transporting control parameters over USB Use the vendor_id 0x20B1, product_id 0x0020 and interface num-
ber 0 to initialize for USB.

Floating point to fixed point (Q format) conversion Numbers with fractional parts can be represented as
floating-point or fixed-point numbers. Floating point formats are widely used but carry performance overheads.
Fixed point formats can improve system efficiency and are used extensively within the XVF3610. Fixed point
numbers have the position of the decimal point fixed and this is indicated as a part of the format description.

In this document, Q format is used to describe fixed point number formats, with the representation given as Qm.n
format where m is the number of bits reserved for the sign and integer part of the number and n is the number
of bits reserved for the fractional part of the number. The position of the decimal point is a trade-off between the
range of values supported and the resolution provided by the fractional bits.

The dynamic range of Qm.n format is -2m-1 and 2m-1-2-n with a resolution of 2-n

To convert a floating-point format number to Qm.n format fixed-point number:

• Multiply the floating-point number by 2m

• Round the result to the nearest integer

• The resulting integer number is the Qm.n fixed-point representation of the initial floating-point number

To convert a Qm.n fixed-point number to floating-point:

• Divide the fixed-point number by 2m

• The resulting decimal number is a floating-point representation of the fixed-point number.

Converting a number into fixed point format and then back to a floating point number may introduce an error of
up to ±2-(n+1)

Example:

To represent a floating-point number 14.765467 in Q8.24 format, the equivalent fixed-point number would be
14.765467 x 224 = 247723429.2 which rounds to 247723429.

To get back the floating-point number given the Q8.24 number 247723429, calculate 247723429 ÷ 224 and get
back the floating-point number as 14.76546699. The difference of 0.00000001 is correct to with the error bounds
of ±2-25 which is ±0.00000003

3.2.2 Concurrency Support

The concurrency support sw_service contains a multiple reader single writer lock to support multitheaded appli-
cations that need to safely support shared access to a single hardware or software resource. This implementation
supports either reader preferred or writer preferred locks.

818181

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Concurrency Support API

The following structures and functions are used to initialize a multiple reader single writer lock instance.

enum mrsw_lock_type_t

Values:

enumerator MRSW_READER_PREFERRED

enumerator MRSW_WRITER_PREFERRED

enumerator MRSW_COUNT

typedef struct mrsw_lock mrsw_lock_t
Struct representing an MRSW instance.

The members in this struct should not be accessed directly.

typedef struct read_pref_mrsw_lock read_pref_mrsw_lock_t
Struct representing an reader preferred MRSW

The members in this struct should not be accessed directly.

typedef struct write_pref_mrsw_lock write_pref_mrsw_lock_t
Struct representing an writer preferred MRSW

The members in this struct should not be accessed directly.

rtos_osal_status_t mrsw_lock_create(mrsw_lock_t *ctx, char *name, mrsw_lock_type_t type)
Create a MRSW lock

Parameters

• ctx – A pointer to an uninitialized lock context

• name – An optional ASCII name

• type – The type of lock

Returns
RTOS_OSAL_SUCCESS on success

rtos_osal_status_t mrsw_lock_delete(mrsw_lock_t *ctx)
Destroy a MRSW lock

Note: This does not check if it is safe to delete locks

Parameters

• ctx – A pointer to the associated lock context

Returns
RTOS_OSAL_SUCCESS on success RTOS_OSAL_ERROR otherwise

828282

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

struct mrsw_lock
#include <mrsw_lock.h> Struct representing an MRSW instance.

The members in this struct should not be accessed directly.

struct read_pref_mrsw_lock
#include <mrsw_lock.h> Struct representing an reader preferred MRSW

The members in this struct should not be accessed directly.

struct write_pref_mrsw_lock
#include <mrsw_lock.h> Struct representing an writer preferred MRSW

The members in this struct should not be accessed directly.

The following functions are used to use a multiple reader single writer lock instance as a reader.

rtos_osal_status_t mrsw_lock_reader_get(mrsw_lock_t *ctx, unsigned timeout)
Attempt to acquire a lock as a reader.

Parameters

• ctx – A pointer to the associated lock context

• timeout – A timeout before giving up

Returns
RTOS_OSAL_SUCCESS on success RTOS_OSAL_TIMEOUT on timeout RTOS_OSAL_ERROR
otherwise

rtos_osal_status_t mrsw_lock_reader_put(mrsw_lock_t *ctx)
Give an acquired lock as a reader.

Note: User must not give a lock they do not own.

Parameters

• ctx – A pointer to the associated lock context

Returns
RTOS_OSAL_SUCCESS on success RTOS_OSAL_ERROR otherwise

The following functions are used to use a multiple reader single writer lock instance as a writer.

rtos_osal_status_t mrsw_lock_writer_get(mrsw_lock_t *ctx, unsigned timeout)
Attempt to acquire a lock as a writer.

Parameters

• ctx – A pointer to the associated lock context

• timeout – A timeout before giving up

Returns
RTOS_OSAL_SUCCESS on success RTOS_OSAL_TIMEOUT on timeout RTOS_OSAL_ERROR
otherwise

rtos_osal_status_t mrsw_lock_writer_put(mrsw_lock_t *ctx)
Give an acquired lock as a writer.

