
XMOS XVF3800 - User Guide
Release: 3.2.0
Publication Date: 2024/09/24

Table of Contents

1 Overview 1

2 Setting Up the Hardware 2
2.1 Introduction . 2
2.2 Hardware Setup - USB Accessory (UA) Configuration . 2

2.2.1 UA - Required Components . 2
2.2.2 Setting up the Evaluation System in UA Configuration . 2
2.2.3 Installing the UA firmware . 4

2.3 Hardware Setup - I2S (INT-Device) Configuration . 5
2.3.1 INT-Device Required Components . 5
2.3.2 Setting up the INT-Device configuration . 6
2.3.3 Installing the INT-Device Firmware . 7

2.4 Setting up the Audio . 8
2.4.1 Loudspeaker . 8
2.4.2 Playback and Recording . 10

2.4.2.1 I2S Audio Configuration . 10
2.4.2.2 UA Audio Configuration . 10

2.5 Troubleshooting . 11
2.5.1 Audio Signals . 11
2.5.2 Low volume of recorded audio during audio playback . 11
2.5.3 Low volume of playback audio on Linux for XVF3800-UA 11
2.5.4 AEC Convergence . 12

3 Using the Host Application 13
3.1 Installing the Host Application . 13
3.2 Instructions for Windows USB Driver Installation . 14
3.3 Connecting to the XVF3800 Device . 15
3.4 xvf_host Command Syntax . 15
3.5 Microphone orientation . 16

3.5.1 Beam forming subsystem and Direction of Arrival indicator 18
3.5.2 Using azimuth data For Direction of Arrival indication . 20

3.6 Example Uses . 20
3.6.1 Output Selection . 21
3.6.2 Setting an Output Pin . 23

4 Tuning the Application 24
4.1 System Preparation . 24

4.1.1 Prerequisites . 24
4.1.2 Initial Parameter Setting . 26
4.1.3 Initial Tests . 26

4.1.3.1 Input Path . 26
4.1.3.2 Control Path . 28
4.1.3.3 Output Path . 28
4.1.3.4 Speaker Operation . 28
4.1.3.5 Microphone Operation . 29

4.2 Tuning the XVF3800 Parameters . 29
4.2.1 Reference Gain . 29
4.2.2 Microphone Gain . 30
4.2.3 Silence level . 30
4.2.4 System Delay . 31
4.2.5 AEC Operation . 33
4.2.6 AGC Configuration . 35

iiiiii

4.2.7 Emphasis . 36
4.2.8 MGSCALE . 37
4.2.9 FMIN_SPEINDEX . 37
4.2.10 Tuning the Non-Linear Model . 39

4.2.10.1 Non-linear Echo . 39
4.2.10.2 Tuning Setup for Non Linear model . 40

4.2.11 Echo Suppression . 44
4.2.11.1 PP_DTSENSITIVE . 45
4.2.11.2 PP_GAMMA_E and PP_GAMMA_ENL . 46
4.2.11.3 PP_GAMMA_ETAIL . 46

4.2.12 Noise Suppression . 47
4.2.13 ATTNS . 47

4.2.13.1 ATTNS_NOMINAL . 48
4.2.13.2 ATTNS_SLOPE . 48

4.2.14 Path Change Detection . 48
4.2.15 Output equalization . 49

4.3 Changing Default Parameter Values . 51

5 Building the Application Firmware 55
5.1 Introduction . 55
5.2 Prerequisites . 55

5.2.1 Python3 . 55
5.2.2 XMOS tools . 55
5.2.3 Build Tools . 56

5.3 XVF3800 Release Package . 56
5.3.1 Standard Configurations . 57
5.3.2 Image Names . 57

5.4 Build Process . 58
5.4.1 Set up the environment . 58
5.4.2 Configure the build system . 58
5.4.3 Build an executable . 59

5.5 Installing the Executable Image . 59
5.5.1 Install Using xrun . 59
5.5.2 Install Using xflash . 59

5.6 Using SPI Boot . 60
5.6.1 Creating a SPI Boot File . 60
5.6.2 Using a SPI Boot File . 60

5.6.2.1 Safe SPI Booting . 60
5.6.2.2 Fast SPI booting . 61

6 Some Acoustic Design Guidelines 63
6.1 Microphones . 63
6.2 Loudspeaker(s) . 65
6.3 Enclosure and mounting . 66

7 DFU operations 67
7.1 Setting up the host computer (UA) . 67
7.2 Setting up the host computer (INT) . 67
7.3 Generation of Binary Upgrade Image . 68
7.4 Examples of DFU operations . 69

7.4.1 Download an upgrade image to the device . 69
7.4.2 Revert the device to factory image . 70
7.4.3 Reboot the device . 70
7.4.4 Upload the images from the device . 70

7.4.4.1 Error handling . 71

8 Automatic speech recognition 72

9 HID Interface 73

iiiiiiiii

10 APPENDIX – Control Commands 74
10.1 AEC Tuning and Control Commands . 74
10.2 Device Metadata Commands . 79
10.3 Audio Manager Commands . 80
10.4 GPIO Commands . 83

11 APPENDIX – Tuning the Loudspeaker 84
11.1 Adding EQ to the Loudspeaker Frequency Response . 84
11.2 Setting the Maximum Loudspeaker Volume . 85
11.3 Remaining Steps . 85

12 APPENDIX – Alternative Tuning Parameters 86
12.1 Personal Space Speakerphone using a Logitech Z50 loudspeaker 86
12.2 Shared Space Speakerphone at 4.5 m using a Genelec 8020 loudspeaker 87

13 APPENDIX – List of applications 88
13.1 UA device applications . 88
13.2 INT device applications . 88

iviviv

1 Overview

The XMOS VocalFusion ® XVF3800 is a high-performance voice processor that uses microphone array pro-
cessing and a sophisticated audio processing pipeline to capture clear, high-quality speech from anywhere in
a room. The XVF3800 uses the XMOS xcore.ai processor and supports a range of integrated and accessory
voice communication applications.

The audio processing pipeline includes Philips BeClear SuperHandsFree (SHF) components.

This document discusses:

• Setting up the hardware,

• Using the Host application,

• Tuning the XVF3800 firmware,

• Building and deploying an XVF3800 executable image,

• Some acoustic design guidelines,

• Tools for device firmware upgrade (DFU),

• Configuring the firmware for operations with an Automatic Speech Recognition (ASR), and

• HID capability.

It also includes several useful appendices.

111

2 Setting Up the Hardware

2.1 Introduction
This section explains the process of setting up and configuring the XVF3800 firmware on an XK-VOICE-SQ66
development kit.

Version v3.2.0 of the XVF3800 firmware supports audio I/O via I2S or USB UAC2. The instructions below
describe how to set up an evaluation system in either configuration.

Note: The XK-VOICE-SQ66 development kit is intended for use as an evaluation board for the XVF3800 and
after power on or reset the device will stop processing audio after 8 hours of continuous use. The board
must be restarted after 8 hours to resume operation. Licensed production XVF3800 devices do not have this
restriction.

2.2 Hardware Setup - USB Accessory (UA) Configuration
The UA configuration is the simplest configuration as the XK-VOICE-SQ66 development kit can be connected
directly to a computer using a USB port.

2.2.1 UA - Required Components

• An XK-VOICE-SQ66 development kit board.

• An XMOS XTAG4 with associated ribbon cables (Provided in the XK-VOICE-SQ66 development kit pack-
age).

• A setup computer and a development computer (Windows, macOS or Linux are supported). Each com-
puter must have at least one USB connection. A single computer with at least two USB connections
may be used to fulfil both roles.

• A micro USB cable to connect the setup computer to the XTAG4 and a second micro USB cable to
connect the XK-VOICE-SQ66 development kit to the development computer.

2.2.2 Setting up the Evaluation System in UA Configuration

The following steps are required to set up the XVF3800 evaluation hardware:

1. On the development computer, install the latest available XTC Tools, available from https://www.xmos.
com/software-tools/. Installation instructions for the supported platformsare available at https://www.
xmos.com/view/Tools-15-Documentation.

2. Connect the USB port on the XK-VOICE-SQ66 development kit to the development computer using a
USB cable. (This provides power to the device.)

3. Connect an XTAG-4 debug adapter to the setup computer via USB, and connect it to the XK-VOICE-SQ66
development kit using the supplied ribbon cable. The cable should be plugged into XSYS2 connector
on the XK-VOICE-SQ66 development kit. Fig. 2.1 shows the UA configuration of the XK-VOICE-SQ66
development kit.

222

https://www.xmos.com/software-tools/
https://www.xmos.com/software-tools/
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/view/Tools-15-Documentation

Fig. 2.1: XK-VOICE-SQ66 development kit in UA configuration

1. Open an XTC tools terminal window on the development computer. Verify that the XTAG4 has been
correctly connected by running the following command in that window:

xflash -l

The output from this should be of the following form:

Available XMOS Devices

ID Name Adapter ID Devices
-- ---- ---------- -------
0 XMOS XTAG-4 ABCDE123 P[0]

Note: If the XTAG-4 is not properly connected to the development computer, then xflash will report No
Available Devices Found. If the XK-VOICE-SQ66 development kit is not properly connected to the XTAG-
4, then the Devices column will read None. For further guidance on the use of the XTC tools, see the https:

333

https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/view/Tools-15-Documentation

//www.xmos.com/view/Tools-15-Documentation.

2.2.3 Installing the UA firmware

The XVF3800 binary release package provided contains several precompiled binaries.

The provided binary images have names in the format:

application_xvf3800_ua[configuration-options].xe

where the [configuration-options] is constructed as detailed in Table 2.1.

Table 2.1: Build configuration settings for UA

Option Values Description

USB sample rate -io16 / -io48 to choose between a 16 kHz or 48 kHz rate for the USB rate.
Input and output rates must be the same. This setting is only
used in UA configurations

Microphone topol-
ogy

-sqr / -lin to choose between a “squarecular” or linear microphone array

Audio output -spatial to choose between a stereo output from the device giving au-
dible indication of the location of the speaker, or the default
output

I2C-to-IO expander -io-exp to choose between using the I2C-to-IO expander connected to
the XK-VOICE-SQ66 development kit, or not

Select the required binary firmware image from the release package, and transfer it to the XK-VOICE-SQ66
development kit using the xflash tool.

xflash application_xvf3800_ua[...].xe

The XTAG4 adapter can be disconnected from the XK-VOICE-SQ66 development kit after successfully in-
stalling the firmware image if desired.

After completing the initial setup, follow the instructions in the section Setting up the Audio below.

444

https://www.xmos.com/view/Tools-15-Documentation

2.3 Hardware Setup - I2S (INT-Device) Configuration
The following instructions explain how to set up a Raspberry Pi computer with the XK-VOICE-SQ66 devel-
opment kit in order to evaluate the operation of the XVF3800 using an I2S audio interface in the INT-Device
configuration.

2.3.1 INT-Device Required Components

• An XK-VOICE-SQ66 development kit board.

• An XMOS XTAG4 with associated ribbon cables (Provided in the XK-VOICE-SQ66 development kit pack-
age).

• A setup computer (Windows, macOS or Linux are supported). This computer must support USB con-
nections and have the ability to write onto SD memory cards.

• A USB cable to connect the setup computer to the XTAG4.

• A Raspberry Pimicrocomputer; either a Raspberry Pi 3Model B or 4Model Bwill work for this evaluation.
See https://www.raspberrypi.com/ for more information.

• A region-appropriate USB power supply is also required. The XK-VOICE-SQ66 development kit obtains
its power supply from the Raspberry Pi.

• An SD memory card - minimum 8GB size

• A stacking header block, as pictured in Fig. 2.2 to mount the XK-VOICE-SQ66 development kit board
onto the Raspberry Pi using the standard 40 pin GPIO header. For your convenience a suitable header
block is included in the XK-VOICE-SQ66 development kit package.

Fig. 2.2: Raspberry Pi HAT Connector - 10 mm Extended Tail Socket

• TheXVF3800 evaluation firmware binary release package (available from theXVF3800developer page).

555

https://www.raspberrypi.com/
https://www.xmos.com/develop/xvf3800

2.3.2 Setting up the INT-Device configuration

The following steps are required to set up the XVF3800 evaluation hardware:

1. On the setup computer, install the latest available XTC Tools, available from https://www.xmos.com/
software-tools/. Installation instructions for the supported platforms are available at https://www.
xmos.com/view/Tools-15-Documentation.

2. Instructions and a script for setting up the Raspberry Pi are provided at https://github.com/xmos/
vocalfusion-rpi-setup. Follow these instructions to generate the OS image and configure the Raspberry
Pi.

3. When running the setup script on the Raspberry Pi, the following commands should be used to setup
the Raspberry Pi for use with the XK-VOICE-SQ66 development kit:

git clone https://github.com/xmos/vocalfusion-rpi-setup
cd vocalfusion-rpi-setup
./setup.sh xvf3800-intdev

1. To enable a remote GUI access on the Raspberry Pi, the VNC service should be enabled at this point
with the following command.

sudo raspi-config

Select 3 Interfaces Options and enable VNC and SSH (if not already set using the imager) on the
next screen.

2. Shutdown the Pi, detach the power and mount the XK-VOICE-SQ66 development kit board onto the
Raspberry Pi header. After mounting the board, reattach power and verify the Raspberry Pi restarts.

3. The evaluation hardware should be placed on a piece of foam. This is to prevent the loudspeaker caus-
ing the board to vibrate and buzz on the table, causing the acoustic coupling between them to vary.
In a final product, the loudspeaker and microphone will be build into to the same housing, and so the
coupling cannot vary.

The evaluation hardware is now ready to use, and should resemble Fig. 2.3.

Fig. 2.3: XVF3800 evaluation kit

666

https://www.xmos.com/software-tools/
https://www.xmos.com/software-tools/
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/view/Tools-15-Documentation
https://github.com/xmos/vocalfusion-rpi-setup
https://github.com/xmos/vocalfusion-rpi-setup

2.3.3 Installing the INT-Device Firmware

The XVF3800 binary release package provided contains several precompiled binaries.

The provided binary images have names in the format:

application_xvf3800_intdev[configuration-options].xe

where the [configuration-options] is constructed as detailed in Table 2.2.

Table 2.2: Build configuration settings for INT

Option Values Description

I2S Sample rate -lr16 / -lr48 to choose between a 16 kHz or 48 kHz I2S LR clock (and there-
fore reference input and processed output audio sample rate).
This setting is only used in INT configurations

Microphone topol-
ogy

-sqr / -lin to choose between a “squarecular” or linear microphone array

Control protocol -i2c / -spi to choose between I2C and SPI control modes. This setting is
only used in INT configurations, the UA configurations always
use USB control mode

Audio MCLK -extmclk to choose between external or internal MCLK. This setting is
only used in INT configurations

Audio output -spatial to choose between a stereo output from the device giving au-
dible indication of the location of the speaker, or the default
output

Note: Some binaries are provided which have the suffix -extmclk. These are intended for use in systems
where an external MCLK is provided, and they disable the XVF3800’s clock recovery system. These builds
are not for use with a Raspberry Pi.

The firmware is installed using the XMOS XTAG4 adapter supplied with the XK-VOICE-SQ66 development kit.

1. Connect an XTAG-4 debug adapter to the setup computer via USB, and connect it to the XK-VOICE-SQ66
development kit using the supplied ribbon cable. The cable should be plugged into XSYS2 connector
on the XK-VOICE-SQ66 development kit.

2. Open an XTC tools terminal window on the computer. Verify that the XTAG4 has been correctly con-
nected by running the following command in that window:

xflash -l

The output from this should be of the following form:

Available XMOS Devices

ID Name Adapter ID Devices
-- ---- ---------- -------
0 XMOS XTAG-4 ABCDE123 P[0]

Note: If the XTAG-4 is not properly connected to the development computer, then xflashwill
report No Available Devices Found. If the XK-VOICE-SQ66 development kit is not properly
connected to the XTAG-4, then the Devices column will read None. For further guidance on
the use of the XTC tools, see the https://www.xmos.com/view/Tools-15-Documentation.

777

https://www.xmos.com/view/Tools-15-Documentation

3. Select the required binary firmware image from the release package, and transfer it to the XK-VOICE-
SQ66 development kit using the xflash tool.

xflash application_xvf3800_intdev[...].xe

The XTAG4 adapter can be disconnected from the XK-VOICE-SQ66 development kit after successfully in-
stalling the firmware image if desired.

After completing the setup, follow the instructions below to set up the audio path.

2.4 Setting up the Audio

2.4.1 Loudspeaker

To play reference audio into the room, a high quality loudspeaker operating in its linear region is required.

Connect the loudspeaker to the LINE OUT port on the XK-VOICE-SQ66 development kit, which accepts a 3.5
mm TRS jack plug connector. The left channel of the LINE OUT port must be used for the speaker signal.

It is important for the ideal demonstration that the position, orientation, and volume of the loudspeaker are
representative of a real-world system.

To achieve optimal performance:

• Align the front of the loudspeaker with the microphone strip at the top of the XK-VOICE-SQ66 develop-
ment kit and

• Place the loudspeaker 2-4 cm away from the device

An example layout can be seen pictured in Fig. 2.4.

888

Fig. 2.4: XVF3800 demo example layout

Note: The XVF3800 implements a mono audio processing pipeline so a mono speaker system should be
used for optimum performance. By default the system uses the left channel (channel 0 on I2S) as the AEC
reference signal. If stereo speakers are used, both speakers will play the left channel.

To calibrate the volume of the loudspeaker for optimal performance, a test file such as the IEEE 269-2010
Male Mono 48 kHz signal can be used.

These test signals can be downloaded from:

https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip

and stored on the computer used for playback (USB host or I2S host). If the Raspberry Pi is connected to the
internet the files can be copied with the following:

curl --output <FILE>.zip https://standards.ieee.org/wp-content/uploads/import/download/269-2010_
↪→downloads.zip
unzip <FILE>.zip

The output volumemust be changed directly on the loudspeaker or on a connected amplifier, not on the com-
puter. In this example, the volume of the track measured at a 1 metre distance from the loudspeaker should
be 73 dBA ± 2 dBA on average, but for tuning the device against a specific set of requirements ensure that the
relevant output level has been achieved for the targetted specification. Ensure that the reference signal is not
digitally clipped as it is sent to the device; this can lead to non-obvious issues in device performance.