Note: User must not give a lock they do not own.

838383

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Parameters

• ctx – A pointer to the associated lock context

Returns
RTOS_OSAL_SUCCESS on success RTOS_OSAL_ERROR otherwise

3.2.3 Generic Pipeline

The generic pipeline service provides a generic construct to create multithreaded pipelines. This can be used to
create a variety of sequential operations on data, such as an audio processing pipeline.

The generic_pipeline_init() creates stage_count tasks. In the first stage the application provided input_data func-
tion pointer is called. The data then is passed to the first stage_function. After the first state function the data is
passed by an RTOS queue to the subsequent stage function. Middle stage functions receive from the previous
stage queue, call the stage function, and output to the next stage queue. The last stage function will receive from
the previous stage queue, call the stage function, and then call the output_data function pointer.

Generic Pipeline Example

This code snippet is an example of creating a pipeline to consume a buffer.

Listing 3.1: Example generic pipeline use
static void *input_func(void *input_app_data)

{

uint32_t* data = pvPortMalloc(100 * sizeof(uint32_t));

/* Populate some dummy data */

for(int i=0; i<100; i++)

{

data[i] = i;

}

return data;

}

static void *output_func(void *data, void *output_app_data)

{

/* Use data here */

for(int i=0; i<100; i++)

{

rtos_printf("val[%d] = %d\n", i, (uint32_t*)data[i]);

}

return 1; /* Return nonzero value for generic pipeline to implicitly free the packet␣

→˓*/

}

static void stage0(void *data)

{

/* Perform operation on data here*/

;

(continues on next page)

848484

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

(continued from previous page)

}

static void stage1(void *data)

{

/* Perform operation on data here*/

;

}

static void stage2(void *data)

{

/* Perform operation on data here*/

;

}

Listing 3.2: Example generic pipeline use
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage0,

(pipeline_stage_t)stage1,

(pipeline_stage_t)stage2,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage0) + RTOS_THREAD_STACK_

→˓SIZE(input_func),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage1),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage2) + RTOS_THREAD_STACK_

→˓SIZE(output_func),

};

generic_pipeline_init((pipeline_input_t)input_func,

(pipeline_output_t)output_func,

NULL,

NULL,

stages,

(const size_t*) stage_stack_sizes,

configMAX_PRIORITIES,

stage_count);

Generic Pipeline API

The following structures and functions are used to initialize and start a generic pipeline instance.

typedef void *(*pipeline_input_t)(void *input_data)
Function pointer type for application provided generic pipeline input callback functions.

Called by the first generic_pipeline_stage() when the stage wants input data. This data pointer is provided
to the first stage function to be processed.

Param input_data
A pointer to application specific data

858585

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Return
A frame pointer to be used by the pipeline stages

typedef int (*pipeline_output_t)(void *data, void *output_data)
Function pointer type for application provided generic pipeline output callback functions.

Called by the last generic_pipeline_stage() when the stage wants is done processing the data.

Param data
A pointer to the processed data

Param output_data
A pointer to application specific data

Return
0, to take ownership of data pointer otherwise, request the generic pipeline to free data inter-
nally

typedef void (*pipeline_stage_t)(void *data)
Function pointer type for application provided generic pipeline stage callback functions.

Called by each generic_pipeline_stage() after input data is received.

Param data
A pointer to the data. This buffer is used for both input and output.

void generic_pipeline_init(const pipeline_input_t input, const pipeline_output_t output, void *const
input_data, void *const output_data, const pipeline_stage_t *const
stage_functions, const size_t *const stage_stack_word_sizes, const int
pipeline_priority, const int stage_count)

Create a multistage generic pipeline.

This function will create a multistage pipeline, creating a task per stage and connecting them via queues.
Each stage task follows the convention:

• Get input data

• Process data

• Push output data

For the first stage, the input data are the provided by the input callback. For the final stage, the output data
are provided to the output callback.

Parameters

• input – A function pointer called to get input data

• output – A function pointer called to give output data

• input_data – A pointer to application specific data to pass to the input callback function

• output_data – A pointer to application specific data to pass to the output callback func-
tion

• stage_functions – An array of stage function pointers

• stage_stack_word_sizes – The stack size of each stage. Note: For the first stagemust
contain enough stack for the stage function + input function. Likewise, the last stage
must contain enough stack for the stage function + output function.

• pipeline_priority – The priority of all pipeline tasks

868686

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

• stage_count – The number of stages. The limit is 10 stages.

878787

4 FAQs

4.1 What is the memory overhead of the FreeRTOS kernel?

The FreeRTOS kernel can be configured to require as little as 9kB of RAM (per tile). In a typical applicaiton, expect
the requirement to be closer to 16kB of RAM (per tile).