999

https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip
https://standards.ieee.org/wp-content/uploads/import/download/269-2010_downloads.zip

2.4.2 Playback and Recording

2.4.2.1 I2S Audio Configuration

Playback and recording through the XVF3800’s I2S interface, once the Raspberry Pi has been set up correctly,
can be achieved through standard use of the ALSA card snd_rpi_simple_card, device 0. For example,
from the command line, a 2 channel 32-bit 48 kHz WAV file may be played as reference audio through aplay
with the following command:

aplay -c 2 -f S32_LE -r 48000 -D hw:sndrpisimplecar,0 <filename>

Similarly, <time> seconds of processed audio from the XVF3800 may be recorded to a file with:

arecord --mmap -c 2 -d <time> -f S32_LE -r 48000 -D hw:sndrpisimplecar,0 <filename>

Alternatively, in a desktop environment on the Raspberry Pi, Audacity ™ may be used to visually play and
record. The sample rate must be set to match the XVF3800 in the Project Rate (Hz) selection in the bottom
left, or in the Edit -> Preferences -> Audio Settingsmenu.

The sound card settings must match the ones highlighted in Fig. 2.5:

Fig. 2.5: Audacity ™ example

2.4.2.2 UA Audio Configuration

In the UA configuration, Audacity ™ may be used to visually play and record signals from the device. The
sample rate must be set to match the XVF3800 in the Project Rate (Hz) selection in the bottom left, or in the
Edit -> Preferences -> Audio Settingsmenu.

The device should appear as a USB sound card with the default name of XMOS XVF3800 Voice Processor.
On Audacity both playback and recording devices should be set to be the XVF3800.

With the standard evaluation firmware the USB parameters are:

Product_STR: XMOS XVF3800 Voice Processor
Manufacturer_STR: XMOS
Vendor_ID (VID): 0x20b1
Product_ID (PID): 0x4f00 (48 kHz sample rate) or 0x4f01 (16 kHz sample rate)
Serial Number: 00000000

These can be modified, along with other USB parameters - see the subsection about Changing Default Pa-
rameter Values, for details.

Note: In the default configuration the USB Audio bit-depth is set at 16bit. The XVF3800 also supports
a bit depth of 24bit or 32bit over USB. This can be changed using the control command USB_BIT_DEPTH
or modifying the usb default parameters (see sources/app_xvf3800/cmd_map_gen/yaml_files/defaults/
usb_param_values.yaml in the release package)

101010

2.5 Troubleshooting

2.5.1 Audio Signals

If audio is being played by the host but not heard from the loudspeaker, it is likely that there exists a connection
issue between the host and the XK-VOICE-SQ66 development kit board. Ensure that the XK-VOICE-SQ66
development kit board is powered, and the loudspeaker connected and powered. The right channel of the far
end is not played out of the DAC so ensure your audio source contains a signal in the left channel.

If audio is heard from the loudspeaker but no input audio is received by the host, ensure that the host is
configured to transmit and receive audio at the correct sample rate (either 16 kHz or 48 kHz, depending on
the chosen firmware).

On Windows, the USB audio drivers are cached, and this can cause issues if an out-of-date audio driver has
been installed. In this case, it is recommended to clear the cached audio drivers using the third-party tool
USBDeview. The executable can be downloaded from https://www.nirsoft.net/utils/usb_devices_view.html,
and the cached drivers can be removed by using the USBDeview GUI, or by typing from a command line with
Administrator rights one or both of the lines below:

USBDeview.exe /RunAsAdmin /remove_by_pid 20b1;4f00 &REM 48 kHz sample rate
USBDeview.exe /RunAsAdmin /remove_by_pid 20b1;4f01 &REM 16 kHz sample rate

If there is still no input from the device, it is possible that the device firmware has stalled; disconnect and
reconnect power to the XK-VOICE-SQ66 development kit to reset the device, and then attempt input again.

2.5.2 Low volume of recorded audio during audio playback

When playing audio through the loudspeaker, it is important that in the test track chosen, near-end speech
doesn’t overlap extensively with the far-end audio. If this happens, the near-end audio will be suppressed;
this is a common feature of a conference audio device. In the Loudspeaker section some audio tracks are
recommended for testing. These tracks contain audio interspersed with silence, so that the near-end speaker
can talk while the far-end audio is silent.

If the instructions above are followed, the Automatic Gain Control (AGC) of the device will lower and increase
the near-end speech accordingly. If the volume of the recorded near-end audio is still too low, please follow
the steps in the AGC Configuration section to properly tune the AGC.

2.5.3 Low volume of playback audio on Linux for XVF3800-UA

If the volume of the ludspeaker output of the XVF3800-UA on Linux is too low, it is possible that the alsamixer
levels of the XVF3800 soundcard must be updated. To do this, follow the steps below:

1. Open a terminal and type alsamixer.

2. Press F6 to open the soundcard menu.

3. Use the up-down arrows to select the XVF3800 sound card and press Enter

4. In the menu below, the PCM-1 volume could be 40 (-20 dB) instead of 100,

111111

https://www.nirsoft.net/utils/usb_devices_view.html

use the keyboard arrows to select PCM-1 volume and increase it up to 100%.

5. Press ESC to exit alsamixer.

6. Before unplugging the XVF3800-UA, run the command:

sudo alsactl store

to store the setting permanently; otherwise the steps above must be repeated every time the XVF3800-
UA is re-connected.

2.5.4 AEC Convergence

The AEC requires a reference signal be present in order to converge on a room transfer function estimate
- this process will take a few seconds after reference audio has begun being provided. If the AEC has not
been allowed to converge, the XVF3800 will tend to over-suppress near-end speech in its output to avoid
undesirable artefacts being relayed to the far-end. This effect does subside within the first few seconds of
use, so if the device is unexpectedly restarted then performance will be reduced momentarily but should
restore over time.

If the device has consistently poor acoustic performance, it is likely that the AEC has not converged appro-
priately; restart the device and repeat the AEC convergence procedure described in the later sections to reset
the AEC to a new set of coefficients.

If this does not resolve the issues, it is permissible to lower the loudspeaker volume. If loudspeaker volume
is adjusted, or if there is any other change in environment, ensure that the AEC has reconverged before pro-
ceeding by playing several seconds of far-end audio again. The AEC will constantly reconverge, so a small
change in environment such as a window opening or a change in loudspeaker volume should be automati-
cally adjusted for by the AEC; however, actions that alter the direct delay path significantly, such as moving
the loudspeaker, will require the device be reset and the AEC be allowed a few seconds to reconverge from
startup.

121212

3 Using the Host Application

The XVF3800 contains a control interface that enables users to configure the operation of the device and to
set and read parameter data.

In v3.2.0, a sample host application, xvf_host (Linux, macOS, Raspberry Pi OS) or xvf_host.exe (Windows),
is provided which can be used to connect to the control interface on the XVF3800. Please contact XMOS for
information on using these tools on other host platforms.

Before using the host application, the host and hardware must be configured as described in Setting up the
hardware.

3.1 Installing the Host Application
The sample xvf_host application can be found in the binary release package in the subdirectory
host_v<version>/<platform>. The supported platforms are linux_x86_64, mac_x86_64, mac_amr64, rpi and
win32. This whole directory needs to be transferred to the host computer. It can be placed in any convenient
location. This directory should contain the following files:

.
��� (lib)command_map.(so/dll/dylib) # All platforms
��� libdevice_i2c.so # RPi only
��� libdevice_spi.so # RPi only
��� dfu_cmds.yaml # RPi only
��� transport_config.yaml # RPi only
��� (lib)device_usb.(so/dll/dylib) # All platforms
��� libusb-1.0.0.dylib # Mac_x86_64 and Mac_arm64 only
��� xvf_dfu # RPi only
��� xvf_host(.exe) # All platforms

To verify the xvf_host application is installed, change to the directory and run the application as per the
examples below, on Windows:

xvf_host.exe --help

on Linux, macOS and Raspberry Pi OS, the appropriate permissions must be set first:

sudo chmod +x xvf_host
sudo ./xvf_host --help

Users may find it convenient to store the host tools in a directory such as ~/bin and add this to the PATH
environment variable so that the tools can be invoked from any directory. This can be done on Windows with
the “Edit system environment variables” GUI, or on the other platforms with the shell command:

PATH=~/bin:$PATH

Note: In the rest of this document when using the xvf_host app in the code examples, the command is
written as (sudo) xvf_host(.exe). The .exe extension is only required on Windows. The sudo command
is only required on Linux, macOS and Raspberry Pi OS if the user does not have the necessary permissions
to access the device. On these platforms it may be necessary to use ./ before the command if the directory
containing the xvf_host app is not in the PATH.

131313

3.2 Instructions for Windows USB Driver Installation
When connecting an XVF3800 device to a Windows host, the Control and DFU interfaces should be listed
under the Universal Serial Bus devices section in the Device Manager, as shown below:

Fig. 3.1: USB interfaces in Device Manager on Windows

If this is not the case, it may be necessary to uninstall the existing drivers. This can be done by following the
steps below:

1. open the Device Manager on Windows

2. find the device, which may be located under libusb-win32 devices

3. right-click on the device

4. select Uninstall device

5. check the box to delete the driver software for this device

6. click Uninstall

Note: If the interface continues to appear in its original location, it may be necessary to perform these steps
multiple times, suggesting that the drivers have been installed on multiple occasions.

See the picture below for an example when XMOS Control (Interface 3) is listed under libusb-win32 Devices:

Fig. 3.2: Uninstalling the driver in Device Manager on Windows

141414

3.3 Connecting to the XVF3800 Device
To use the host application, login to the host computer – either directly, via a VNC connection, or by ssh – to
open a terminal command line.

Change to the directory containing xvf_host(.exe). If the host tools have been added to the path as above
this step is not needed.

The xvf_host device control application is run from the command line.

To check connection to the XVF3800, any command can be given; for example, the command

(sudo) xvf_host(.exe) --use <protocol> VERSION

where <protocol> can be i2c, spi or usb depending on the interface used in the specific firmware. The default
control protocol is USB.

This command should return “3 2 0”.

Note: The host application has no mechanism to select between multiple VocalFusion/XVF devices. Using
it withmore than one XVF3800 device or with different VocalFusion/XVF devices connected at the same time
may result in undefined behaviour.

3.4 xvf_host Command Syntax
The general syntax of the xvf_host command is:

(sudo) xvf_host(.exe) [command | option]
[-u <protocol>] [-cmp <path>] [-br] [command | option]

More documentation on the available options in the use of the host application are found with:

(sudo) xvf_host(.exe) --help

A full list of control commands may be found using:

(sudo) xvf_host(.exe) --list-commands

These commands are also listed in Control Commands Appendix.

It is possible to read all the control parameter settings from the XVF3800 using the following option:

(sudo) xvf_host(.exe) --dump-params

To support scripted set up of the XVF3800, it is possible to save the list of commands in a text file (.txt) which
can be executed using:

(sudo) xvf_host(.exe) --execute-command-list <command_file>.txt

Further options for saving and loading parameter sets can found by using the --help option or in the section
of the Tuning the Application section.

151515

3.5 Microphone orientation
The XVF3800 supports arbitrary microphone geometries which can be specified in configuration files. Two
default configurations are included in the binary release package that are aligned to the geometries supported
on the XK-VOICE-SQ66 development kit.

• The linear configuration (-lin) comprises 4microphones in a linear array, spaced 33mm apart, as shown
below:

• The square configuration (-sqr) uses a 4 microphone array with a 66mm distance along each side as
shown below.

161616

Note: These configurations are selected by a multiplexer on the XK-VOICE-SQ66 development kit when the
device boots. They have to be configured as part of the firmware build and cannot be changed in operation.

The microphone numbers in the diagrams above correspond to the labels on the XK-VOICE-SQ66 develop-
ment kit board. In the firmware configuration these microphones are mapped to 4 microphone indexes:
MIC[0..3] which are used in the firmware and when using xvf_host. The mapping of the logical indexes
and the physical microphones on the XK-VOICE-SQ66 development kit is shown in the table below:

Table 3.1: Microphone logical to physical mapping

Logical Physical Microphone

Microphone Index Linear Config Square Config

MIC0 MIC0 MIC1
MIC1 MIC1 MIC4
MIC2 MIC2 MIC5
MIC3 MIC3 MIC3

171717

3.5.1 Beam forming subsystem and Direction of Arrival indicator

As described in XVF3800 datasheet, the system uses a set of beams to focus on speakers and reduce un-
wanted sounds and reverberation in the output signal. The XVF3800 uses a free running beam that scans
the environment, identifies likely speakers and switches one of the two focused beams to that direction.

In normal operation the audio pipeline automatically selects the best signal to output.

It is possible to read back the direction that the beams are currently pointing. This is done with the xvf_host
command AEC_AZIMUTH_VALUES. The output of the command contains 4 values:

• Focused beam 1

• Focused beam 2

• Free running beam

• Auto selected beam

Each value is the azimuth angle of the corresponding beam, provided in both radians and degrees. The coor-
dinate system used depends on the hardware configuration. The diagrams below show the azimuth angles
relative to the XK-VOICE-SQ66 development kit in the two default configurations.

Fig. 3.3: Azimuth angle in linear configuration (note - 0 to 180 degrees only)

181818

Fig. 3.4: Azimuth angle in square configuration

During post-processing the speech energy (spenergy) is also calculated for each of the 4 beams. This value
indicates whether speech is present in the beam as well as the amplitude. Non-zero spenergy means that
the beam probably contains speech. Higher values indicate louder or closer speech, however noise, echo
and reverb can cause the energy level to decrease. These 4 floating point values can be read directly us-
ing the xvf_host command AEC_SPENERGY_VALUES. The 4 values map to the beams in the same manner
described for AEC_AZIMUTH_VALUES.

For situations where the speaker placements are known and will not change, the focused beams, numbered
0 and 1, can also be fixed in a specific direction. The user can configure the azimuth and elevation angles of
each beam.

Note: When using fixed mode, both focused beams must be fixed. It is not possible to fix only one.

To manage the beams in fixed mode the following commands are used:

• AEC_FIXEDBEAMSAZIMUTH_VALUES: writes and reads back the azimuth values in radians for the
beams in fixed mode.

• AEC_FIXEDBEAMSELEVATION_VALUES: writes and reads back the elevation angles in radians for the
beams in fixed mode.

• AEC_FIXEDBEAMSONOFF: enables and disables the fixed focused beam mode.

• AEC_FIXEDBEAMNOISETHR: writes and read back the threshold value for updating the noise canceller
when fixed beam mode is enabled. A higher value indicates that the noise canceller may update when

191919

the free running beam is close to the fixed beam. A lower value indicates that the noise canceller may
update when the free running beam is further away from the focused beam.

• AEC_FIXEDBEAMSGATING: enables or disables gating on the fixed beams. With gating, fixed beams
with a low speech energy will be muted. In addition, only one fixed beam will be active at a time; if both
report a high enough speech energy, the one with the lower energy will be muted.

• AEC_SPENERGY_VALUES: this is the same command used for the non-fixed beams, and four values
are reported. If fixed focused beam mode is enabled by AEC_FIXEDBEAMSONOFF, the first two values
are the speech energies of the fixed beams.

Note: Since the azimuth angle provided by theDoA function is dependent on themeasurements of the acous-
tic path, the values reported by AEC_AZIMUTH_VALUES might not precisely match the fixed beam azimuth
value.

3.5.2 Using azimuth data For Direction of Arrival indication

The auto selection algorithm will switch between beams rapidly in some circumstances. The two focused
beams update relatively slowly, but the free running beam is designed to be sensitive so that it can rapidly
pick up the speech signal for a new talker entering the soundscape. As a result it can also pick up any noise
signals present.

To provide maximum flexibility to system designers, the XVF3800 provides raw azimuth data which can be
used as required. XVF3800 also computes an additional azimuth value which combines speech energy and
azimuths to provide a single value which indicates the direction and presence of a speaker. This value can
be read using the command AUDIO_MGR_SELECTED_AZIMUTHS. The command returns 2 values, the first
of which is the processed azimuth which will be NAN if there is no speech, otherwise it will be the azimuth of
the current speaker. The second is the current azimuth of the auto select beam.

A script, doa_plot.py, is included in the source release bundle. It uses the host app to visualise the current
azimuths in real time. The script can be called using the xvf_tools.py which is located in sources. Run the
following command:

python3 xvf_tools.py doa_plot --command-help

for usage instructions. This command requires a positional argument with the path to the xvf_host binary,
and a few optional arguments, for example --protocol to select the correct communication protocol.

3.6 Example Uses
The xvf_host tool allows the configuration of the XK-VOICE-SQ66 development kit to be changed during
operations. The following examples illustrate some common operations.

202020

3.6.1 Output Selection

By default, the left (first) channel of the device’s output is the processed output from the XVF3800’s AEC and
beamforming stage, while the right (second) channel is the raw input from one of the microphones after am-
plification. This selection provides a good comparison between the raw and processed audio. The selected
outputs may be changed by using the AUDIO_MGR_OP_L and AUDIO_MGR_OP_R commands. These com-
mands each take two integers defining the mux routing settings, described as a pair of (category, source)
values.

The available categories and sources are as detailed in Table 3.2.

Table 3.2: Audio manager mux options

Category Sources

0: Silence 0: Silence. This is the default setting for the right
channel output.

1: Raw microphone data - before amplification 0,1,2,3: Specificmicrophones accessed by index, no
system delay applied.

2: Unpacked microphone data 0,1,2,3: Unpacked microphone signals. If us-
ing packed input, access packed microphone data
though this category. This data is undefined when
not using packed input.

3: Amplified microphone data with system delay 0,1,2,3: Specific microphones accessed by in-
dex. This category provides the microphone signal
passed to the SHF logical cores for processing.

4: Far end (reference) data 0: Far end data received over I2S, post sample rate
conversion to 16 kHz if required.

5: Far end (reference) data with system delay 0: Far end data received over I2S, post sample rate
conversion to 16 kHz if required, and with system
delay applied.

6: Processed data 0,1: Slow-moving post-processed beamformed out-
puts, 2: Fast-moving post-processed beamformed
output, 3: The “auto-select” beam; chooses the best
of the previous three beams as an output, recom-
mended option for selecting the beamformed out-
puts

7: AEC residual / ASR data 0,1,2,3: AEC residuals for the specified microphone,
or ASR ouput for the specified beam.

8: User chosen channels 0,1: These currently copy the auto-select beam (cat-
egory 6, source 3) and are the default setting for the
left channel output.

9: Post SHF DSP channels 0,1,2,3: All output channels from user post SHF DSP.
10: Far end at native rate 0,1,2,3,4,5: Data passed from I2S logical core to Au-

dio Manager logical core. All sources carry useful
data if the external interface rate is 48 kHz. Only
sources 0 and 1 carry useful data if the external in-
terface rate is 16 kHz. See the Data Plane Detailed
Design section in the Programming Guide for infor-
mation on the interface between these two logical
cores.

11: Amplified microphone data before system delay 0,1,2,3: Specific microphones accessed by index.
12: Amplified far end (reference) with system delay 0: Far end data received over I2S, post sample rate

conversion to 16 kHz if required, and with a config-
urable fixed gain and systemdelay applied. This cat-
egory provides the reference signal passed to the
SHF logical cores for processing.

212121

Fig. 3.5 shows the available categories and sources. Inputs to the category multiplexer that have no prelimi-
nary multiplexer only support a single source.

Fig. 3.5: Output Selection Multiplexers

For example, to set the left output to the 4th raw microphone signal (without gain applied), issue the com-
mand:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 3

222222

This will set the left channel to output the 4th (0-indexed) microphone signal of the 4 present. To reset this
channel back to its default value, issue:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 8 0

to set the channel to the postprocessed auto-selected output beam.

Similarly, the right channel may be set to any desired category/source; to reset to its default value, issue:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

3.6.2 Setting an Output Pin

The xvf_host can be used to configure the General Purpose Outputs on the XVF3800.

To turn on the LED on the XK-VOICE-SQ66 development kit issue the following commands:

(sudo) xvf_host(.exe) gpo_port_pin_index 0 6
(sudo) xvf_host(.exe) gpo_pin_pwm_duty 100

To turn it off use:

(sudo) xvf_host(.exe) gpo_pin_pwm_duty 0

Note: The gpo_port_pin_index selects a port and subsequent gpo_pin_xxx commands only act on that
pin.

232323

4 Tuning the Application

Themeasured performance of the XVF3800 depends very heavily on the electrical and acoustic environment
of the end product that it is incorporated into. In order to achieve optimal performance, including the ability
to pass product certification tests, it is necessary to perform a configuration and tuning process to adapt the
firmware to the end product’s form factor and hardware design.

The majority of this configuration is intended to ensure optimal performance of the XVF3800 audio pipeline,
including the behaviour of the Adaptive Echo Canceller (AEC).

The default tuning parameters have been selected such the XK-VOICE-SQ66 development kit will perform
well against the Microsoft Teams V5 “Personal Space Speakerphone” specification. Parameters related to
the loudspeaker, such as EQ and the non-linear model, will need to be adjusted for optimal performance. By
default these parameters apply no equalisation or non-linear correction. Details on the tuning process are
given in the Tuning the Loudspeaker Appendix, along with specific configurations for certain loudspeakers.

The full set of configurable parameters for the XVF3800 is given in the Control Commands Appendix.

This chapter makes extensive use of the xvf_host application to control configuration parameters at run-
time. For further documentation on this utility, please see the section Using the Host Application. Throughout
this document, the -u [i2c|spi|usb] parameter to this utility will be omitted for brevity.

To facilitate the tuning process a set of software tools are also supplied to process measurements. The
Python scripts in this section make use of the script xvf_tools.py which is located in the sources folder of
the XVF3800 source release package. This program allows the user to call a script from the sources folder, by
mapping the desired script name to the correct location in the source release package. It is used as follows:

python3 xvf_tools.py <script_name without .py extension> [command arguments]

and the help menu of the script to run can be printed with:

python3 xvf_tools.py <script_name without .py extension> --command-help

In the remainder of this section the script to be used will be referred to as a command.

4.1 System Preparation

4.1.1 Prerequisites

There are a number of prerequisites that should be met in order to facilitate the tuning process:

• It must be possible to both play arbitrary reference input through the XVF3800 over I2S or USB and to
record the device’s output.

• It must also be possible to access the control interface on the XVF3800, either through I2C, SPI, or USB
as desired.

• Create a block diagram of the whole system, showing audio path from input through to output and
including the XVF3800. This can be used to understand how to optimise and control the performance of
the overall product. Ensure that the path from the reference input through to the loudspeaker and from
the microphones to the XVF3800, including any gain, EQ, compression, filtering, and limiting applied,
are illustrated. Ensure also that the points where control is available over these parameters (and, more
importantly, where it is not) is fully understood. Fig. 4.1 provides a block diagram of the audio functions
in the XVF3800 to aid in the preparation of this system diagram.

• Ensure a good understanding of the coherence between the individual microphones; see the discussion
ofmicrophone coherence in the acoustic guidelines section for details and requirements on this.

242424

• Further, ensure a good understanding of the delay between the microphones and the reference signal
input; see section on system delay for details, requirements, and terminology surrounding this.

– This delay should remain constant while the device is running. Any inconsistency in this delay will
result in severely degraded algorithmic performance.

– If this delay should change between device reboots, for example due to any front-end processor
used to receive the far-end signal, it is important that the device remain causal.

• Care should be taken that samples not be dropped between the device’s reference audio input and the
XVF3800.

– In addition, ensure that any clocking jitter on the interface that carries the reference signal, such
as I2S or a USB interface, is minimised.

• Access to the IEEE 269-2010 reference signals is useful for representative clear speech signals. Alterna-
tive speech signals may be found from the ITU, in particular the files associated with Recommendation
P.501, which at time of writing may be acquired from the webpage for this ITU recommendation. Files
from these two sets will be referred to in this document by filename.

• All the tuning tools and the audio tracks are included in the release package in the directories below or
their subdirectories:

– sources/modules/fwk_xvf/modules/eq_filter_tuning/eq_filter_tuning/

– sources/modules/fwk_xvf/modules/tuning/

– sources/app_xvf3800/nl_model_gen/

Fig. 4.1: XVF3800 audio block diagram

• Install or update the following tools and python modules to enable the tuning scripts to run:

– Audacity

– Python3

– python modules: see list in requirements_build.txt

– sox

252525

https://www.itu.int/rec/T-REC-P.501-202005-I/en

4.1.2 Initial Parameter Setting

There are a selection of parameters that should be chosen before the tuning process starts. This guide does
not provide a process by which to select a value for these parameters:

• AEC_HPFONOFF: This sets a high-pass filter (HPF) on themicrophone signals as they enter the processing
block; this takes the form of a 4th order Butterworth filter, and therefore has a -80 dB per decade rolloff.
The corner frequency (-3 dB point) for this HPF may be set to 70 Hz, 125 Hz, 150 Hz, 180 Hz, or the filter
may be disabled. The use of a high pass filter is recommended to avoid transmitting low frequency
noise outside of the speech band. The HPF frequency should be set such that the combined system
cutoff (acoustic enclosure and DSPHPF) is below theminimum frequency required by the specification.
These typically require the system to be flat above 200Hz.

• AEC_FAR_EXTGAIN: This parameter informs the audio pipeline howmuch external gain has been applied
to the AEC reference signal. The value that this parameter should take is coupled to the volume control
of the device; if the device attenuates the signal by e.g. -6 dB, this value should be set to -6. In the UA
device variant, when the host sets the output volume, the AEC_FAR_EXTGAIN is internally set to be the
same as the gain set by the host, so the user shouldn’t need to set this command externally. In the I2S
variant of the device, if changing the external gain on the host, the user would manually need to set the
AEC_FAR_EXTGAIN using the control interface to match the external gain.

• PP_LIMITONOFF and PP_LIMITPLIMIT: A power limiter may be inserted in line with the processed audio
outputs from the audio pipeline using PP_LIMITONOFF. The power threshold used may be set with the
PP_LIMITPLIMIT command. If the output energy is predicted to exceed PP_LIMITPLIMIT, compression
is applied to the outputs to avoid this. The output should not clip under reasonable circumstances.

4.1.3 Initial Tests

The first step in tuning the product is to ensure that the send, receive, and loopback paths through the
XVF3800 are electrically stable and that the XVF3800 has a stable control interface.

4.1.3.1 Input Path

This test will attempt to verify that a signal injected into the device through the device’s intended input path
successfully reaches the XVF3800. This tests path 1 in Fig. 4.2. If possible, inject an test signal (such aswhite
noise) through the device’s reference audio input path and monitor the signal path immediately prior to the
XVF3800. Consider disabling the device’s loudspeaker for the duration of this test if the test signal chosen
would cause auditory discomfort. Verify that the test signal is observed.

262626

Fig. 4.2: Top-level schematic showing the 5 input and output paths of the XVF3800

In Fig. 4.2, numbered points correspond to the suggested order of testing.

Note: If direct monitoring of the signal path immediately prior to the XVF3800 is not feasible, it is permissible
to skip this test; its function is implied in later tests.

272727

4.1.3.2 Control Path

This test will attempt to verify that the XVF3800 has a stable control interface. This tests path 2 in Fig. 4.2.
Following the guidelines in Using the Host Application, issue:

(sudo) xvf_host(.exe) VERSION

and ensure that the device returns “3 2 0”.

4.1.3.3 Output Path

This test will attempt to verify that a signal injected into the XVF3800 is output faithfully from the XVF3800
and successfully output by the device. This tests paths 1 and 3 in Fig. 4.2. Set up the XVF3800’s output mux
as follows to loop back any data received:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 0 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_ALL 10 0 10 2 10 4 10 1 10 3 10 5

Note: As the signals produced here are by definition at the I2S or USB sample rate, they do not re-
quire the use of the upsampler in the case of a 48 kHz connection, and therefore we explicitly unset the
AUDIO_MGR_OP_UPSAMPLE flags (set to 1 by default in a 48 kHz configuration). If using a 48 kHz interface, be
sure that AUDIO_MGR_OP_UPSAMPLE is reset appropriately to accommodate signals that are generated at 16
kHz, including the processed output signals.

Inject a test signal (such as white noise) through the device’s reference audio input path and monitor the
signal on the device’s communications output. Verify that the output matches the input signal. This should
have a fixed delay, but should otherwise be the raw I2S data, after any customer-specific pre-processing DSP
has been applied. Consider disabling the device’s loudspeaker for the duration of this test if the test signal
chosen would cause auditory discomfort.

4.1.3.4 Speaker Operation

It is advised that the linearity, stability (even operation over the desired frequency range), output level, and
total harmonic distortion (THD) be characterised for the loudspeaker(s) in use in the product. Play a test file,
such as an IEEE Reference file, through the loudspeaker and observe the output level. The loudspeaker level
should be adjusted such that it meets the desired output level target. This tests path 4 in Fig. 4.2.

Note: The desired loudspeaker output level is usually specified by product certification requirements such
as those constructed by Amazon, Microsoft, or Zoom. Refer to your desired certification requirements for
appropriate targets for this test.

With the loudspeaker at an appropriate level, observe that there is not audible distortion or nonlinearity present
in the speech signal. With the loudspeaker at its maximum designed level, observe that there remains no au-
dible distortion or nonlinearity present in the speech signal. Some product certification requirements specify
performance metrics for the end product when operating with its loudspeaker at maximum volume. Mi-
crosoft’s requirements currently allow this level to be set at the designer’s discretion, while other product cer-
tification requirements may state a specific volume or range. Therefore, it is important that the loudspeaker
remains clear and undistorted at this level. A quantitative measurement of the system’s Total Harmonic Dis-
tortion (THD) should be taken to ensure that the loudspeaker is operating as intended. Correct operation of
the loudspeaker is essential to the tuning process. Operating the loudspeaker and associated amplifier within
their linear region is very important for the tuning process and for optimal algorithmic performance.

For more information on adjusting the loudspeaker output, including inserting any required filters, see the
Tuning the Loudspeaker Appendix.

282828

4.1.3.5 Microphone Operation

Ensure that the microphone assignment is as expected and that they sound natural and artefact-free. This
tests paths 3 and 5 in Fig. 4.2.

Set up the XVF3800’s output mux as follows to output raw data for microphones 0 and 1:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 1

and set up as follows to output raw data for microphones 2 and 3:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 3

Note: As the microphone signals are decimated to 16 kHz within the XVF3800’s audio manager, the micro-
phone signals require upsampling on a 48 kHz bus - ensure that the AUDIO_MGR_OP_UPSAMPLE flags have
been reset after previous testing if using a 48 kHz XVF3800 configuration.

Ensure that each microphone is assigned as expected; this can be achieved by e.g. clicking near or tapping
each microphone in turn to ensure that the signal is routed to the expected output. If the microphone assign-
ment is not as expected, then the microphone geometry may be incorrect and therefore Direction of Arrival
(DoA) information may be incorrect.

Record some near-end signal (such as speech) and analyse the result for undesirable artefacts, such as noise,
distortion, or interference. Ensure that speech through eachmicrophone sounds clear and natural. Verify that
each microphone is similar in level, for example by examining a power spectral density plot (PSD) of a known
near-end source and observing that each microphone signal has a similar total power.

4.2 Tuning the XVF3800 Parameters
This sectionwill walk through a typical tuning process, step by step. It is advised that, when appropriate values
for each tuning parameter are determined, the device firmware is rebuilt with these values as default and the
device is reflashed, this process is described in the section Building the application. It is recommended that
the device be restarted at the start of each of these tuning steps.

4.2.1 Reference Gain

The AUDIO_MGR_REF_GAIN parameter is provided to control a gain block placed in the reference audio path
after the customer-specific pre-processing DSP stage. The reference audio should be amplified such that
any peak amplitude losses through the input path (such as attenuation or filtering prior to the XVF3800 or
in the customer-specific pre-processing DSP stage) are accounted for. This gain is applied within the audio
manager internal to theXVF3800, and therefore does not have an impact on the signal sent to the loudspeaker.

Set up the XVF3800’s output mux as follows to output pre- and post-gain data for the reference input:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 4 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 12 0

This will set the left output as the pre-gain reference input, and the right output as the post-gain reference
input. With default device configuration, these should be the same.

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/tuning/audio_files
the track white_noise_0dbfs_2ch_16khz.wav or white_noise_0dbfs_2ch_48khz.wav. Inject the white noise
signal into the device’s reference input and verify that the reference input observed by the XVF3800 is the

292929

same level, i.e. with a peak of 0 dBFS. If this is not the case, tune AUDIO_MGR_REF_GAIN such that the post-gain
reference input has the largest value possible, up to 0 dBFS.

Note: White noise is chosen in this example as it contains equal energy in all frequency bands. This is
important in cases where e.g. a filter is applied to the reference signal before the XVF3800 or in the customer-
specific pre-processing DSP block. In these cases, a single tone may be attenuated more than other tones,
and tuning to this specific frequency may lead the device to clip at other frequencies. If no such filter is
applied, a tone (such as the tracks sine_1khz_0dbfs_2ch_16khz.wav or sine_1khz_0dbfs_2ch_48khz.wav)
may be chosen instead, which has a more predictable peak amplitude in a shorter timeframe.

Note: It is very important that the reference input can never digitally clip. If this is a risk, it is permissible to
leave some headroom in this parameter of approximately 1 - 2 dB.

4.2.2 Microphone Gain

Similarly, the AUDIO_MGR_MIC_GAIN parameter is provided to control a gain block placed in the input path from
themicrophones. The same gain is applied to all four microphones. To tune AUDIO_MGR_MIC_GAIN, set the left
output as a selectedmicrophone post-gain - for example, microphone 0 - and the right output as the reference
audio post gain:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 3 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 12 0

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/tuning/audio_files
the track white_noise_0dbfs_2ch_16khz.wav or white_noise_0dbfs_2ch_48khz.wav. Inject the noise signal
into the device’s reference input and observe the relationship between the post-gain reference signal and
the post-gain microphone signal. Tune AUDIO_MGR_MIC_GAIN such that the microphone signal has a peak
amplitude 6 dB below the reference signal. Observe the other 3 microphone channels and ensure that none
exceed 6 dB below the reference signal.

Note: If the microphone signal becomes louder than 6 dB below the reference signal, the AEC may con-
verge to coefficients in the frequency domain greater than 0 dB. This has a significantly negative effect on
algorithmic performance, and may lead to instability.

Consider rotating the device, placing it near walls or corners, placing objects in front of the microphones, or
exercising other realistic use-cases. Ensure that in each of these cases the post-gainmicrophone signal does
not exceed 6 dB below the reference signal.

4.2.3 Silence level

The AEC_AECSILENCELEVEL parameter sets a power threshold for signal detection in the AEC. If there is known
e.g. ADC induced noise in the reference audio signal line, this parametermay be set to avoid the AEC adapting
to this noise. This parameter is set by default to 0.00000001, representing a -80 dBFS noise floor; note that 0
dBFS white noise would be represented as having a power multiplier of 1. To tune this parameter, set up the
XVF3800’s output mux as follows to output post-gain data for the reference input:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 12 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/tuning/audio_files
the track silence_2ch_16khz.wav or silence_2ch_48khz.wav. Inject this silence signal into the device’s ref-

303030

erence input and observe the post-gain output. This will show any system noise between the reference
input and the audio processing pipeline. Calculate the average power in a short segment (e.g. 10 sec-
onds), typically by taking the mean of the squared values of each sample. This is the desired low bound
for AEC_AECSILENCELEVEL; select a value a nominally small amount (e.g. 1 to 2 percent) higher than this.

4.2.4 System Delay

With an appropriate gain structure, the next step in the tuning process is to ensure that the product is causal;
that is to say, that an event played in the reference audio stream and over the loudspeaker is received by
XVF3800 reference input an appropriate amount of time (in samples) before the coupled signal returns
through the microphone path. This is very important; if the system is acausal (a signal played into the room
in the reference audio stream is received in the microphone inputs before it is received in the reference in-
put) then effective echo cancellation cannot be achieved. By the same token, the microphones should not be
overly delayed compared to the reference input; each coefficient in the AEC corresponds to a sample in the
time domain, and so if the microphone signal is overly delayed, fewer AEC coefficients will be of use and the
overall behaviour of the AEC will be less optimal.