4.2 How do I determine the number of words to allocate for use as a task’s
stack?

Since tasks run within FreeRTOS, the RTOS stack requirement must be known at compile time. In FreeRTOS
applications on most other microcontrollers, the general practice is to create a task with a large amount of stack,
use the FreeRTOS stack debug functions to determine the worst case runtime usage of stack, and then adjust
the stack memory value accordingly. The problem with this method is that the stack of any given thread varies
greatly based on the functions that are called within, and thus a code or compiler optimization change result
in the optimal task stack usage to have to be redetermined. This issue results in many FreeRTOS applications
being written in such a way that wastes memory, by providing task with way more stack than they should need.
Additionally, stack overflow bugs can remain hidden for a long time and even when bugs do manifest, the source
can be difficult to pinpoint.

The XTC Tools address this issue by creating a symbol that represents the maximum stack requirement of any
function at compile time. By using the RTOS_THREAD_STACK_SIZE() macro, for the stack words argument for
creating a FreeRTOS task, it is guaranteed that the optimal stack requirement is used, provided that the function
does not call function pointers nor can infinitely recurse.

xTaskCreate((TaskFunction_t) example_task,

"example_task",

RTOS_THREAD_STACK_SIZE(example_task),

NULL,

EXAMPLE_TASK_PRIORITY,

NULL);

If function pointers are used within a thread, then the application programmer must annotate the code with the
appropriate function pointer group attribute. For recursive functions, the only option is to specify the stack man-
ually. See Appendix A - Guiding Stack Size Calculation in the XTC Tools documentation for more information.

4.3 Can I use xcore resources like channels, timers and hw_locks?

You are free to use channels, ports, timers, etc. . . in your FreeRTOS applications. However, some considerations
need to be made. The RTOS kernel knows about RTOS primitives. For example, if RTOS thread A attempts to
take a semaphore, the kernel is free to schedule other tasks in thread A’s place while thread A is waiting for some
other task to give the semaphore. The RTOS kernel does not know anything about xcore resources. For example,
if RTOS thread A attempts to recv on a channel, the kernel is not free to schedule other tasks in its place while
thread A is waiting for some other task to send to the other end of the channel. A developer should be aware
that blocking calls on xcore resources will block a FreeRTOS thread. This may be OK as long as it is carefully
considered in the application design. There are a variety of methods to handle the decoupling of xcore and RTOS

888888

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/quick-start/c-programming-guide/index.html

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

resources. These can be best seen in the various RTOS drivers, which wrap the realtime IO hardware imitation
layer.

898989

5 Common Issues

5.1 Task Stack Space

One easy to makemistake in FreeRTOS, is not providing enough stack space for a created task. A vast amount of
questions exist online around how to select the FreeRTOS stack size, which the most common answer being to
create the task with more than enough stack, force the worst case stack condition (not always trivial), and then
use the FreeRTOS debug function uxTaskGetStackHighWaterMark() to determine how much you can decrease
the stack. This method leaves plenty of room for error and must be done during runtime, and therefore on a
build by build basis. The static analysis tools provided by The XTC Tools greatly simplify this process since they
calculate the exact stack required for a given function call. Themacro RTOS_THREAD_STACK_SIZE will return the
nstackwords symbol for a given thread plus the additional space required for the kernel ISRs. Using this macro
for every task create will ensure that there is appropriate stack space for each thread, and thus no stack overflow.

xTaskCreate((TaskFunction_t) task_foo,

"foo",

RTOS_THREAD_STACK_SIZE(task_foo),

NULL,

configMAX_PRIORITIES-1,

NULL);

909090

6 Copyright & Disclaimer

Copyright © 2023, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

919191

7 Licenses

7.1 XMOS

All original source code is licensed under the XMOS License.

7.2 Third-Party

Additional third party code is included under the following copyrights and licenses:

Table 7.1: Third Party Module Copyrights & Licenses

Module Copyright & License

Argtable3 Copyright (C) 1998-2001,2003-2011,2013 Stewart Heitmann, licensed un-
der LICENSE

FatFS Copyright (C) 2017 ChaN, licensed under a BSD-style license
FreeRTOS Copyright (c) 2017 Amazon.com, Inc., licensed under the MIT License
HTTP Parser Copyright (c) Joyent, Inc. and other Node contributors, licensed under

the MIT license
JSMN JSON Parser Copyright (c) 2010 Serge A. Zaitsev, licensed under the MIT license
Mbed TLS library Copyright (c) 2006-2018 ARM Limited, licensed under the Apache Li-

cense 2.0
Paho MQTT C/C++ client for Em-
bedded platforms

Copyright (c) 2020 The TensorFlow Authors, licensed under the Apache
License

TinyUSB Copyright (c) 2018 hathach (tinyusb.org), licensed under the MIT license

929292

https://github.com/xmos/sln_voice/blob/develop/LICENSE.rst
https://github.com/xmos/fwk_rtos/tree/develop/tools/fatfs_mkimage/argtable
https://github.com/xmos/fwk_rtos/blob/cbb80e17373ea76ca474921012ca684d092d1059/modules/sw_services/fatfs/host/argtable/LICENSE
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/xmos/fwk_rtos/blob/develop/modules/sw_services/fatfs/thirdparty/LICENSE.txt
https://freertos.org/
https://github.com/xmos/FreeRTOS/blob/release/xcore-smp/LICENSE.md
https://github.com/nodejs/http-parser/blob/d9275da4650fd1133ddc96480df32a9efe4b059b/LICENSE-MIT
https://github.com/zserge/jsmn
https://github.com/zserge/jsmn/blob/master/LICENSE
https://www.trustedfirmware.org/projects/mbed-tls/
https://github.com/ARMmbed/mbedtls/blob/2a1d9332d55d1270084232e42df08fdb08129f1b/LICENSE
https://github.com/ARMmbed/mbedtls/blob/2a1d9332d55d1270084232e42df08fdb08129f1b/LICENSE
https://github.com/eclipse/paho.mqtt.embedded-c
https://github.com/eclipse/paho.mqtt.embedded-c
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://docs.tinyusb.org/en/latest/index.html
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE

7 Index

C
control_cleanup_i2c (C function), 78
control_cleanup_spi (C function), 79
control_cleanup_usb (C function), 78
CONTROL_CMD_SET_READ (C macro), 72
CONTROL_CMD_SET_WRITE (C macro), 72
control_cmd_t (C type), 70
control_direction_t (C enum), 72
control_direction_t.CONTROL_DEVICE_TO_HOST (C

enumerator), 72
control_direction_t.CONTROL_HOST_TO_DEVICE (C

enumerator), 72
CONTROL_GET_LAST_COMMAND_STATUS (C macro), 72
CONTROL_GET_VERSION (C macro), 72
control_init_i2c (C function), 78
control_init_spi_pi (C function), 78
control_init_usb (C function), 78
CONTROL_MAX_RESOURCE_ID (C macro), 72
control_query_version (C function), 79
control_read_command (C function), 79
control_resid_t (C type), 70
control_ret_t (C enum), 71
control_ret_t.CONTROL_BAD_COMMAND (C enumera-

tor), 71
control_ret_t.CONTROL_BAD_RESOURCE (C enumera-

tor), 71
control_ret_t.CONTROL_COMMAND_IGNORED_IN_DEVICE

(C enumerator), 71
control_ret_t.CONTROL_DATA_LENGTH_ERROR (C enu-

merator), 71
control_ret_t.CONTROL_ERROR (C enumerator), 71
control_ret_t.CONTROL_MALFORMED_PACKET (C enu-

merator), 71
control_ret_t.CONTROL_OTHER_TRANSPORT_ERROR (C

enumerator), 71
control_ret_t.CONTROL_REGISTRATION_FAILED (C

enumerator), 71
control_ret_t.CONTROL_SUCCESS (C enumerator), 71
control_ret_t.SERVICER_COMMAND_RETRY (C enu-

merator), 71
control_ret_t.SERVICER_QUEUE_FULL (C enumera-

tor), 71
control_ret_t.SERVICER_RESOURCE_ERROR (C enu-

merator), 71
control_ret_t.SERVICER_SPECIAL_COMMAND_ALREADY_ONGOING

(C enumerator), 71
control_ret_t.SERVICER_SPECIAL_COMMAND_BUF_SIZE_ERROR

(C enumerator), 72

control_ret_t.SERVICER_SPECIAL_COMMAND_BUFFER_OVERFLOW

(C enumerator), 71
control_ret_t.SERVICER_SPECIAL_COMMAND_WRONG_ORDER

(C enumerator), 71
control_ret_t.SERVICER_WRONG_COMMAND_ID (C enu-

merator), 71
control_ret_t.SERVICER_WRONG_COMMAND_LEN (C

enumerator), 71
control_ret_t.SERVICER_WRONG_PAYLOAD (C enu-

merator), 71
CONTROL_SPECIAL_RESID (C macro), 72
control_status_t (C type), 71
CONTROL_VERSION (C macro), 72
control_version_t (C type), 70
control_write_command (C function), 79

D
DEVICE_CONTROL_CALLBACK_ATTR (C macro), 73
DEVICE_CONTROL_CLIENT_MODE (C macro), 73
device_control_client_t (C struct), 78
DEVICE_CONTROL_HOST_MODE (C macro), 73
device_control_init (C function), 77
device_control_payload_transfer (C function), 74
device_control_payload_transfer_bidir (C func-

tion), 75
device_control_read_cmd_cb_t (C type), 73
device_control_request (C function), 74
device_control_resources_register (C function),

76
device_control_servicer_cmd_recv (C function), 75
device_control_servicer_register (C function), 76
device_control_servicer_t (C struct), 78
device_control_start (C function), 76
device_control_t (C struct), 77
device_control_write_cmd_cb_t (C type), 73