Expanding on the top-level diagram featured in Fig. 4.2, a more realistic understanding of the main two paths
for the reference signal to take can be seen in Fig. 4.3. If the reference signal takes path A pictured, where it is
passed through the XVF3800 before it is then sent to the loudspeaker, then it is highly unlikely that the device
will become acausal. If instead the signal is sent via path B pictured, where the reference input is passed
to the loudspeaker assembly prior to sending on to the XVF3800, an arbitrary reference path delay has the
potential to push the device into acausality if it exceeds the echo path delay between the loudspeaker and the
microphones.

Fig. 4.3: A more detailed representation of the reference input path for the XVF3800, showing both path A
where the signal is routed through the XVF3800 (and any customer-specific pre-processing) before sending
to the loudspeaker, and path B where the signal is routed via the loudspeaker before it reaches the XVF3800.

313131

In an ideal system, the delay between the reference andmicrophone signals should be at or less than 40 sam-
ples. The AUDIO_MGR_SYS_DELAY parameter allows a configurable delay to be applied to either themicrophone
signal or the reference signal to achieve this 40 sample difference.

A positive value for this parameter, measured in number of samples, sets a delay on the reference signal;
if the delay between microphones and reference is too large, setting this value as positive will reduce this
difference. A negative value sets a delay on the microphone signals. Setting this delay to a negative value is
the recommendedmethod to correct acausality in the device. Note that this will naturally increase the overall
delay from input to output through the device.

To estimate the current causality of the system, use themic_ref_correlate command provided. To obtain the
required signals for this script, set the output mux as follows:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 3 <microphone number>
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 5 0

Note: Causality must be checked for all four microphones, as each of the microphones may have a different
echo path delay. Calculate correlation between each microphone and the reference in turn.

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/
tuning/audio_files the track silence_white_noise_0dbfs_silence_2ch_16khz.wav or
silence_white_noise_0dbfs_silence_2ch_48khz.wav; these tracks contain 5s of silence, followed by
10s of 0 dBFS white noise, followed by 5s of silence. Pass this through the reference input and record the
device output in your chosen audio tools, e.g. Audacity. Save the result as a 2 channel WAV file with the
left channel (the post-delay post-gain microphone) as channel 0 and the right channel (the looped-back
post-delay post-gain reference signal) as channel 1. Use this as the input to the script:

python3 xvf_tools.py mic_ref_correlate <input wav file.wav>

A diagram similar to Fig. 4.4 should be generated.

323232

Fig. 4.4: Example output of mic_ref_correlate

Fig. 4.4 shows a 7 sample delay between microphones and the reference signal. This system is causal, but
only just. Setting AUDIO_MGR_SYS_DELAY to around -30 will bring the system to the recommended headroom.

This proceduremay be repeated after the AUDIO_MGR_SYS_DELAY parameter has been set to verify that the sys-
tem remains causal and has the desired (less than 40 samples) delay between the reference andmicrophone
inputs. Ensure that the device is causal for all four microphones.

4.2.5 AEC Operation

To verify the AEC’s operation, play through the reference input a representative test sample, such as
IEEE_269-2010_Male_mono_48_kHz.wav.

Allow the AEC to converge. The convergence of the AEC may be monitored by use of the AEC_AECCONVERGED
parameter. This is a read-only parameter. Issuing:

(sudo) xvf_host(.exe) AEC_AECCONVERGED

will present the return value as:

AEC_AECCONVERGED [0|1]

If the returned value is 1, the AEC has converged.

Note: Once this value is set to 1 internally, it is never reset, even if a significant path change or other circum-

333333

stance forces a significant change in the AEC.

When the AEC reaches convergence (which is expected to take less than 30 seconds), read the AEC coeffi-
cients from the device:

(sudo) xvf_host(.exe) (-gf | --get-aec-filter) [filename.bin]

This operation generates 4 separate files <filename.bin>.f0.m[0..3], one per AEC channel. These four files can
be analysed in one operation with the read_aec_filter command provided:

python3 xvf_tools.py read_aec_filter <filename.bin>

This should generate a plot as shown Fig. 4.5.

Fig. 4.5: Example output of read_aec_filter

It will also print in the console the peak and mean coefficient values in the frequency domain. To avoid
excessive gain through the AEC filter, themean coefficient valuemust be below 0 dB for all four microphones.
If it is not, reduce AUDIO_MGR_MIC_GAIN to satisfy this. It is recommended to start with a AUDIO_MGR_MIC_GAIN
value that gives a peak coefficient value close to 0 dB. The optimal AEC performance may occur with either
the peak or the mean coefficient value at 0 dB.

Observe the period between 0 and 100 samples in the time domain. There should be a strong first peak, as
shown in Fig. 4.5. The location of this peak in the time domain should be the same as the previously observed
delay between each microphone and the reference input. If this value is significantly above 40 samples,
increase AUDIO_MGR_SYS_DELAY to reduce this. If the time domain response starts with a strong peak at the
first sample, this could be an indication that your system is acausal - reduce AUDIO_MGR_SYS_DELAY to attempt
to bring the full time domain response into view.

343434

4.2.6 AGC Configuration

The audio pipeline includes an automatic gain controller (AGC) which is applied equally to all four processed
outputs from the XVF3800.

This is controlled by four parameters: PP_AGCGAIN, PP_AGCMAXGAIN, PP_AGCDESIREDLEVEL, and PP_AGCONOFF.

• PP_AGCGAIN both controls and reports the current multiplicative gain applied to the output beams by the
AGC. The value set as the product default is the initial value. When the AGC is active, this value is then
dynamically adjusted to attempt to meet the specified output power.

• PP_AGCDESIREDLEVEL is the parameter that sets this desired output power. The signal power of the
free-running beam is measured and compared to the value of PP_AGCDESIREDLEVEL, and PP_AGCGAIN is
adjusted to attempt to meet it.

• PP_AGCMAXGAIN is the maximum value that PP_AGCGAINmay take in operation.

• PP_AGCONOFF determines whether the AGC is permitted to adapt or whether the value of PP_AGCGAIN is
fixed.

Note: It is important to note that the gain specified by PP_AGCGAIN is always applied, regardless of the value of
PP_AGCONOFF; PP_AGCONOFFwill only control whether or not this value is permitted to change during operation.

To set appropriate default values for these parameters, set the device’s output mux to output the free-running
beam:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 6 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

Initialise the parameters to sensible default values:

(sudo) xvf_host(.exe) PP_AGCGAIN 1.0
(sudo) xvf_host(.exe) PP_AGCMAXGAIN 1000
(sudo) xvf_host(.exe) PP_AGCONOFF 1

Play a near-end signal, such as IEEE_269-2010_Male_mono_48_kHz.wav, at a nominal level and at a nominal
distance. The exact specification for this should be determined by the desired certification. Allow PP_AGCGAIN
to converge on a value, record the device output, and observe the output level. xvf_tools.py provides the
command agc_gain_plot to visualise the current AGC value in real time. Run the following command:

python3 xvf_tools.py agc_gain_plot --command-help

for usage instructions. This command requires a positional argument with the path to the xvf_host binary,
and a few optional arguments, for example --protocol to select the correct communication protocol.

Should the device output be too quiet or too loud for the desired certification specification, alter
PP_AGCDESIREDLEVEL and allow PP_AGCGAIN to reconverge.

Once the device output level is as desired, record the stable value of PP_AGCGAIN. This should then be set as
the product’s default value for PP_AGCGAIN.

PP_AGCDESIREDLEVEL can be converted to a target level in dBov or dBm0 as follows:

level_dBov = 10*log10(PP_AGCDESIREDLEVEL)
level_dBm0 = 10*log10(PP_AGCDESIREDLEVEL) + 6

(Note that definitions of dBFS vary between standards as either dBFS == dBov or dBFS = dBov + 3).

To configure PP_AGCMAXGAIN, reduce the near-end signal by 10 dB and repeat the above process, allowing
PP_AGCGAIN to converge on a stable value. This should become the product’s default value for PP_AGCMAXGAIN,
and will set the maximum amplification possible by the device.

Check the device performancewith quieter speech. If the level is too low, PP_AGCMAXGAIN should be increased.
Check the device performance without speech. If background noise is amplified too much when there is no

353535

speech, PP_AGCMAXGAIN should be reduced. There is likely to be a compromise between avoiding unwanted
amplification of background noise and making very quiet speech sufficiently loud.

Note: It is not recommended to change the AGC time constants. Increasing their speed can result in level
fluctuations during speech. For reference, their interactions are described below.

When the AGC gain is being increased (changing from a close speaker to a far-away one):

• If PP_AGCGAIN is less than PP_AGCALPHAFASTGAIN, switch from PP_AGCALPHASLOW to
PP_AGCALPHAFASTGAIN

• This will make the AGC gain ramp up faster by using a faster time constant

• By default PP_AGCALPHAFASTGAIN = 0, so PP_AGCALPHASLOW is always used.

When the AGC gain is being decreased (changing from a far-away speaker to a close speaker):

• If the instantaneous input power is higher than the smoothed value, switch from PP_AGCTIME to
PP_AGCFASTTIME

• This will make the AGC gain ramp down faster by using a faster time constant, and can reduce clipping
during sudden loud speech.

• By default PP_AGCTIME = 0.9 and PP_AGCFASTTIME = 0.6.

4.2.7 Emphasis

The rate at which the AEC converges can be optimised by compensating for the spectral characteristics
of the reference signal. If the signal has significant low-frequency energy but proportionally less high-
frequency energy, this will affect the AEC’s rate of convergence in the high frequencies, and therefore rate
of convergence overall. An optional high shelf boost may be applied to the microphone inputs using the
AEC_AECEMPHASISONOFF parameter.

Play a representative voice sample such as IEEE_269-2010_Male_mono_48_kHz.wav as the reference audio
and capture the post-gain, post-delay reference signal:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 5 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

Perform a Fourier transform using Audacity, or equivalent, and identify the peak magnitude value. Compare
this to themagnitude of the signal at 8 kHz. It is expected that themagnitude of the signal at 8 kHzwill be less
than the peak magnitude. If they have similar magnitudes, set AEC_AECEMPHASISONOFF to 0. If the difference
in magnitudes is around or greater than 8 dB, set AEC_AECEMPHASISONOFF to 1. If the difference is around or
greater than 40 dB, set AEC_AECEMPHASISONOFF to 2.

The impact of tuning this parameter may be observed by measuring the AEC convergence speed. From a
fresh restart, set the following parameters to output clear AEC residuals from a selected pair of microphones:

(sudo) xvf_host(.exe) PP_MIN_NS 1.0
(sudo) xvf_host(.exe) PP_MIN_NN 1.0
(sudo) xvf_host(.exe) PP_ECHOONOFF 0
(sudo) xvf_host(.exe) PP_NLATTENONOFF 0
(sudo) xvf_host(.exe) PP_AGCONOFF 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 7 [microphone number]
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 [microphone number]

Play a representative voice sample such as IEEE_269-2010_Male_mono_48_kHz.wav as the reference input
on a loop for around 60 seconds. Capture the device output for this whole period (around 60 seconds);
these will be the AEC residuals generated. Observe the spectrogram of the output signal and verify that
the AEC converges evenly for all frequencies; that is to say, over the time that the AEC is converging, the

363636

high frequencies should converge as quickly as the low frequencies. It should not be observed that the high
frequencies converge quicker or slower.

4.2.8 MGSCALE

The PP_MGSCALE parameter controls additional noise suppression that is applied during periods of far-end
activity. The aim is to optimise speech clarity output from the device during periods of stationary far-end
activity, while also ensuring that there is good echo suppression in periods of non-stationary far-end activity.
An undesirable scenario may arise if there exists unintended low-level noise in the reference signal, from e.g.
ADC noise in the reference path. In this scenario, the low-level noise may be erroneously detected as far-
end speech; the device may then incorrectly detect that double-talk is present and overly suppress near-end
speech. The PP_MGSCALE parameter configures where this trade-off between far-end echo suppression and
near-end signal clarity lies.

To tune both themin andmax values for the PP_MGSCALE parameter, set the following:

(sudo) xvf_host(.exe) PP_GAMMA_E 1.0
(sudo) xvf_host(.exe) PP_GAMMA_ENL 1.0
(sudo) xvf_host(.exe) PP_GAMMA_ETAIL 1.0
(sudo) xvf_host(.exe) PP_ECHOONOFF 1
(sudo) xvf_host(.exe) PP_NLATTENONOFF 0
(sudo) xvf_host(.exe) PP_MIN_NS 1.0
(sudo) xvf_host(.exe) PP_MGSCALE 1 1 1
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 6 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

Play a representative far-end signal such as IEEE_269-2010_Male_mono_48_kHz.wav on loop as the reference
input. Provide a just-noticeable stationary near-end noise signal, such as white noise. This should be played
at a very low level from a second loudspeaker/source within the room. Observe the device output, including
the spectrogram. Increasing the value ofmax - the first parameter to PP_MGSCALE - will reduce the amount of
residual echo. Increasemax until no further improvements are observed.

Note: A typical value formax will be between 100 and 1000.

Setmin to the derived value formax so that the two are equal.

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/tuning/audio_files
the track silence_2ch_16khz.wav or silence_2ch_48khz.wav. Play the silence track into the reference input,
and provide a representative near-end signal such as IEEE_269-2010_Male_mono_48_kHz.wav. Subjectively
listen to the device output. Theremay be stationary noise present on the far-end, whichmay cause erroneous
echo suppression and therefore erroneous speech distortion. Reducing min can reduce near-end speech
distortion at the cost of reduced stationary noise suppression where stationary noise is present in the far-end
signal.

4.2.9 FMIN_SPEINDEX

PP_FMIN_SPEINDEX is a parameter that controls the frequency-dependent suppression that the device per-
forms in a double-talk environment. In the case of double-talk, the device’s output will suppress frequencies
below the value of PP_FMIN_SPEINDEXmore than frequencies above the value of PP_FMIN_SPEINDEX

Set the following to output clear AEC residuals from a selected pair of microphones:

(sudo) xvf_host(.exe) PP_MIN_NS 1.0
(sudo) xvf_host(.exe) PP_MIN_NN 1.0
(sudo) xvf_host(.exe) PP_ECHOONOFF 0
(sudo) xvf_host(.exe) PP_NLATTENONOFF 0

(continues on next page)

373737

(continued from previous page)

(sudo) xvf_host(.exe) PP_AGCONOFF 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 7 [microphone number]
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 [microphone number]

Depending on the device sample rate, copy from sources/modules/fwk_xvf/modules/tuning/audio_files
the track white_noise_0dbfs_2ch_16khz.wav or white_noise_0dbfs_2ch_48khz.wav. Play through the ref-
erence input the white noise signal, and capture the AEC residuals that are output from the device. Take a
Fourier transform of the interval from 40 - 60 seconds, and plot the magnitude of the coefficients. It is ex-
pected that there will be an identifiable “peak” in this spectrum in the lower frequencies, which drops back
down into the higher frequencies. Set PP_FMIN_SPEINDEX to the highest frequency on this initial peak after
which there is no further decrease in the amplitude spectrum when compared to higher frequencies; in the
spectrum shown in Fig. 4.6 for example, PP_FMIN_SPEINDEX should be set to around 1200 (1.2 kHz), as up to
this point the amplitudes for frequencies on this peak are greater than any other higher frequency; however,
at 5.5 kHz there exists another peak which has greater amplitude than frequencies greater than ~1.2 kHz. If
the spectrum appears roughly flat from around 500 Hz onwards, with no significant decrease in amplitude at
higher frequencies, leave PP_FMIN_SPEINDEX at its default value of 593.75 Hz.

Fig. 4.6: Illustration of the method by which PP_FMIN_SPEINDEXmay be determined

383838

4.2.10 Tuning the Non-Linear Model

4.2.10.1 Non-linear Echo

It is likely that in all devices, regardless of the quality of the audio design, there will exist some non-linearities.
The aim of non-linear estimation is to model the remaining residual echo after linear echo content (including
tail echoes) has been removed. This is achieved in the XVF3800 by use of a self-training non-linear model.

Fig. 4.7: Example non-linear matrix plot.

It is very important to ensure that non-linear model training takes place in a silent environment, and that the
environment is ideally anechoic; the RT60 of the environment for example should be as low as possible, and
absolutely below 0.3s. As can be seen in Fig. 4.7, it is important that the observed distortion should increase
as the output level increases. If the distortion is high/higher at lower levels, it may indicate that the room is
too noisy for tuning, or that the microphone is clipping and AUDIO_MGR_MIC_GAIN needs to be reduced.

If the distortion spectrumshape is similar across output levels, it indicates lowdistortion from the loudspeaker
and housing. In this case, non-linear echoes are likely to have a small effect on echo cancellation.

Note: The XVF3800 provides an estimate of the current RT60 value of its environment. This is obtained via
the AEC_RT60 command.

It is also important tominimise/eliminate any path changes in the environment during non-linear tuning, such

393939

asmovement of people or objects. This tuning step is very deliberately placed after any gain or pre-processing
adjustments have been made. Any changes to the device’s gain structure, including changing any filtering,
will require retuning of the non-linear model.

The tuning process should be run two or three times, and the results compared. If the plots are significantly
different, this implies that non-linearities within the system are changing with time. This can indicate that the
coupling between the loudspeaker and the microphones is varying over time, that there is time-dependent
noise in the system, or that the external environment is changing with time (e.g. not totally silent).

4.2.10.2 Tuning Setup for Non Linear model

This tuning process is somewhat lengthy, and so a set of files and associated training script have been pro-
vided for this tuning step. The process differs slightly depending on whether the host device can play audio
directly through the device (as in Fig. 4.8) or whether a 3rd computer is required (as in Fig. 4.9).

404040

Local Device

Fig. 4.8: Top-level diagram of a system where the audio host and control host are the same device

414141

For this route, it is assumed that the host device is also the device that is providing audio to the XVF3800,
through e.g. an I2S interface for the XVF3800 INT-Device variant or USB interface for the XVF3800 UA device.
Via xvf_tools.py, it is possible to run the command nl_model_training, which executes all the necessary
steps to train the non-linear model. Run the command nl_model_training as:

python3 xvf_tools.py nl_model_training <host_app> [--protocol {i2c,spi,usb}]

where <host_app> is the path to the xvf_host file, this can be an absolute path or a path relative to the current
working directory.