G
generic_pipeline_init (C function), 86

H
HIL_IO_SPI_SLAVE_FAST_MODE (C macro), 47
HIL_IO_SPI_SLAVE_HIGH_PRIO (C macro), 47

I
IS_CONTROL_CMD_READ (C macro), 72

M
mrsw_lock (C struct), 82

939393

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

mrsw_lock_create (C function), 82
mrsw_lock_delete (C function), 82
mrsw_lock_reader_get (C function), 83
mrsw_lock_reader_put (C function), 83
mrsw_lock_t (C type), 82
mrsw_lock_type_t (C enum), 82
mrsw_lock_type_t.MRSW_COUNT (C enumerator), 82
mrsw_lock_type_t.MRSW_READER_PREFERRED (C enu-

merator), 82
mrsw_lock_type_t.MRSW_WRITER_PREFERRED (C enu-

merator), 82
mrsw_lock_writer_get (C function), 83
mrsw_lock_writer_put (C function), 83

P
pipeline_input_t (C type), 85
pipeline_output_t (C type), 86
pipeline_stage_t (C type), 86

R
read_pref_mrsw_lock (C struct), 83
read_pref_mrsw_lock_t (C type), 82
rtos_clock_control_get_local_lock (C function),

62
rtos_clock_control_get_node_pll_ratio (C func-

tion), 62
rtos_clock_control_get_processor_clk_div (C

function), 60
rtos_clock_control_get_processor_clock (C func-

tion), 61
rtos_clock_control_get_ref_clk_div (C function),

60
rtos_clock_control_get_ref_clock (C function), 61
rtos_clock_control_get_switch_clk_div (C func-

tion), 61
rtos_clock_control_get_switch_clock (C function),

61
rtos_clock_control_init (C function), 60
rtos_clock_control_release_local_lock (C func-

tion), 62
rtos_clock_control_reset_links (C function), 61
rtos_clock_control_rpc_client_init (C function),

62
rtos_clock_control_rpc_config (C function), 63
rtos_clock_control_rpc_host_init (C function), 63
rtos_clock_control_scale_links (C function), 61
rtos_clock_control_set_node_pll_ratio (C func-

tion), 61
rtos_clock_control_set_processor_clk_div (C

function), 60
rtos_clock_control_set_ref_clk_div (C function),

60
rtos_clock_control_set_switch_clk_div (C func-

tion), 60

rtos_clock_control_start (C function), 59
rtos_clock_control_struct (C struct), 60
rtos_clock_control_t (C type), 59
rtos_dfu_image_get_data_partition_addr (C func-

tion), 64
rtos_dfu_image_get_factory_addr (C function), 64
rtos_dfu_image_get_factory_size (C function), 64
rtos_dfu_image_get_factory_version (C function),

64
rtos_dfu_image_get_upgrade_addr (C function), 65
rtos_dfu_image_get_upgrade_size (C function), 65
rtos_dfu_image_get_upgrade_version (C function),

65
rtos_dfu_image_init (C function), 64
rtos_dfu_image_print_debug (C function), 65
rtos_dfu_image_t (C struct), 64
rtos_gpio_init (C function), 12
rtos_gpio_interrupt_disable (C function), 14
rtos_gpio_interrupt_enable (C function), 14
RTOS_GPIO_ISR_CALLBACK_ATTR (C macro), 12
rtos_gpio_isr_callback_set (C function), 13
rtos_gpio_isr_cb_t (C type), 12
rtos_gpio_isr_info_t (C struct), 13
rtos_gpio_port (C function), 12
rtos_gpio_port_drive (C function), 14
rtos_gpio_port_drive_high (C function), 14
rtos_gpio_port_drive_low (C function), 14
rtos_gpio_port_enable (C function), 13
rtos_gpio_port_id_t (C enum), 10
rtos_gpio_port_id_t.rtos_gpio_port_16A (C enu-

merator), 11
rtos_gpio_port_id_t.rtos_gpio_port_16B (C enu-

merator), 11
rtos_gpio_port_id_t.rtos_gpio_port_16C (C enu-

merator), 11
rtos_gpio_port_id_t.rtos_gpio_port_16D (C enu-

merator), 11
rtos_gpio_port_id_t.rtos_gpio_port_1A (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1B (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1C (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1D (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1E (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1F (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1G (C enu-

merator), 10
rtos_gpio_port_id_t.rtos_gpio_port_1H (C enu-

merator), 10

949494

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

rtos_gpio_port_id_t.rtos_gpio_port_1I (C enu-
merator), 10

rtos_gpio_port_id_t.rtos_gpio_port_1J (C enu-
merator), 10

rtos_gpio_port_id_t.rtos_gpio_port_1K (C enu-
merator), 10

rtos_gpio_port_id_t.rtos_gpio_port_1L (C enu-
merator), 10

rtos_gpio_port_id_t.rtos_gpio_port_1M (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_1N (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_1O (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_1P (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_32A (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_32B (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4A (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4B (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4C (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4D (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4E (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_4F (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_8A (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_8B (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_8C (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_8D (C enu-
merator), 11

rtos_gpio_port_id_t.rtos_gpio_port_none (C enu-
merator), 10

rtos_gpio_port_id_t.RTOS_GPIO_TOTAL_PORT_CNT

(C enumerator), 11
rtos_gpio_port_in (C function), 13
rtos_gpio_port_out (C function), 13
rtos_gpio_port_pull_down (C function), 15
rtos_gpio_port_pull_none (C function), 14
rtos_gpio_port_pull_up (C function), 14
rtos_gpio_rpc_client_init (C function), 15
rtos_gpio_rpc_config (C function), 16
rtos_gpio_rpc_host_init (C function), 15
rtos_gpio_start (C function), 12
rtos_gpio_struct (C struct), 13

rtos_gpio_t (C type), 12
rtos_gpio_write_control_word (C function), 15
rtos_i2c_master_init (C function), 16
rtos_i2c_master_read (C function), 18
rtos_i2c_master_reg_read (C function), 18
rtos_i2c_master_reg_write (C function), 18
rtos_i2c_master_rpc_client_init (C function), 19
rtos_i2c_master_rpc_config (C function), 20
rtos_i2c_master_rpc_host_init (C function), 19
rtos_i2c_master_start (C function), 16
rtos_i2c_master_stop_bit_send (C function), 18
rtos_i2c_master_struct (C struct), 17
rtos_i2c_master_t (C type), 16
rtos_i2c_master_write (C function), 17
RTOS_I2C_SLAVE_BUF_LEN (C macro), 23
RTOS_I2C_SLAVE_CALLBACK_ATTR (C macro), 23
rtos_i2c_slave_init (C function), 23
RTOS_I2C_SLAVE_RX_BYTE_CHECK_CALLBACK_ATTR (C

macro), 23
rtos_i2c_slave_rx_byte_check_cb_t (C type), 21
rtos_i2c_slave_rx_cb_t (C type), 20
rtos_i2c_slave_start (C function), 22
rtos_i2c_slave_start_cb_t (C type), 20
rtos_i2c_slave_struct (C struct), 23
rtos_i2c_slave_t (C type), 20
rtos_i2c_slave_tx_done_cb_t (C type), 21
rtos_i2c_slave_tx_start_cb_t (C type), 21
RTOS_I2C_SLAVE_WRITE_ADDR_REQUEST_CALLBACK_ATTR

(C macro), 23
rtos_i2c_slave_write_addr_request_cb_t (C type),

22
RTOS_I2S_APP_RECEIVE_FILTER_CALLBACK_ATTR (C

macro), 27
RTOS_I2S_APP_SEND_FILTER_CALLBACK_ATTR (C

macro), 27
rtos_i2s_master_ext_clock_init (C function), 24
rtos_i2s_master_init (C function), 24
rtos_i2s_mclk_bclk_ratio (C function), 26
rtos_i2s_receive_filter_cb_set (C function), 26
rtos_i2s_receive_filter_cb_t (C type), 26
rtos_i2s_rpc_client_init (C function), 28
rtos_i2s_rpc_config (C function), 29
rtos_i2s_rpc_host_init (C function), 28
rtos_i2s_rx (C function), 27
rtos_i2s_send_filter_cb_set (C function), 26
rtos_i2s_send_filter_cb_t (C type), 25
rtos_i2s_slave_init (C function), 25
rtos_i2s_start (C function), 27
rtos_i2s_struct (C struct), 27
rtos_i2s_t (C type), 25
rtos_i2s_tx (C function), 28
rtos_intertile_address_t (C struct), 66
rtos_intertile_init (C function), 65
rtos_intertile_rx (C function), 66

959595

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

rtos_intertile_rx_data (C function), 66
rtos_intertile_rx_len (C function), 66
rtos_intertile_start (C function), 65
rtos_intertile_t (C struct), 66
rtos_intertile_tx (C function), 66
rtos_intertile_tx_data (C function), 66
rtos_intertile_tx_len (C function), 66
RTOS_L2_CACHE_BUFFER_WORDS_DIRECT_MAP (C

macro), 67
RTOS_L2_CACHE_BUFFER_WORDS_TWO_WAY (Cmacro), 67
RTOS_L2_CACHE_DIRECT_MAP (C macro), 67
rtos_l2_cache_init (C function), 67
rtos_l2_cache_start (C function), 67
rtos_l2_cache_struct (C struct), 68
rtos_l2_cache_t (C type), 67
RTOS_L2_CACHE_TWO_WAY_ASSOCIATIVE (C macro), 67
rtos_mic_array_format_t (C enum), 29
rtos_mic_array_format_t.RTOS_MIC_ARRAY_CHANNEL_SAMPLE

(C enumerator), 29
rtos_mic_array_format_t.RTOS_MIC_ARRAY_FORMAT_COUNT

(C enumerator), 29
rtos_mic_array_format_t.RTOS_MIC_ARRAY_SAMPLE_CHANNEL

(C enumerator), 29
rtos_mic_array_init (C function), 30
rtos_mic_array_rpc_client_init (C function), 31
rtos_mic_array_rpc_config (C function), 31
rtos_mic_array_rpc_host_init (C function), 31
rtos_mic_array_rx (C function), 30
rtos_mic_array_start (C function), 29
rtos_mic_array_struct (C struct), 30
rtos_mic_array_t (C type), 29
rtos_qspi_flash_calibration_valid_get (C func-

tion), 38
rtos_qspi_flash_erase (C function), 37
rtos_qspi_flash_fast_read_init (C function), 33
rtos_qspi_flash_fast_read_ll (C function), 35
rtos_qspi_flash_fast_read_mode_ll (C function),