This will generate an output file with the default name of nlmodel_buffer_override.bin.r16.c40. Copy
this file to sources/app_xvf3800/nl_model_gen/nlmodel_bin and rerun the build process to generate a bi-
nary with this non-linear model set as default. A different output file can be selected by using the optional
arguments --output and --output_dir. Refer to the docstring for this script for further guidance.

424242

Remote Device

Fig. 4.9: Top-level diagram of a system where the audio host and control host are separate devices

434343

For this route, it is assumed that a 3rd device is acting as the audio source (here termed the “audio
host”). Therefore, to issue control commands, it is necessary to remotely connect to the “control host” (as-
sumed to be a Raspberry Pi) over SSH. This can be done using the command remote_nl_model_training
from xvf_tools.py. Locate the host application binaries on the audio host; these should be located at
host_v<version>/rpi in the release package. Ensure that the audio host has passwordless access to the
control host over SSH; this may be achieved by generating an SSH key pair and adding the public key to
~/.ssh/authorized_keys on the control host.

This script requires that the audio host have an installation of sox in its path, as well as Python3 with
matplotlib and asyncssh installed via Pip. Ensure that the default loudspeaker andmicrophone on the audio
host are set as the device to be tuned.

From the audio host, run the script as:

python3 xvf_tools.py remote_nl_model_training <control host IP address> <host application binary�
↪→path on the audio host>

Once the script has run, locate the generated nlmodel_buffer_override.bin.r16.c40 and corresponding
plot in the src.autogen directory. Copy this file to sources/app_xvf3800/nl_model_gen/nlmodel_bin and
rerun the build process to generate a binary with this non-linear model set as default. A different output file
can be selected by using the optional arguments --output and --output_dir. Refer to the docstring for this
script for further guidance.

Support for multiple products

The XVF3800 allows to have different nlmodel binary files for different build configurations. If the users have
multiple .bin.r16.c40 files, it can associate them to a specific build configuration by overwriting the CMake
variable NL_MODEL_BIN, for example if a file nlmodel_buffer_new_override.bin.r16.c40 must be included,
the following line must be added in sources/app_xvf3800/CMakeLists.txt:

set(NL_MODEL_BIN nlmodel_buffer_new_override.bin.r16.c40)

4.2.11 Echo Suppression

With the non-linear model trained, we are now in a position to balance echo suppression against speech
distortion. Five tuning parameters are relevant for this section:

• PP_DTSENSITIVE: This parameter sets a balance between double-talk performance and echo suppres-
sion.

• PP_ECHOONOFF: This parameter sets whether echo suppression is enabled or disabled overall.

• PP_NLATTENONOFF: This parameter sets whether non-linear echo suppression is enabled or disabled.

• PP_GAMMA_E: This parameter adjusts the oversubtraction factor for direct and early echo suppression.

• PP_GAMMA_ENL: This parameter adjusts the oversubtraction factor for non-linear echo suppression.

• PP_GAMMA_ETAIL: This parameter adjusts the oversubtraction factor for echo tail suppression.

For the PP_GAMMA_* parameters, a value of 1.0 indicates that the device has correctly estimated and sup-
pressed the respective echo classes from the output. Increasing these values increases the amount of sup-
pression, and indicates that the device has underestimated the amount of echo in the outputs. It is unlikely
for the device to overestimate the amount of echo, and so it is not advised to set these parameters to values
below 1.0. A typical range for these parameters is between 1.0 and 1.4.

Increasing these parameters will always affect the quality of the speech signal. Attempt in the first instance
to create as good an acoustic design as possible, with a linear loudspeaker, good quality microphones, and a
maximally non-linear enclosure. This will reduce or eliminate the need to adjust these values, and will present
a more performant device.

444444

4.2.11.1 PP_DTSENSITIVE

PP_DTSENSITIVE allows some control over the balance struck between double-talk performance and echo
suppression, including the use of an optional near-end speech detector. This is summarised in Fig. 4.10; as
echo suppression increases, double-talk performance will tend to decrease as more near-end is suppressed.

Fig. 4.10: Illustration of relationship between PP_DTSENSITIVE value and echo suppression

The tuning process for this parameter is not straightforward. A recommended approach is to start with
this parameter set to 0, and attempt to then tune the rest of the echo suppression parameters. If insuffi-
cient echo suppression is achieved before setting these parameters unacceptably high (above around 1.4),
increase PP_DTSENSITIVE and attempt to retune. If this results in unacceptable double-talk performance,
lower PP_DTSENSITIVE and attempt to retune. Find a balance between acceptable echo performance and
double-talk performance by balancing settings for PP_DTSENSITIVE and the PP_GAMMA_ parameters.

454545

4.2.11.2 PP_GAMMA_E and PP_GAMMA_ENL

The objective of tuning these two parameters is the removal of echoes to pass e.g. Teams EQUEST and ECC
specifications. Ensure that this tuning step takes place in an anechoic ormildly reverberant environment, with
an RT60 less than 0.3 s.

Set the device as follows to output the autoselect beam in the left channel and the AEC residual signal for
microphone 0 in the right channel:

(sudo) xvf_host(.exe) PP_AGCONOFF 0
(sudo) xvf_host(.exe) PP_MIN_NN 1.0
(sudo) xvf_host(.exe) PP_MIN_NS 1.0
(sudo) xvf_host(.exe) PP_GAMMA_E 1.0
(sudo) xvf_host(.exe) PP_GAMMA_ENL 1.0
(sudo) xvf_host(.exe) PP_GAMMA_ETAIL 1.0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 6 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 0

Play through the reference input a representative signal, such as IEEE_269-2010_Male_mono_48_kHz.wav. Al-
low the AEC to converge. After 30 seconds, play a representative near-end signal in addition to the far-end
signal, to place the device into a representative double-talk scenario. Listen to the device’s output. Starting
with the default value of 1.0, adjust PP_GAMMA_E to make the trade-off between double-talk performance and
echo suppression. Should the value of PP_GAMMA_E need to exceed around 1.4 to achieve acceptable perfor-
mance, consider adjusting PP_GAMMA_ENL instead, especially if the echoes that remain in the AEC residual
signal are of a non-linear nature.

To identify the nature of the echoes that remain, listen to the AEC residual signal and categorise the residual
echoes as follows:

• Linear residual echoes: Echoes can be understood at a low level but do not sound distorted and do not
sound reverberated. Controlled by PP_GAMMA_E.

• Tail echoes: Echos sound reverberated, with no direct component. This will sound like indistinct reverb,
but with no clear original source. Controlled by PP_GAMMA_ETAIL.

• Non-linear echoes: Echoes sounds very distorted, with no discernable e.g. speech content. Controlled
by PP_GAMMA_ENL.

Note however that echo suppression is applied after the point where the AEC residual signals are tapped, and
so changes to the PP_GAMMA_ parameters will not be reflected in the AEC residual signals. These signals are
useful therefore for categorising the kinds of echo present, but the device’s output should be used to observe
qualitative changes in echo suppression.

4.2.11.3 PP_GAMMA_ETAIL

To tune this parameter, repeat the above procedure in a moderately reverberant room (with an RT60 between
0.3 and 0.9s). Clear tail echoes should be observed in the residual signal, and these tail echoes should be
improved by adjustment of PP_GAMMA_ETAIL. Adjust this parameter, making a trade-off between double-talk
performance and echo suppression.

464646

4.2.12 Noise Suppression

Two parameters control suppression of stationary and non-stationary noise in the device output: PP_MIN_NS
and PP_MIN_NN respectively. These parameters take values between 0 and 1, representing the multiplicative
attenuation of these two noise sources. For example, PP_MIN_NS is set to 0.15 by default, representing a
roughly 15 dB attenuation of stationary noise in the device output. It is recommended that PP_MIN_NN is set
by default to 0.51 or higher, representing at most a 6 dB attenuation of non-stationary noise in the device
output. Reducing this value further may have significant impact on near-end speech quality, especially in
reverberant environments.

To tune these parameters, set the device as follows:

(sudo) xvf_host(.exe) PP_AGCONOFF 0
(sudo) xvf_host(.exe) PP_MIN_NS 0.15
(sudo) xvf_host(.exe) PP_MIN_NN 0.51
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 6 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

Play a representative near-end signal, such as IEEE_269-2010_Male_mono_48_kHz.wav. Subjectively evaluate
the device output, first noting the presence of stationary noise. Reduce PP_MIN_NS to suppress this noise fur-
ther. Reducing this parameter may introduce or increase distortion in near-end speech; ensure that a balance
is struck between speech quality and stationary noise suppression. Note next the presence of non-stationary
noise. Reduce PP_MIN_NN to suppress this noise further. As with PP_MIN_NS, reducing this parameter may
introduce distortion in near-end speech, particularly in reverberant environments. Ensure that an appropri-
ate balance is struck between speech quality and non-stationary noise suppression. Reducing the value of
PP_MIN_NN to 0.5 or below will trigger additional non-stationary noise supression.

4.2.13 ATTNS

The ATTNS parameters (PP_ATTNS_MODE, PP_ATTNS_NOMINAL, and PP_ATTNS_SLOPE) control an additional re-
duction in AGC gain during non-speech periods. Collectively, they attempt to combat an undesirable side-
effect of the use of an AGC - the tendency to noticeably amplify noise in non-speech periods when the near-
end speech signal is quiet. The Zoom Rooms specification test 7.4.3 (as of writing, last issued in October
2019) sets limits on how amplified this non-speech noise may be when the AGC is at a high gain compared
to the noise level when the AGC is at a low gain. Therefore, attenuating noise at a greater strength when the
AGC is at a high gain may reduce this noise and achieve better performance in these tests.

The overall behaviour of the ATTNSmay be selectedwith the PP_ATTNS_MODE parameter, which both functions
as a specifier of whether the ATTNS is in use and whether bias is applied against selecting beams with high
noise as the autoselected beam.

• 0 - The ATTNS is off

• 1 - The ATTNS is on

When the ATTNS is on, PP_ATTNS_NOMINAL and PP_ATTNS_SLOPE control the additional attenuation propor-
tional to:

where AGCGAIN_INIT is the value of PP_AGCGAIN set as the default value at initialisation, and AGC-
GAIN_CURRENT is the current value of PP_AGCGAIN. Because of this module’s relationship with the current
value of PP_AGCGAIN, this module has no effect when PP_AGCONOFF is set to 0.

Because both the Teams v4 and Zoom Rooms specifications specify this suppression as a ratio between the
noise at a nominal speech level and the noise at a low speech level, it may be required to tune both of these

474747

parameters in parallel; changing one may have an effect on the required value for the other, and vice-versa.

To tune these parameters, ensure that PP_AGCGAIN and PP_AGCMAXGAIN are tuned correctly, then perform the
following:

4.2.13.1 ATTNS_NOMINAL

Issue the following to set appropriate default values for this tuning step:

(sudo) xvf_host(.exe) PP_AGCONOFF 1
(sudo) xvf_host(.exe) PP_ATTNS_MODE 1
(sudo) xvf_host(.exe) PP_ATTNS_NOMINAL 1.0
(sudo) xvf_host(.exe) PP_ATTNS_SLOPE 0.0

Play a representative near-end signal at a nominal level, such as the ITU P.501 7.3.2 reference
signal FB_male_female_single-talk_seq.wav. This signal can be found in the Speech Signals/
Test_Signals_Clause 7/Speech Test Signals Clause 7.3 & 7.4/English_FB_clause_7.3/ directory
of the ITU P.501 download package.

Setting ATTNS_NOMINAL > 1 should provide more noise suppression during silence. With a particular spec-
ification in mind, increase this value until desired/specified noise suppression is achieved during the test
conditions. For example, this could be done by monitoring average A-weighted noise during the period 1s
after the end of a sentence in the reference signal and ensuring that it is within satisfactory bounds. This is
usually specified as a ratio between this value and the averaged value obtained with the near-end signal at a
range of low levels.

4.2.13.2 ATTNS_SLOPE

Issue the following to set appropriate default values for this tuning step:

(sudo) xvf_host(.exe) PP_AGCONOFF 1
(sudo) xvf_host(.exe) PP_ATTNS_MODE 1
(sudo) xvf_host(.exe) PP_ATTNS_NOMINAL <default found in previous step>
(sudo) xvf_host(.exe) PP_ATTNS_SLOPE 1.0

Play a representative near-end signal at a nominal level, such as the ITU P.501 7.3.2 reference signal
FB_male_female_single-talk_seq.wav. Setting ATTNS_SLOPE > 1.0 provides additional noise suppression
during silence, proportional to an increased AGC gain. With a particular specification in mind, increase this
value until desired/specified noise suppression is achieved during the test conditions. For example, this could
be done bymonitoring average A-weighted noise during the period 1 second after the end of a sentence in the
reference signal and ensuring that it is within satisfactory bounds; this is usually specified as a ratio between
this value and the averaged value obtained with the near-end signal at a range of low levels.

4.2.14 Path Change Detection

The XVF3800 provides a facility to detect significant path changes in the device’s environment such as han-
dling the device and moving to a different location using a module called the Path Change Detector (PCD). If
a path change is detected, heavy near-end suppression during far-end activity is applied in order to allow the
AEC time to reconverge to its new environment. If the device incorporating the XVF3800 is not intended for a
mobile application (for example, a wall-mounted sound bar), then detection of path changes is not necessary.

The PCD may be tuned using the AEC_PCD_COUPLINGI, AEC_PCD_MINTHR, and AEC_PCD_MAXTHR parameters.

AEC_PCD_COUPLINGI controls the rate of detection of a path change, and takes a value between 0 and 1. Set-
ting this to a low value encourages fast detection of path changes at the increasing risk of false positives
during double-talk. Setting this to a high value slows detection of path changes (and increases the detection
threshold, meaning some small changesmay bemissed) but reduces the risk of false positives in double-talk.

484848

Setting this parameter to a value outside of the range 0 to 1 will disable the PCD. Tuning of this parameter
is necessarily very situation- and product-dependent. Monitoring of the AEC_AECPATHCHANGE parameter can
allow insight into whether a path change has been detected; reading a 1 value implies that a path change has
recently been detected and that the device output is currently heavily suppressed during far-end activity. This
parameter will reset to 0 after the AEC has reconverged.

AEC_PCD_MINTHR and AEC_PCDP_MAXTHR are used to set sensitivity thresholds, and their use depends on the
overall Echo Return Loss Estimate (ERLE) of the device. For devices with a high ERLE (implying a high ratio
between the provided reference signal and the resultant AEC residual, and therefore high cancellation), use
AEC_PCD_MINTHR to limit the lower bound. Decreasing this value from its default of 0.02 will increase the
sensitivity of the PCD. For devices with a low ERLE, use AEC_PCD_MAXTHR to limit the upper bound. Decrease
this value from its default of 0.2 to increase the sensitivity of the PCD.

4.2.15 Output equalization

The XVF3800 has an equalizer that can be used to adjust the output frequency response, should it not meet
the limits in a Teams/Zoom spec. This may be needed to compensate for the frequency response of the
microphones and their housing. The equalizer is applied in the frequency domain before the AGC. xvf_tools.
py provides the command ploteq to generate the coefficients. To run the script, run the following command:

python3 xvf_tools.py ploteq

The script produces a GUI shown in the picture below.

494949

The user must first select in the lower left corner:

• the band appropriate for the device: wideband or superwideband

• the desired resolution: “octave bands” gives an 8 band equalizer with control points at one octave inter-
vals [62.5, 125, 250, 500, 1000, 2000, 4000, 8000], while “1/3 octave bands” give finer resolution, with a
22 band equalizer with control points at 1/3 octave intervals.

The user can click on the GUI to update the frequency gains and to achieve the desired filter. The coefficients
can be exported using the Export command in the lower right corner.

When the file with the desired coefficients is ready, it can be written to the device using the command:

(sudo) xvf_host(.exe) --set-eq-filter eq.bin

where eq.bin is the file exported by the ploteq command.

The user can override the default equalization filter included in the build. To do this:

• rename the eq.bin file generated above as eq_filter_override.bin

• copy it to folder sources/app_xvf3800/eq_filter_gen/eq_filter_bin/

• rerun the build process to create a binary with the new equalization filter set as default.

The filter can be read using the command:

505050

(sudo) xvf_host(.exe) --get-eq-filter eq.bin

and it can be visualised using the Import command in the GUI of the ploteq command.

4.3 Changing Default Parameter Values
The default parameters set at start-up are loaded from the file defaults.c in sources/app_xvf3800/src/
default_params. In this file the values are included from some header files auto-generated at compile time.
The values used in defaults.c must be updated using the YAML files stored in sources/app_xvf3800/
autogeneration/yaml_files/settings_and_defaults/. The XVF3800 supports separate default values for
different products. In the sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/
there is a subfolder for each product specifier, for example the default values for the XK-VOICE-SQ66 de-
velopment kit are stored in the product subfolder.

Note: Any default value set outside the YAML files will be overwritten at compile time.

In the product directory five files used to generate defaults.c are present:

• mic_geometries.yaml

• control_param_values.yaml

• gpi_config.yaml

• gpo_config.yaml

• usb_param_values.yaml

Warning: All the parameters in the files above must be set; failure to do this can lead to unexpected
behaviour of the device, such as uninitialized start-up values.

Note: PP_MGSCALE provides three values when queried through the host application, but only requires two to
be set here - max and min.

mic_geometries.yaml contains the coordinates for each of the 4 mics for both the linear and
square/rectangular geometries. An example of the values is below:

LINEAR_GEOMETRY:
- MIC0: (-0.04995f, 0.00f, 0.00f)
- MIC1: (-0.01665f, 0.00f, 0.00f)
- MIC2: (0.01665f, 0.00f, 0.00f)
- MIC3: (0.04995f, 0.00f, 0.00f)

SQUARECULAR_GEOMETRY:
- MIC0: (0.0333f, -0.0333f, 0.00f)
- MIC1: (0.0333f, 0.0333f, 0.00f)
- MIC2: (-0.0333f, 0.0333f, 0.00f)
- MIC3: (-0.0333f, -0.0333f, 0.00f)

The user must update the values to match the geometry used in their target application. The default config-
urations shown above are those supported by the XK-VOICE-SQ66 development kit.

control_param_values.yaml lists all the control parameters which can be configured. An example of a pa-
rameter with a default value is below:

515151

PP_RESID:
- cmd: PP_AGCONOFF
default_value: on

The parameters in the file are organized into arrays, and each array contains all the parameters related to
a particular control resource ID. The parameter name is stored in the cmd key and the default value in the
default_value key. In the example above, the default value of the parameter PP_AGCONOFF belonging to the
PP_RESID is on. The number of values and type of each parameter may vary from command to command. It
is advised to look up the command information in the tables in the Control Commands Appendix and to follow
the format of the original default values in order to set the values properly.

gpi_config.yaml stores all the settings of the GPI pins. The XVF3800 has 2 configurable GPI pins and the
following parameters can be modified:

• active_level: 0 for low and 1 for high

• event_config: four types of events are supported:

– EdgeNone: no event is detected on either edge

– EdgeFalling: an event is detected on the falling edge (high to low transition)

– EdgeRising: an event is detected on the rising edge (low to high transition)

– EdgeBoth: one event is detected on the rising edge and one on the falling edge

The default configurations of the GPI pins are below:

Exactly GPIO_NUM_INPUT_PINS pins should be defined here

PIN0:
active_level: 1
event_config: EdgeNone

PIN1:
active_level: 1
event_config: EdgeNone

gpo_config.yaml lists the settings of all the GPO pins and ports. The XVF3800 device has one 8-bit port
designated for GPO. Only five of the eight are pinned out, and three pins are required for the device to operate
normally, leaving the remaining two pins available for user modification. These pins are number 6 and 7, and
they are used to control the LEDs in the default firmware.

In the file each port must be listed; the XVF3800 only implements PORT0. For each port an array of eight pins
must be defined and each pin has the following configurable settings:

• pin_number: this value shouldn’t be modified

• active_level: 0 for low and 1 for high

• output_duty_percent: Pulse-width modulation (PWM) duty cycle specified as a percentage

• flash_serial_mask: serial flashmask where each bit specifies the GPO pin state for a 100ms time period
interval

The default configurations of the GPO port and pins are below:

PORT0:
UNUSED: NOT PINNED OUT
- pin_number: 0
active_level: 1
output_duty_percent: 0
flash_serial_mask: 0xFFFFFFFF

UNUSED: NOT PINNED OUT
- pin_number: 1
active_level: 1
output_duty_percent: 0

(continues on next page)

525252

(continued from previous page)

flash_serial_mask: 0xFFFFFFFF
UNUSED: NOT PINNED OUT
- pin_number: 2
active_level: 1
output_duty_percent: 0
flash_serial_mask: 0xFFFFFFFF

GPO_DAC_RST_N_PIN
- pin_number: 3
active_level: 1
output_duty_percent: 100
flash_serial_mask: 0xFFFFFFFF

GPO_SQ_nLIN_PIN
- pin_number: 4
active_level: 1
output_duty_percent: 0
flash_serial_mask: 0xFFFFFFFF

GPO_INT_N_PIN
- pin_number: 5
active_level: 1
output_duty_percent: 100
flash_serial_mask: 0xFFFFFFFF

GPO_LED_RED_PIN
- pin_number: 6
active_level: 0
output_duty_percent: 0
flash_serial_mask: 0xFFFFFFFF

GPO_LED_GREEN_PIN
- pin_number: 7
active_level: 0
output_duty_percent: 0
flash_serial_mask: 0xFFFFFFFF

usb_param_values.yaml lists the settings of the USB port.

The default configuration of the USB port is shown below:

VENDOR_ID: 0x20B1
PRODUCT_ID_IO_16KHZ: 0x4F01
PRODUCT_ID_IO_32KHZ: 0x0000
PRODUCT_ID_IO_48KHZ: 0x4F00
MANUFACTURER_STR: "XMOS"
PRODUCT_STR: "XVF3800 Voice Processor"
SERIAL_NUMBER_STR: "000000"
CONTROL_INTERFACE_STR: "XMOS Control"
HID_INTERFACE_STR: "XMOS HID"
DFU_FACTORY_INTERFACE_STR: "XMOS DFU Factory"
DFU_UPGRADE_INTERFACE_STR: "XMOS DFU Upgrade"
DEFAULT_BIT_DEPTH_IN: "16"
DEFAULT_BIT_DEPTH_OUT: "16"

Note: When the default parameters are changed, it is necessary to rebuild the application and reload onto
the XVF3800 as described in the following section. See Building an Executable.

Warning: The process to rebuild the application does not check each parameter’s value to ensure that it
falls within its valid range. A change to a parameter value that falls outside of its valid range may result in
undefined behaviour.

The XVF3800 build system supports multiple sets of default values. If a new product with different default

535353

values must be built, do the following:

1. Create a new folder in sources/app_xvf3800/autogeneration/yaml_files/
settings_and_defaults/, for example new_product

2. Copy the YAML files in sources/app_xvf3800/autogeneration/yaml_files/
settings_and_defaults/product into the new folder

3. Update the values in the new YAML files

4. Add ormodify a build configuration as described in Adding orModifying Build Configurations
section of the Programming Guide

5. Overwrite the CMake variable PRODUCT_DEFAULT_SPECIFIER, for example by adding in
sources/app_xvf3800/CMakeLists.txt the following:

set(PRODUCT_DEFAULT_SPECIFIER new_product)

545454

5 Building the Application Firmware

5.1 Introduction
The XVF3800 comprises a specialised xcore.ai processor and a firmware executable. A set of firmware im-
ages is provided in the binary release package which are configured to run correctly on the XK-VOICE-SQ66
development kit. However, when using the XVF3800 in a product design it is normally necessary to modify
the firmware to match the hardware and to configure a number of settings. This is achieved by modification
of the configuration files supplied as source code and rebuilding the modified code to create a new firmware
image.

Instructions on configuring the firmware is included in the Tuning the application section.

This section explains how to build the XVF3800 application from files in the source release package.

5.2 Prerequisites
The XVF3800 source code can be build on Windows, macOS and Linux platforms.

Note: An active internet connection is required as part of the process as the build scripts download additional
packages to configure the environment.

The XVF3800 build procedure requires that a set of 3rd Party software packages, listed below, are installed
on a development computer before attempting to build firmware for the XVF3800.

5.2.1 Python3

A standard installation of Python version 3.10 or higher should be present on the development computer.
This is available by default on some platforms, but if required it can be installed from https://www.python.
org/downloads/.

The pip3 package manager included in the standard python configuration is used to install some tools and
python is required to run some setup and tuning tools.

5.2.2 XMOS tools

XTC Tools 15.3.x : This is the XMOS toolchain which allows users to compile, link, deploy and debug applica-
tions on all XMOS processors.

The XTC Tools can be downloaded from https://www.xmos.com/software-tools/ and installed on a devel-
opment computer following the instructions in the https://www.xmos.com/view/Tools-15-Documentation.
XTC tools can run on Windows, macOS and Linux platforms.

555555

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.xmos.com/software-tools/
https://www.xmos.com/view/Tools-15-Documentation

5.2.3 Build Tools

CMake >= version 3.21.0 : CMake is a build tool for managing application compilation.

The CMake tool package can be installed following the instructions for your specific OS platform at https:
//cmake.org/install/.

The recommended make tools depend on the development platform:

(Linux and macOS): GNU Make - Available through your system package manager.

Ninja (Windows): Ninja - Follow install instructions at https://ninja-build.org/ or on windows install with
winget by running the following commands in PowerShell:

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

5.3 XVF3800 Release Package
The XVF3800 firmware is supplied in two different release packages which are distributed as ZIP archive files
with the following contents:

1. Binary release - a set of pre-compiled images that will run on the XK-VOICE-SQ66 development kit

2. Source release - Source code and libraries to allow customisation of the XVF3800

This section describes how to use the second package.

Release packages for XVF3800 can be obtained from the XVF3800 developer page or from your XMOS rep-
resentative.

Load the ZIP archive onto your development platform and expand the archive into a convenient directory. It
contains the release notes and a TAR file. On Linux or macOS, expand the TAR file using:

tar -xvf xvf3800_source_[date]_[time].tar

where [date] is the build date in yymmdd format and [time] is the build time in hhmmss format.

On Windows, expand the TAR file using the 7-zip utility. This utility is freely available in the Microsoft Store.
Open a file browser and navigate to the folder containing xvf3800_source_[date]_[time].tar. Right click
on this file. If necessary, select ‘Show more options’. Highlight ‘7-zip’ and select one of the ‘Extract’ options.
If necessary, press the ‘Close’ button upon completion.

The contents of the source release package are shown below:

.
��� CHANGELOG.rst <- list of changes of current and past releases
��� LICENSE.rst <- license file
��� precompiled <- directory containing the precompiled libraries
��� README.md <- readme file
��� sources <- source files necessary to build XVF38xx applications

The user modifiable code is found in the sources/app_xvf3800 directory.

565656

https://cmake.org/install/
https://cmake.org/install/
https://ninja-build.org/
https://www.xmos.com/develop/xvf3800

5.3.1 Standard Configurations

The XVF3800 release package contains a set of standard build configurations that will suit the majority of
use cases for the XVF3800 device. The table below lists the key configuration parameters.

Table 5.1: Build-time combinable parameters

Parameter Options Abbreviation Notes

Device configuration INT-Device
USB

-intdev
-ua

I2S LR clock rate 16000
48000

-lr16
-lr48

Select sampling rate for I2S interface; ignored
for UA configurations.

USB IN/OUT sample
rate

16000
48000

-io16
-io48

Only valid in UA configuration; ignored for INT
configurations.

Microphone geometry Linear
Square or
circular

-lin
-sqr

Selects microphone configuration on
XK-VOICE-SQ66 board

Control protocol I2C
SPI

-i2c
-spi

Select control protocol for INT configurations;
ignored for UA configurations, as they always
use USB as control interface.

Audio MCLK Use external
MCLK signal

-extmclk Only valid on INT-Device configuration.
Should be omitted if an external MCLK is not
used.

5.3.2 Image Names

The XVF3800 built image names comprise the parameter abbreviations listed above in a set order:

<device config>-<sample rate>-<mic geometry>-<control protocol>[-extra-options]

where -<control protocol> is not set for UA, as it always uses USB, and -extra-options can be -extmclk, -io-exp
and -spatial.

Examples:

• -ua-io48-lin

• -intdev-lr48-sqr-i2c

• -intdev-lr48-lin-spi-extmclk

More information about the supported build configurations can be found in the tables Table 2.1 and Table 2.2.

575757

5.4 Build Process

5.4.1 Set up the environment

Note: The software packages in the Prerequisites section must be installed before starting this process.

To build the XVF3800 application, open a command-line terminal and ensure that the XMOS tools are config-
ured in the environment. This can be checked by typing:

xcc --version

which should display the tools version information. If this does not happen please consult the Configuring
the command-line environment section of https://www.xmos.com/software-tools/ at https://www.xmos.
com/view/Tools-15-Documentation.

5.4.2 Configure the build system

The build process comprises of two phases - the first phase sets up the build environment and downloads
key components while the second phase builds a specific executable. Configuration is only required to be
done once.

To set up the environment change directory to the sources directory of the release package and install the
required Python3 packages:

cd sources

pip3 install -r requirements_build.txt

Then configure the build. This step can take several minutes. The preset to use depends on the host com-
puter.

Windows
cmake --preset=rel_app_xvf3800_windows
Not Windows
cmake --preset=rel_app_xvf3800

Note: OnWindows the maximum file path length is 260 characters. If the build path exceeds this length, the
build may fail. If a warning is displayed about the maximum file path, move the source code to a directory
with a shorter path length.

When this is complete the XVF3800 build system has been configured.

585858

https://www.xmos.com/software-tools/
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/view/Tools-15-Documentation

5.4.3 Build an executable

The next phase is to build a specific executable. The release package contains a set of configurations that
cover the main use case for the XVF3800 device.

To see the available build presets use:

cmake --build --list-presets

The naming scheme for these presets is defined in the Standard Configurations section above.

Select the preset you wish and start the build.

For example to build a 48 kHz USB configuration with a square microphone array is:

cmake --build --preset=ua-io48-sqr

The script will compile all the source file and when it completes the generated binary file is saved in the
subdirectory build.

The required executable binary will be named application_xvf3800_ua-<build options>.xe. As an exam-
ple the result of the build command above would be:

build/application_xvf3800_ua-io48-sqr.xe.

5.5 Installing the Executable Image
Twomethods exist to install on the XVF3800 hardware the executable image created in the previous section,
using the xrun and xflash tools that are suppled in the XTC Tools suite.

Both methods require a connection between a development computer and the XVF3800 via an XTAG4 de-
bug adapter. Instructions to set up the XK-VOICE-SQ66 development kit can be found in the Setting up the
hardware section of this guide.

5.5.1 Install Using xrun

The xrun tool loads the executable image into the XVF3800RAMwithout storing it in the XVF3800 Flash ROM.
It then starts the operation of the XVF3800 using this executable image. Using the example from above the
required command is:

xrun application_xvf3800_ua-io48-sqr.xe

5.5.2 Install Using xflash

The xflash tool stores the executable image in the XVF3800 Flash ROM. A subsequent power-cycle loads
the stored image into the XVF3800 RAM and starts its operation. Using the same example from above the
required command is:

xflash application_xvf3800_ua-io48-sqr.xe

595959

5.6 Using SPI Boot

5.6.1 Creating a SPI Boot File

To use the built application_xvf3800_[..].xe executable generated from the above process as a SPI boot
image it is necessary to convert the .xe image into a .bin file that includes a bootloader.

The files required to build this .bin image can be found in the sources/modules/fwk_xvf/modules/
boot_spi_slave directory of the source release package.

Warning: This procedure requires the XTC tools to be installed on a development computer. It cannot be
run on the Raspberry Pi host.

To create a SPI boot image change into the sources directory:

cd sources/

and then generate the binary image using the following command:

python3 xvf_tools.py generate_image <path/to/application_xvf3800_[..].xe>

An SPI bootable file application_xvf3800_[..]_spi_boot.bin will be created in the build subdirectory.

5.6.2 Using a SPI Boot File

5.6.2.1 Safe SPI Booting

The SPI boot process is documented in the XVF3800 datasheet. An example python script is provided in the
source release package which uses a Raspberry Pi to transfer the image and boot the XVF3800 device on an
XK-VOICE-SQ66 development kit.

Note: The Raspberry Pi must be setup as described in the setting up the hardware section for this script
to operate correctly.

The python script can be found in sources/modules/fwk_xvf/modules/boot_spi_slave/scripts subdirec-
tory. This script and the _spi_boot.bin image generated using the procedure described above should be
copied onto the Raspberry Pi.

To boot the XVF3800 device the following command should be run from sources:

sudo python3 xvf_tools.py send_image_from_rpi <build/application_xvf3800_[..]_spi_boot.bin>

The example script will need to be modified, if this procedure is executed on other host systems.

Note: The Python script provided is designed to be simple and safe. It uses a conservative SPI clock (12.5
MHz) and large inter-block delays for all blocks.

606060

5.6.2.2 Fast SPI booting

The SPI boot process is capable of running significantly faster (a few hundred milliseconds typically) through
use of an optimized boot process. An example of a speed-optimized boot host utility can be found in the
sources/modules/fwk_xvf/modules/boot_spi_slave/fast_send subdirectory.

The maximum SPI clock speed can be up to 50 MHz depending on the signal integrity of your hardware. It
has also been found that the Python SPI library incurs a latency of a few milliseconds after each 4 kB block
has been transferred.

The XVF3800 device boot process has constraints that mean it needs a minimum inter-block delay to be
applied at specific points throughout the boot process.

By taking into account these constraints and using a C language utility a much improved boot time may be
achieved. The boot process requires inter-block delays at two stages as can be seen in Fig. 5.1:

• A PLL settling delay after the tile[0] second stage bootloader has been received following the first 4 kB
block. This delay may be as low as 1 millisecond.

• An inter-tile transfer delay after the tile[1] application image has been received and is sent from tile[0].
The block count for this will vary depending on the binary size. The delay value typically needs to be 5
ms but may be longer if the firmware has been modified or a significant amount of extra code has been
added.

Fig. 5.1: Fast SPI boot time diagram

To determine the inter-tile transfer delay block number, please inspect the output from generate_image.py.
For example, the following run indicates that the inter-tile transfer delay should be applied after the 103rd, 4
kB block has been sent:

--

3384 loader object bytes (includes header but not ROM size word)
412780 image bytes
443944 image bytes
transfer_block_num: 103

--

To build the fast SPI boot example for the Raspberry Pi do the following:

cd sources/modules/fwk_xvf/modules/boot_spi_slave/fast_send
make

To run the fast SPI boot utility pass the SPI boot image file, SPI clock speed and transfer_block_num to the
binary. For example:

./send_image ../build/application_xvf3800_[..]_spi_boot.bin 50000000 103

616161

The default firmware flashes the green LED on the XK-VOICE-SQ66 development kit to indicate suc-
cessful boot. If boot was not successful first try reducing the SPI clock speed and ensure that the
transfer_block_num matches the generation stage output. To check the hardware is operational you may
also wish to try the Safe SPI Booting stage first.

Note: The Raspberry Pi 4 has a bug in the spidev driver where the output of the SPI perihperal is left in a
non-working state after a single boot. Running sudo rmmod spi_bcm2835 && sudo modprobe spi_bcm2835
after send_image has been found to work-around this.

626262

6 Some Acoustic Design Guidelines

This chapter presents a brief guide to a number of introductory acoustic considerations that designers should
take into account when integrating the XVF3800 into their end product.

It should be stressed that a more ideal acoustic design will result in fewer compromises needing to be made
whilst configuring the XVF3800. Designers should invest time in the acoustic design of the end product in
order to optimise the overall product performance.

Note that the requirements discussed here are only intended as general guidelines to help devise a more
precise product specification. The actual specification will depend on the intended application. For example,
even within a telecommunications application, a handset, personal speakerphone, or shared space speaker-
phone will each have very different technical specifications.

Additionally, many certification requirements have multiple available levels of certification. For example, Mi-
crosoft Teams Audio Requirements has a basic and a premium certification level, where the premium level
features more stringent requirements. A similar situation with basic and premium criteria can be found in
Amazon’s certification requirements for voice services.