35
rtos_qspi_flash_fast_read_setup_ll (C function),

36
rtos_qspi_flash_fast_read_shutdown_ll (C func-

tion), 36
rtos_qspi_flash_init (C function), 32
rtos_qspi_flash_lock (C function), 33
rtos_qspi_flash_op_core_affinity_set (C func-

tion), 32
rtos_qspi_flash_page_count_get (C function), 38
rtos_qspi_flash_page_size_get (C function), 37
rtos_qspi_flash_read (C function), 34
RTOS_QSPI_FLASH_READ_CHUNK_SIZE (C macro), 33
rtos_qspi_flash_read_ll (C function), 34
rtos_qspi_flash_read_mode (C function), 34
rtos_qspi_flash_rpc_client_init (C function), 38
rtos_qspi_flash_rpc_config (C function), 39

rtos_qspi_flash_rpc_host_init (C function), 38
rtos_qspi_flash_sector_size_get (C function), 38
rtos_qspi_flash_size_get (C function), 37
rtos_qspi_flash_start (C function), 32
rtos_qspi_flash_struct (C struct), 33
rtos_qspi_flash_t (C type), 32
rtos_qspi_flash_unlock (C function), 34
rtos_qspi_flash_write (C function), 36
rtos_spi_master_delay_before_next_transfer (C

function), 41
rtos_spi_master_device_init (C function), 40
rtos_spi_master_device_struct (C struct), 41
rtos_spi_master_device_t (C type), 39
rtos_spi_master_init (C function), 40
rtos_spi_master_rpc_client_init (C function), 42
rtos_spi_master_rpc_config (C function), 43
rtos_spi_master_rpc_host_init (C function), 42
rtos_spi_master_start (C function), 39
rtos_spi_master_struct (C struct), 41
rtos_spi_master_t (C type), 39
rtos_spi_master_transaction_end (C function), 42
rtos_spi_master_transaction_start (C function),

41
rtos_spi_master_transfer (C function), 41
RTOS_SPI_SLAVE_CALLBACK_ATTR (C macro), 47
rtos_spi_slave_init (C function), 46
rtos_spi_slave_start (C function), 46
rtos_spi_slave_start_cb_t (C type), 43
rtos_spi_slave_struct (C struct), 47
rtos_spi_slave_t (C type), 43
rtos_spi_slave_xfer_done_cb_t (C type), 44
rtos_swmem_init (C function), 69
rtos_swmem_offset_get (C function), 70
RTOS_SWMEM_READ_FLAG (C macro), 70
rtos_swmem_read_request (C function), 69
rtos_swmem_read_request_isr (C function), 68
rtos_swmem_start (C function), 69
RTOS_SWMEM_WRITE_FLAG (C macro), 70
rtos_swmem_write_request (C function), 69
rtos_swmem_write_request_isr (C function), 68
RTOS_UART_RX_BUF_LEN (C macro), 52
RTOS_UART_RX_CALL_ATTR (C macro), 52
RTOS_UART_RX_CALLBACK_ATTR (C macro), 52
rtos_uart_rx_complete_cb_t (C type), 49
rtos_uart_rx_error_t (C type), 50
rtos_uart_rx_init (C function), 50
rtos_uart_rx_read (C function), 50
rtos_uart_rx_reset_buffer (C function), 50
rtos_uart_rx_start (C function), 51
rtos_uart_rx_started_cb_t (C type), 49
rtos_uart_rx_struct (C struct), 52
rtos_uart_rx_t (C type), 49
rtos_uart_tx_init (C function), 47
rtos_uart_tx_rpc_client_init (C function), 48

969696

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

rtos_uart_tx_rpc_config (C function), 49
rtos_uart_tx_rpc_host_init (C function), 48
rtos_uart_tx_start (C function), 48
rtos_uart_tx_struct (C struct), 48
rtos_uart_tx_t (C type), 47
rtos_uart_tx_write (C function), 47
rtos_usb_all_endpoints_ready (C function), 53
rtos_usb_device_address_set (C function), 54
RTOS_USB_ENDPOINT_COUNT_MAX (C macro), 57
rtos_usb_endpoint_ready (C function), 53
rtos_usb_endpoint_reset (C function), 54
rtos_usb_endpoint_stall_clear (C function), 55
rtos_usb_endpoint_stall_set (C function), 55
rtos_usb_endpoint_state_reset (C function), 55
rtos_usb_endpoint_transfer_start (C function), 54
rtos_usb_ep_xfer_info_t (C struct), 57
RTOS_USB_IN_EP (C macro), 52
rtos_usb_init (C function), 56
RTOS_USB_ISR_CALLBACK_ATTR (C macro), 57
rtos_usb_isr_cb_t (C type), 53
RTOS_USB_OUT_EP (C macro), 52
rtos_usb_packet_type_t (C enum), 53
rtos_usb_packet_type_t.rtos_usb_data_packet (C

enumerator), 53
rtos_usb_packet_type_t.rtos_usb_setup_packet

(C enumerator), 53
rtos_usb_packet_type_t.rtos_usb_sof_packet (C

enumerator), 53
rtos_usb_simple_init (C function), 57
rtos_usb_simple_transfer_complete (C function),

56
rtos_usb_start (C function), 55
rtos_usb_struct (C struct), 57
rtos_usb_t (C type), 53
RX_ALL_FLAGS (C macro), 52
RX_ERROR_FLAGS (C macro), 52

S
spi_slave_default_buf_xfer_ended_disable (C

function), 46
spi_slave_default_buf_xfer_ended_enable (C

function), 45
spi_slave_xfer_complete (C function), 45
spi_slave_xfer_prepare (C function), 44
spi_slave_xfer_prepare_default_buffers (C func-

tion), 44

U
UR_COMPLETE_CB_CODE (C macro), 51
UR_COMPLETE_CB_FLAG (C macro), 51
UR_FRAMING_ERR_CB_CODE (C macro), 51
UR_FRAMING_ERR_CB_FLAG (C macro), 52
UR_OVERRUN_ERR_CB_CODE (C macro), 51
UR_OVERRUN_ERR_CB_FLAG (C macro), 52

UR_PARITY_ERR_CB_CODE (C macro), 51
UR_PARITY_ERR_CB_FLAG (C macro), 52
UR_START_BIT_ERR_CB_CODE (C macro), 51
UR_START_BIT_ERR_CB_FLAG (C macro), 52
UR_STARTED_CB_CODE (C macro), 51
UR_STARTED_CB_FLAG (C macro), 51

W
write_pref_mrsw_lock (C struct), 83
write_pref_mrsw_lock_t (C type), 82

X
xfer_done_queue_item (C struct), 47
xfer_done_queue_item_t (C type), 44

979797

XCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming GuideXCORE RTOS Framework - Programming Guide

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

989898

	XCORE Platform
	Architecture & Hardware Guide
	Programming Guide
	XTC Tools

	Tutorials
	FreeRTOS Application Programming
	Rationale
	SMP FreeRTOS
	AMP SMP FreeRTOS
	RTOS Drivers
	Software Services

	Board Support Configurations
	Creating Custom bsp_configs

	RTOS Application DFU
	DFU Driver Overview
	Reading the Factory Image
	Reading the Upgrade Image
	Writing the Upgrade Image
	Reading the Data Partition Image
	Writing the Data Partition Image

	API Reference
	RTOS Drivers
	I/O
	GPIO RTOS Driver
	Initialization API
	Core API
	RPC Initialization API

	I2C RTOS Driver
	I2C Master RTOS Driver
	I2C Master Initialization API
	I2C Master Core API
	I2C Master RPC Initialization API

	I2C Slave RTOS Driver
	I2C Slave API

	I2S RTOS Driver
	Initialization API
	I2S Master Initialization API
	I2S Slave Initialization API

	Core API
	RPC Initialization API

	Microphone Array RTOS Driver
	Initialization API
	Core API
	RPC Initialization API

	QSPI Flash RTOS Driver
	Initialization API
	Core API
	RPC Initialization API

	SPI RTOS Driver
	SPI Master RTOS Driver
	SPI Master Initialization API
	SPI Master Core API
	SPI Master RPC Initialization API

	SPI Slave RTOS Driver
	SPI Slave API

	UART RTOS Driver
	UART Tx RTOS Driver
	UART Tx API
	UART Tx RPC Initialization API

	UART Rx RTOS Driver
	UART Rx API

	USB RTOS Driver
	Driver API

	Trace Driver
	Trace Configuration
	Tracealyzer Mode
	Tracealyzer Initialization
	Tracealyzer Usage
	ASCII Mode
	ASCII Mode Initialization
	ASCII Mode Usage

	XCORE
	Clock Control RTOS Driver
	Initialization API
	Core API
	RPC Initialization API

	Device Firmware Update RTOS Driver
	Initialization API
	Core API

	Intertile RTOS Driver
	Initialization API
	Core API

	L2 Cache RTOS Driver
	Initialization API

	Software Memory RTOS Driver

	RTOS Services
	Device Control
	Device Control Shared API
	Device Control XCORE API
	Device Control Host API
	Command Transport Protocol
	Transport protocol for control parameters
	Transporting control parameters over I2C
	Transporting control parameters over USB
	Floating point to fixed point (Q format) conversion

	Concurrency Support
	Concurrency Support API

	Generic Pipeline
	Generic Pipeline Example
	Generic Pipeline API

	FAQs
	What is the memory overhead of the FreeRTOS kernel?
	How do I determine the number of words to allocate for use as a task’s stack?
	Can I use xcore resources like channels, timers and hw_locks?

	Common Issues
	Task Stack Space

	Copyright & Disclaimer
	Licenses
	XMOS
	Third-Party

	Index