Therefore, this document will not cover all the different potential requirements or applications. These must
be decided on a case-by-case basis to match with the intended application of the product with consideration
to the desired certification requirements.

Instead, this document will cover the technical areas that should be considered when designing the product
specification. Where numerical values are given, they should not be considered recommended or required,
but instead are provided as a “ball-park” figure for context. These figures have been chosen based on a generic
product design for a typical smart speaker or personal speakerphone which aims to pass the basic level of
certification requirements.

6.1 Microphones
The XVF3800 requires 4 microphone inputs. These microphones may be omnidirectional; no additional ben-
efit has been observed from the use of e.g. cardioid polar patterns.

Microphones chosen for a design should exhibit a signal-to-noise ratio (SNR) greater than 67 dB. This en-
sures a sufficiently lowmicrophone self-noise, allowing a low enough noise floor for the XVF3800 to function
effectively. Matched microphones are however not necessary. Total Harmonic Distortion (THD) should be
less than 1%, although with modern MEMS microphones this is usually the case so long as the microphone
is not operating near its acoustic overload point.

For compatibility with the XVF3800, microphones chosen should be digital MEMS microphones with a PDM
output. These will be clocked at 3.072 MHz, with a decimation factor applied in firmware to generate the
sampling rate used internally.

With loudspeakers operating at their loudest volume, microphones should not reach acoustic overload. At
loudest loudspeaker volume, a headroom of 6 to 10 dB is a reasonable goal. It is important that the micro-
phones are not driven into a non-linear response due to the volume of the loudspeakers in the end product.
For far field voice a sensitivity of approximately -30 dBFS @ 94 dBSPL would be appropriate. For the SNR of
64 dB listed above, this would mean the noise floor is lower than -94 dBFS.

The XVF3800 supports both circular and linear microphone arrays. It is important to differentiate between
“spacing” of the microphones and “aperture” of the array. The spacing is the distance between individual
microphoneswhereas aperture is the outer limits of the array. The spacing is important for the high frequency
limit. Make sure that d < wavelength / 2 to avoid spatial aliasing, e.g., for a 3 cm spacing the high frequency
limit is 5.7 kHz.

636363

The aperture defines the low frequency limit based on the ability to measure a phase difference between the
microphones, so when the wavelength is much larger than the array aperture, the phase (and signal) at each
microphone is nearly identical and it’s impossible to differentiate between the two signals.

There is not a hard limit in the way there is for high frequency; usually the low frequency limit is defined based
on the beam width, which also varies with the number of microphones. As a rough rule of thumb, the array
aperture should be at least 5% of the wavelength, i.e., for a 10 cm aperture the low frequency limit is 172 Hz.

However, regardless of the geometry chosen, at least 2 (and preferably more) of the microphones in the
array should be approximately 10 cm apart. This is in order to ensure sufficient phase difference between
microphones at lower frequencies to allow the AEC to function.

The frequency response should cover the desired voice band. For a wideband application, a response from
100 Hz to 10 kHz should be easily obtainable. A frequency mask can be defined to ensure flatness of the
response, e.g., ±2 dB from 100 Hz to 6 kHz and ±4 dB from 6 kHz to 10 kHz.

With zero input (i.e. a silent room), there should be low coherence betweenmicrophone signals - that is to say,
the self-noise of the microphones chosen should not be correlated between microphones. If correlation is
observed with zero input, this usually indicates that there exists some common-mode interference between
the microphone signals. The presence of correlated noise has a negative effect on the performance of the
XVF3800, and so this should be as minimal as possible. To estimate coherence between pairs of micro-
phones at frequencies up to the Nyquist limit (which in this system will be 8 kHz), xvf_tools.py provides the
command coherence to generate a plot similar to that shown in Fig. 6.1, where the blue line shown is real data
from two microphones in a silent room and the red line is a theoretical coherence plot between two perfect
microphones measuring diffuse noise. This theoretical model is a sinc2 function with its maximum at DC
and its first zero crossing at f given by f = c / 2d, where c is the speed of sound (in m/s) and d is the distance
between microphones (in m). The script can be called using xvf_tools.py which is located in sources. The
script can be run using the command:

python3 xvf_tools.py coherence <mic0_1.wav>

The signal mic0_1.wav should be a 2 channel, 16 kHz WAV file with two microphone signals, which should be
captured in silence; to capture these signals using the XVF3800’s output, issue:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 1

Record 30 seconds of output from the device, and repeat for the other microphones:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 3

Further information on the use of the host application to capture output can be found in Using the Host
Application and documentation of this script may be found in its docstring.

For optimal algorithmic performance, the coherence between each possible pair of microphones should be
less than 0.1. All possible pairs of microphones should be tested; this will result in a total of 6 plots. One
example plot is shown in Fig. 6.1, where the blue line is real data and the red line is a theoretical coherence
between two perfect microphones recording diffuse noise.

646464

Fig. 6.1: Sample coherence plot between two microphones

6.2 Loudspeaker(s)
The loudspeaker, power amplifier and DAC are considered together as the playback path of the product. The
frequency response of this assembly should cover the desired voice band, e.g., wideband should cover 250
Hz to 6.3 kHz. As mentioned in the microphone section, a mask can be defined to ensure desired flatness of
the response within the passband. For a product which can also play music etc., the loudspeaker can have a
wider frequency response; this should not degrade the performance of the voice pipeline.

The sensitivity should be sufficient for the application; it should be capable of producing 75 dB SPL at the
user’s ear location when a -18 dBFS signal is supplied. This can be considered the nominal sensitivity of
the product. For a more general application, the maximum volume produced can be higher. However, much
higher volumes will impact the ability to detect voice during playback.

The directivity of the loudspeaker should not affect the voice pipeline performance significantly. However, it
may be possible to use a directional loudspeaker to achieve required levels at the user position while mini-
mizing the feedback path to the microphones, and hence improving echo performance.

The most pressing consideration when incorporating loudspeakers into a design using the XVF3800 is the
minimisation of non-linearities within the design. Whilst the XVF3800 features a linear echo canceller (the
AEC), and whilst it can also suppress tail echo and non-linear echo, it is advisable to keep any non-linearities
in the design to a minimum in order to guarantee optimal intelligibility and algorithmic performance.

The twomain sources of non-linearity in a design arise frommechanical coupling between a loudspeaker and
the microphones and from non-linearities present in the loudspeaker/amplifier stage itself. Efforts should be
made to ensure that any loudspeakers are appropriately isolated from themicrophones and placed physically
as far away as feasible. Isolation may take the form of mechanical decoupling from the rest of the enclosure

656565

and/or the use of soundproofing material between loudspeakers and the microphones. Additionally, product
enclosures should be designed in such amanner as not to introduce non-linear effects; they should not rattle,
click, vibrate, or otherwise introduce extraneous noise during normal operation.

Non-linearities present in the loudspeaker/amplifier stage are more difficult to provide generalised advice on.

Loudspeakers and amplifiers should be specified such that at nominal operating volume they are both op-
erating within their linear region; this usually pushes design decisions towards larger or more powerful loud-
speakers. As noted in the previous section, the loudspeakers at their maximum level should not be so loud
that they push the microphones in the design to acoustic overload.

A THD of below 3 to 5%, measured over the full frequency range at themaximum level, is desirable. Designers
should note that the THD for loudspeakers is typically only specified in datasheets at 1 kHz. THD can also be
introduced by the amplifier used; it is important that amplifiers are chosen such that the overall THD of the
loudspeaker system is minimised wherever possible.

Finally, it is important to consider the effect of loudspeaker placement on the far-field sensitivity of the device’s
microphones. In general for a given nominal level, the closer a microphone is placed to a loudspeaker the
lower its gain must be in order to avoid clipping. This means that the closer a loudspeaker is located to a
microphone, the lower the overall system gain will be, and therefore the lower the far-field sensitivity of the
device.

6.3 Enclosure and mounting
The mechanical design of the product should account for the following:

The mounting of the loudspeaker and microphones should allow sound to propagate to and from the user
without significant impediments, such that the performance of the transducers is not degraded.

The feedback path from the loudspeaker to the microphones should be minimized. The actual value of the
attenuation required will vary depending on the application, but it generally should be as high as possible to
reduce echo. Several possible paths are present and must be considered:

• The acoustic path outside of the enclosure can be minimized by increasing the distance between loud-
speakers and microphones or by choosing a more highly directional loudspeaker,

• The acoustic path inside the enclosure can beminimized by sealing the rear chambers behind the loud-
speakers and microphones, and

• The vibration path in the physical structure of the enclosure can be minimized by mechanical design
of the housing structure, choice of materials, and mounting of the transducers. Whatever this path,
this should also remain time-constant; transducers should be solidly mounted to the enclosure, or fully
decoupled with foam.

Vibration of loose parts in the product can cause rattles and buzzes which creates non-linearity and will dras-
tically reduce echo performance. Ensure all components, panels and connectors are fixed.

Microphones should be prevented from detecting any additional noise sources from the product, e.g., cooling
fans.

The specifics of enclosure design, in particular relating to the acoustic performance of loudspeakers, is be-
yond the scope of this document. There is a wealth of literature covering this topic as well as consultancy
services for design.

More detailed information on transducermounting and handling can be found from the componentmanufac-
turers. They will also provide guidance on handling during manufacture and other important considerations.

Additionally, specification requirements for various product applications can be found in certification docu-
ments. These certifications will allow the product to bear a mark which demonstrates that the product is
suitable for use with a particular service.

666666

7 DFU operations

The Device Firmware Update (DFU) allows updating the firmware of the device from a host computer. The
XVF3800 supports two different implementations of the DFU protocol: one over USB for the UA device and
one over I2C for the INT device.

Only one upgrade image may be transferred to the flash of the XVF3800. The first upgrade image will be
replaced by a subsequent upgrade process. The factory image cannot be overwritten and in case of DFU
failure, the factory settings will be restored after rebooting the device.

Note: The DFU procedures of XVF3800 only support a transfer block size of 256 bytes over USB and 128
bytes over I2C.

7.1 Setting up the host computer (UA)
The UA build of the XVF3800 firmware is compliant with dfu-util. This is a host side implementation of the
DFU 1.0 and DFU 1.1 specifications of the USB forum. The software is licensed under the GPL version 2. The
instructions to download and install the application can be found in https://dfu-util.sourceforge.net/. The
XVF3800 is compatible with the default release binaries from https://dfu-util.sourceforge.net/releases/. The
host app is available for Linux, macOS, Raspberry Pi OS and Windows.

Note: In the rest of this document when using the dfu-util app in the code examples, the command is
written as (sudo) dfu-util(.exe). The .exe extension is only required on Windows. The sudo command
is only required on Linux, macOS and Raspberry Pi OS if the user does not have the necessary permissions
to access the device. On these platforms it may be necessary to use ./ before the command if the directory
containing the dfu_util app is not in the PATH.

7.2 Setting up the host computer (INT)
The INT build of the XVF3800 firmware is able to perform DFU over an I2C interface, using a custom im-
plementation closely following that set out by the USB Device Class Specification for DFU, Version 1.1. An
example host application is included for the Raspberry Pi to showcase this implementation and to provide
guidelines on how a custom compliant host application may be written. To use this application:

1. Set up the device as described in Hardware Setup - I2S (INT-Device) Configuration.

2. Extract xvf_dfu, libdevice_i2c.so, dfu_cmds.yaml, and transport_config.yaml from the XVF3800 release
package; these will be located in the host_v<version>\rpi directory.

3. The application may now be run from a terminal. Sudo privileges are required.

676767

https://dfu-util.sourceforge.net/
https://dfu-util.sourceforge.net/releases/

7.3 Generation of Binary Upgrade Image
The upgrade executable (.xe) needs to be converted into a binary format. Use xflash and the following com-
mand to convert the .xe application into a binary form:

xflash --noinq --factory-version 15.2 --upgrade [UPGRADE_VERSION] [UPGRADE_EXECUTABLE] -o [OUTPUT_
↪→BINARY]

Specify --factory-version value of 15.2 for all 15.3.x releases of the XTC tools. (The 15.2 value refers to
boot loader API for the XTC tool chain).

Note: Should a different version of the XTC tools be used in a future firmware release, the tools version num-
ber should be noted such that an update image of compatible format can be created. The --factory-version
must match the tools version used to build the factory image.

The UPGRADE_VERSION number is the 16-bit format 0xJJMP of the executable firmware where:

• J is major

• M is minor

• P is patch

UPGRADE_EXECUTABLE is the path to the .xe application to convert. OUTPUT_BINARY is the path to the binary to
generate.

The dfu-util application issues awarning if a suffix is not added to the upgrade binary. The suffix can be added
using the dfu-suffix host application from https://dfu-util.sourceforge.net/dfu-suffix.1.html. The xvf_dfu ap-
plication issues no such warning.

686868

https://dfu-util.sourceforge.net/dfu-suffix.1.html

7.4 Examples of DFU operations
Using either the dfu-util application or the xvf_dfu application the following operations can be performed.

Note: All the commands in this section that relate to the dfu-util application use the XMOS-supplied USB
Vendor ID and USB Product ID for the XVF3800-UA device:

• Vendor ID 0x20b1, and either

• Product ID 0x4f00 for 48 kHz sample rate, or

• Product ID 0x4f01 for 16 kHz sample rate.

These values will change if the customer has used their own Vendor ID and Product ID.

The options used in the rest of the section are described in more detail in either the help menu of dfu-util(.
exe):

dfu-util(.exe) -h

or the help menu of xvf_dfu:

xvf_dfu -h

A more detailed description of the I2C implementation and its control process may be found in Section 2 of
the Programming Guide.

7.4.1 Download an upgrade image to the device

The DFU download operation allows the user to upgrade the firmware of the XVF3800-UA. The command to
do that is one of the following:

(sudo) dfu-util(.exe) -d 20b1:4f00 -a 1 -D [UPGRADE_BINARY] -R # 48 kHz sample rate
(sudo) dfu-util(.exe) -d 20b1:4f01 -a 1 -D [UPGRADE_BINARY] -R # 16 kHz sample rate

where -a 1 is fixed and it indicates the altsetting for the upgrade image, and UPGRADE_BINARY is the path to
the upgrade binary generated as described in Generation of Binary Upgrade Image. The -R option will trigger
a reboot of the device after the download is complete.

For the INT build of the device, the command sequence is the following:

sudo xvf_dfu -u i2c -d [UPGRADE_BINARY]
sudo xvf_dfu -u i2c -r

where UPGRADE_BINARY is the path to the upgrade binary generated as described in Generation of Binary Up-
grade Image, -u i2c selects I2C as the transport medium over which to send the device control commands
(currently the only supported medium), and -r forces a reboot of the device. Should the download operation
fail, both the xvf_dfu and dfu-util applications will exit with an error code. Another download operation
may be reattempted; should this continue to fail, rebooting the device will reset the device into the factory
image, as any pre-existing upgrade image has been corrupted by the failed DFU operation.

696969

7.4.2 Revert the device to factory image

To restore the device to its factory configuration, effectively discarding any upgradesmade, the same process
as outlined above is followed but using a blank upgrade image. This is the only way a restore can be initiated,
as the device does not have the ability to restore itself.

The blank file can be generated using dd on MAC and Linux, and fsutil on Windows. A blank image can
be created with a file of zeroes the size of one flash sector. In the normal case of 4KB sectors on a UNIX-
compatible platform, this can be created as follows:

dd bs=4096 count=1 < /dev/zero 2>/dev/null blank.bin

and for Windows systems:

fsutil file createNew blank.bin 4096

This process outlined in the DFU download operation section can now be followed using blank.bin file as
UPGRADE_BINARY.

7.4.3 Reboot the device

The dfu-util application can be used to reboot the device via the USB interface. This can be done with one of
the following commands:

(sudo) dfu-util(.exe) -d 20b1:4f00 -a 0 -e # 48 kHz sample rate
(sudo) dfu-util(.exe) -d 20b1:4f01 -a 0 -e # 16 kHz sample rate

In this command either -a 0 and -a 1 are valid.

Via the I2C interface, xvf_dfumay be used as:

sudo xvf_dfu -u i2c -r

7.4.4 Upload the images from the device

The DFU upload operation allows the user to read the factory and upgrade images of the XVF3800. This
feature is useful for debugging purposes, for example to provide XMOS with the exact firmware used on a
device. The command to do that in the UA build is one of the following:

(sudo) dfu-util(.exe) -d 20b1:4f00 -a [ALTSETTING] -U [IMAGE_BINARY] # 48 kHz sample rate
(sudo) dfu-util(.exe) -d 20b1:4f01 -a [ALTSETTING] -U [IMAGE_BINARY] # 16 kHz sample rate

where ALTSETTING is 0 for the factory image and 1 for the upgrade image, and IMAGE_BINARY is the path to
the binary to store the image read from the device.

For the I2C implementation, xvf_dfumay be used as:

sudo xvf_dfu -u i2c -uf [IMAGE_BINARY]

to read the factory image to IMAGE_BINARY, or:

sudo xvf_dfu -u i2c -uu [IMAGE_BINARY]

to read the upgrade image to IMAGE_BINARY.

The uploaded upgrade image should match the same image created in Generation of Binary Upgrade Image,
but without any extra suffix.

The uploaded factory image contains the bootloader data and the image obtained using the command:

707070

xflash [FACTORY_EXECUTABLE] -o [OUTPUT_BINARY]

where FACTORY_EXECUTABLE is the path to the .xe application flashed on the device and OUTPUT_BINARY is the
path to the binary to generate.

Note: All the images uploaded from the device have some padding bytes, so that their size is a multiple of
DFU transfer size. This value is set to 256 bytes by default in UA and 128 bytes in INT.

7.4.4.1 Error handling

The XVF3800 device supports the following errors, and they are used only during the download operation:

• errWRITE: this error is returned if the host sends a download request for thewrong partition, for example
the factory partition

• errADDRESS: this error is returned if the host sends a data block outside the address range of the mem-
ory partition, for example if the image is too large.

During the download operations, the device expects to receive the data blocks in the correct order, and it writes
them to the flash as soon as they are received. The sequence number included in the download messages
is not checked by the device.

If the following happens during a download or upload phase:

• the operations are interrupted by the host

• the device returns a DFU error

if the device is version 3.1.0 or higher, the user can restart the operation from the beginning of the image.
For older versions, the device must be rebooted before resuming the DFU procedure. Resuming a download
operation midway through an image is not supported in any version.

If the image downloaded to the device is not correct, for example if any data is corrupted or if the download is
not completed, the upgrade image will be replaced, but after rebooting the bootloader will deem the upgrade
image invalid, and the device will load the factory image.

717171

8 Automatic speech recognition

The XVF3800 allows outputting audio enhanced for Automatic Speech Recognition (ASR). The ASR output
provided by the XVF3800 is not optimized for voice communication, but it ismeant to be usedwith wakeword
detection engines. The ASR audio is extracted after the beamformer, and it is not fed into the post processor.
This means it has no noise suppression, which is desirable as ASR performance is usually degraded by non-
linear processing. An optional fixed gain can be applied to match the requirements of different wake word
engines.

The ASR output is not enabled by default. The XVF3800 can send the ASR audio to both the left and right
channel. To use the right channel issue the commands:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 3
(sudo) xvf_host(.exe) AEC_ASROUTONOFF 1

The commands above map the output of autoselect beam in the right channel, see Output Selection for more
details. The command AEC_ASROUTONOFF changes the output audio from the AEC residual of the fourth
microphone to the output of autoselect beam. The left channel is used by default for the voice communi-
cation, but it can be configured as ASR output, by replacing the command AUDIO_MGR_OP_R above with
AUDIO_MGR_OP_L.

The configurable fixed gain can be modified by using the command AEC_ASROUTGAIN. The desired output
level will vary for each ASR engine. One recommendation is an output level of -52 dBov for a 61 dBSPL level at
the device. Typically this will result in anAEC_ASROUTGAIN around 36 dB lower than PP_AGCGAIN, depending
on the PP_AGCDESIREDLEVEL.

727272

9 HID Interface

The UA variant of the device supports a HID interface. The HID interface adds support for USB standard input
and output reports for a telephony device. The GPIO button and LEDs on the XK-VOICE-SQ66 development
kit are mapped to buttons and LEDs in the HID input and output reports. The HID Interface design section of
the Programming Guide describes the HID descriptors and the mapping between HID buttons/LEDs and the
XK-VOICE-SQ66 development kit buttons/LEDs in more detail.

737373

10 APPENDIX – Control Commands

There are a number of control commands available for use with the XVF3800. These are detailed using the
--list-commands option of the Host Application, but may also be found below for reference. Note that all
parameters in this appendix will be reset to their default values on a device reset.

10.1 AEC Tuning and Control Commands
These commands focus on tuning parameters for the AEC and postprocessing tasks.

Table 10.1: AEC control commands

Command name Read /
Write

Params Param
format

Description

SHF_BYPASS READ /
WRITE

1 uint8 AEC bypass

AEC_NUM_MICS READ
ONLY

1 int32 Number of microphone inputs into the AEC

AEC_NUM_FARENDS READ
ONLY

1 int32 Number of farend inputs into the AEC

AEC_MIC_ARRAY_TYPE READ
ONLY

1 int32 Microphone array type (1 - linear, 2 -
squarecular)

AEC_MIC_ARRAY_GEO READ
ONLY

12 float Microphone array geometry. Each micro-
phone is represented by 3 XYZ coordinates
in m.

AEC_AZIMUTH_VALUES READ
ONLY

4 radians Azimuth values in radians - beam 1, beam
2, free-running beam, 3 - auto-select beam

AEC_CURRENT_IDLE_TIME READ
ONLY

1 uint32 AEC processing current idle time in 10ns
ticks

AEC_MIN_IDLE_TIME READ
ONLY

1 uint32 AEC processing minimum idle time in 10ns
ticks

AEC_RESET_MIN_IDLE_TI
ME

WRITE
ONLY

1 uint32 Reset the AEC minimum idle time. The
value of the argument passed is ignored.

AEC_SPENERGY_VALUES READ
ONLY

4 float Speech energy level values for each beam.
Any value above 0 indicates speech.
Higher values indicates louder or closer
speech, however noise, echo and reverb
can cause the energy level to decrease. 0 -
beam 1, 1 - beam 2, 2 - free-running beam,
3 - auto-select beam

AEC_FIXEDBEAMSAZIMUTH
_VALUES

READ /
WRITE

2 radians Azimuth values in radians for beams in
fixed mode - fixed beam 1, fixed beam 2.
Default value(s): (0,0)

AEC_FIXEDBEAMSELEVATI
ON_VALUES

READ /
WRITE

2 radians Elevation angles in radians for the beams in
fixedmode. 0 - fixed beam 1, 1 - fixed beam
2. Default value(s): (0,0)

AEC_FIXEDBEAMSGATING READ /
WRITE

1 uint8 Enables/disables gating for beams in fixed
mode. When enabled, speech energy is
used to determine which beam should be
active; inactive beams are silenced.. De-
fault value(s): 0

continues on next page

747474

Table 10.1 – continued from previous page
Command name Read /

Write
Params Param

format
Description

AEC_FILTER_CMD_ABORT WRITE
ONLY

1 int32 Reset the special command state ma-
chine. Used for safely exiting from an AEC
filter read/write command sequence that
has gone wrong.

AEC_AECPATHCHANGE READ
ONLY

1 int32 AEC Path Change Detection. Valid range:
0,1 (false,true)

AEC_HPFONOFF READ /
WRITE

1 int32 High-pass Filter on microphone sig-
nals. Valid range: 0,1,2,3,4 (0:Off, 1:on70,
2:on125, 3:on150, 4:on180). Default
value(s): on125

AEC_AECSILENCELEVEL READ /
WRITE

2 float Power threshold for signal detection in
adaptive filter.(set,cur), Valid range (set):
[0.0 .. 1.0] Valid range (cur): 0.05*set, 1e-6f
or set.. Default value(s): 1e-9f

AEC_AECCONVERGED READ
ONLY

1 int32 Flag indicating whether AEC is converged.
Valid range: 0,1 (false,true). Default
value(s): False

AEC_AECEMPHASISONOFF READ /
WRITE

1 int32 Pre-emphasis and de-emphasis filtering for
AEC. Valid range: 0,1,2 (off,on,on_eq)on:
Emphasis filter for speech signals without
modification of far-end ref. on_eq: Empha-
sis filter for far-end reference signalswhere
the low frequencies are boosted by e.g. an
equalizer.. Default value(s): 1

AEC_FAR_EXTGAIN READ /
WRITE

1 float External gain in dB applied to the far-end
reference signals. Valid range: [-inf .. inf].
Default value(s): 0.0dB

AEC_PCD_COUPLINGI READ /
WRITE

1 float Sensitivity parameter for PCD. Valid range:
[0.0 .. 1.0]PCD can be disabled by setting
a value outside the range. Default value(s):
disabled

AEC_PCD_MINTHR READ /
WRITE

1 float Minimum threshold value used in PCD.
Valid range: [0.0 .. 0.02]. Default value(s):
0.005

AEC_PCD_MAXTHR READ /
WRITE

1 float Maximum threshold value used in PCD.
Valid range: [0.025 .. 0.2]. Default value(s):
0.1

AEC_RT60 READ
ONLY

1 float Current RT60 estimate. Valid range: [0.250
.. 0.900] (seconds) A negative value indi-
cates that the RT60 estimation is invalid.

AEC_ASROUTONOFF READ /
WRITE

1 int32 Enables the automatic speech recognition
(ASR) output: if set to 0, the AEC residuals
are output, one channel per microphone, if
set to 1, the ASR processed output is used,
where each channel is associated with a
beam from the beamformer. Valid range:
0,1 (off, on). Default value(s): 0

AEC_ASROUTGAIN READ /
WRITE

1 float Fixed gain applied to qsr output, i.e., only
applied if ASROUTONOFF==1.. Valid range:
[0.0 .. 1000.0] (linear gain factor). Default
value(s): 1.0

continues on next page

757575

Table 10.1 – continued from previous page
Command name Read /

Write
Params Param

format
Description

AEC_FIXEDBEAMSONOFF READ /
WRITE

1 int32 Enables or disables fixed focused beam
mode. Valid range: 0,1 (off, on). Default
value(s): False

AEC_FIXEDBEAMNOISETHR READ /
WRITE

2 float Threshold value for updating the noise
canceller when fixed beam mode is en-
abled. A higher value indicates that the
noise canceller may update when the free
running beam is close to the fixed beam.
A lower value indicates that the noise can-
celler may update when the free running
beam is further away from the focused
beam.[BECLEAR_NUMBER_OF_BEAMS],
Valid range: [0.0 .. 1.0]. Default value(s):
(0.4,0.4)

Table 10.2: PP control commands

Command name Read /
Write

Params Param
format

Description

PP_CURRENT_IDLE_TIME READ
ONLY

1 uint32 PP processing current idle time in 10ns
ticks

PP_MIN_IDLE_TIME READ
ONLY

1 uint32 PP processing minimum idle time in 10ns
ticks

PP_RESET_MIN_IDLE_TIM E WRITE
ONLY

1 uint32 Reset the PPminimum idle time. The value
of the argument passed is ignored.

PP_NL_MODEL_CMD_ABORT WRITE
ONLY

1 int32 Reset the special command state ma-
chine. Used for safely exiting from a NL
model read/write sequence that has gone
wrong.

PP_EQUALIZATION_CMD_A
BORT

WRITE
ONLY

1 int32 Reset the special command state ma-
chine. Used for safely exiting from an
equalization read/write sequence that has
gone wrong.

PP_AGCONOFF READ /
WRITE

1 int32 Automatic Gain Control. Valid range: 0,1
(off,on). Default value(s): True

PP_AGCMAXGAIN READ /
WRITE

1 float Maximum AGC gain factor. Valid range:
[1.0 .. 1000.0] (linear gain factor). Default
value(s): 125.0

PP_AGCDESIREDLEVEL READ /
WRITE

1 float Target power level of the output signal.
Valid range: [1e-8 .. 1.0] (power level). De-
fault value(s): 0.0045

PP_AGCGAIN READ /
WRITE

1 float Current AGC gain factor. Valid range: [1.0
.. 1000.0] (linear gain factor). Default
value(s): 32.0

PP_AGCTIME READ /
WRITE

1 float Ramp-up/down time-constant. Valid
range: [0.5 .. 4.0] (seconds). Default
value(s): 0.9

PP_AGCFASTTIME READ /
WRITE

1 float Ramp down time-constant in case of
peaks. Valid range: [0.05 .. 4.0] (seconds).
Default value(s): 0.1f

continues on next page

767676

Table 10.2 – continued from previous page
Command name Read /

Write
Params Param

format
Description

PP_AGCALPHAFASTGAIN READ /
WRITE

1 float Gain threshold enabling fast alpha mode.
Valid range: [0.0 .. 1000.0] (linear gain fac-
tor). Default value(s): 0.0

PP_AGCALPHASLOW READ /
WRITE

1 float Slow memory parameter for speech
power. Valid range [0.0 .. 1.0]. Default
value(s): 0.984

PP_AGCALPHAFAST READ /
WRITE

1 float Fast memory parameter for speech power.
Valid range [0.0 .. 1.0]. Default value(s):
0.36

PP_LIMITONOFF READ /
WRITE

1 int32 Limiter on communication output. Valid
range: 0,1 (off,on). Default value(s): True

PP_LIMITPLIMIT READ /
WRITE

1 float Maximum limiter power. Valid range: [1e-8
.. 1.0] (power level). Default value(s): 0.47

PP_MIN_NS READ /
WRITE

1 float Gain-floor for stationary noise suppres-
sion. Valid range: [0.0 .. 1.0]. Default
value(s): 0.15

PP_MIN_NN READ /
WRITE

1 float Gain-floor for non-stationary noise sup-
pression. Valid range: [0.0 .. 1.0]. Default
value(s): 0.51

PP_ECHOONOFF READ /
WRITE

1 int32 Echo suppression. Valid range: 0,1 (off,on).
Default value(s): True

PP_GAMMA_E READ /
WRITE

1 float Over-subtraction factor of echo (direct and
early components). Valid range: [0.0 .. 2.0].
Default value(s): 1.0

PP_GAMMA_ETAIL READ /
WRITE

1 float Over-subtraction factor of echo (tail com-
ponents). Valid range: [0.0 .. 2.0]. Default
value(s): 1.0

PP_GAMMA_ENL READ /
WRITE

1 float Over-subtraction factor of non-linear echo.
Valid range: [0.0 .. 5.0]. Default value(s): 1.1

PP_NLATTENONOFF READ /
WRITE

1 int32 Non-Linear echo attenuation. Valid range:
0,1 (off,on). Default value(s): 1

PP_NLAEC_MODE READ /
WRITE

1 int32 Non-Linear AEC trainingmode. Valid range:
0,1,2 (normal,train,train2). Default value(s):
0

PP_MGSCALE READ /
WRITE

3 float Minimum gain scale for acoustic echo
suppression.(max,min,cur), Valid range
(max,min): [(1.0,0.0) .. (1e5,max)] Valid
range (cur): min or max.. Default value(s):
(1000.0,1.0)

PP_FMIN_SPEINDEX READ /
WRITE

1 float In case of double talk, frequencies below
SPEINDEX are more suppressed than fre-
quencies aboveSPEINDEX. The actual sup-
pression is depending on the setting of DT-
SENSITIVE. The parameter is not a taste
parameter but needs to be tuned for a spe-
cific device. Valid range: [0.0 .. 7999.0]. De-
fault value(s): 593.75

continues on next page

777777

Table 10.2 – continued from previous page
Command name Read /

Write
Params Param

format
Description

PP_DTSENSITIVE READ /
WRITE

1 int32 Tradeoff between echo suppression and
doubletalk performance. A lower value
prefers high echo suppression (possibly at
the cost of less doubletalk performance), a
higher value prefers better doubletalk per-
formance (possibly at the cost of good
echo suppression). Good doubletalk per-
formance is only possible for hardware
without much non-linearities. When the
value has 2 digits, for robustness an ex-
tra near-end speech detector is used. Valid
range: [0 .. 5, 10 .. 15]. Default value(s): 0

PP_ATTNS_MODE READ /
WRITE

1 int32 Additional reduction of AGC gain during
non-speech. Valid range: 0,1 (off, on). De-
fault value(s): 0

PP_ATTNS_NOMINAL READ /
WRITE

1 float Amount of additional reduction during non-
speech at nominal speech level. Valid
range: [0.0 .. 1.0]. Default value(s): 1.0

PP_ATTNS_SLOPE READ /
WRITE

1 float Determines the extra amount of suppres-
sion during non-speech when the AGC
level increases at lower speech level.
The extra attenuation is given by (agc-
gain_nominal/agcgain_current)^attns_slope.
With a value of 1.0 the amount of noise
in the output remains approximately the
same, independent of the agc gain. Valid
range: [0.0 .. 5.0]. Default value(s): 1.0

787878

10.2 Device Metadata Commands
These commands focus on querying the device’s metadata, e.g. software version, boot status, and build
information.

Table 10.3: Metadata control commands

Command name Read /
Write

Params Param
format

Description

VERSION READ
ONLY

3 uint8 The version number of the firmware.
The format is VERSION_MAJOR VER-
SION_MINOR VERSION_PATCH

BLD_MSG READ
ONLY

50 char Retrieve the build message built in to the
firmware, normally the build configuration
name

BLD_HOST READ
ONLY

30 char Retrieve details of the CI build host used to
build the firmware

BLD_REPO_HASH READ
ONLY

40 char Retrieve the GIT hash of the sw_xvf3800
repo used to build the firmware

BLD_MODIFIED READ
ONLY

6 char Show whether or not the current firmware
repo has beenmodified from the official re-
lease. Requires use of a GIT repo

BOOT_STATUS READ
ONLY

3 char Shows whether or not the firmware has
been booted via SPI or JTAG/FLASH

REBOOT WRITE
ONLY

1 uint8 Set to any value to reboot the chip and reset
all parameters to default.

USB_BIT_DEPTH READ /
WRITE

2 uint8 Only relevant for the UA device variant. For
the UA device, set or get the USB bit depth
IN, OUT to either 16, 24 or 32. Setting will
reboot the chip, resetting all other parame-
ters to default. If issued to the INT device,
a set is ignored and the device is not re-
bootedwhile a get always returns 0 as both
IN and OUT bit depths.. Valid range: val0:
[16 .. 16] val0: [24 .. 24] val0: [32 .. 32] val1:
[16 .. 16] val1: [24 .. 24] val1: [32 .. 32]

797979

10.3 Audio Manager Commands
These commands are targeted toward setting and retrieving various options around the audio path into and
out of the device, including setting I2S loopback modes and debug “packed” IO modes. Includes diagnostic
data on idle times for both the audio manager core and the I2S core.

Note: For an example on the use of “packed” IO, see the Signal Capture section of the Programming
Guide<Signal_Capture>. For more information on options for setting AUDIO_MGR_OP_*, see the Output Se-
lection section of the User Guide.

Table 10.4: Audio Manager control commands

Command name Read /
Write

Params Param
format

Description

AUDIO_MGR_MIC_GAIN READ /
WRITE

1 float Audio Mgr pre SHF microphone gain. De-
fault value(s): 10

AUDIO_MGR_REF_GAIN READ /
WRITE

1 float Audio Mgr pre SHF reference gain. Default
value(s): 1.5

AUDIO_MGR_CURRENT_IDL
E_TIME

READ
ONLY

1 int32 Get audiomanager current idle time in 10ns
ticks

AUDIO_MGR_MIN_IDLE_TI
ME

READ
ONLY

1 int32 Get audio manager min idle time in 10ns
ticks

AUDIO_MGR_RESET_MIN_I
DLE_TIME

WRITE
ONLY

1 int32 Reset audio manager min idle time. The
value of the argument passed is ignored.

MAX_CONTROL_TIME READ
ONLY

1 int32 Get audio manager max control time

RE-
SET_MAX_CONTROL_TIM
E

WRITE
ONLY

1 int32 Reset audio manager max control time.
The value of the argument passed is ig-
nored.

I2S_CURRENT_IDLE_TIME READ
ONLY

1 int32 Get I2S current idle time in 10ns ticks

I2S_MIN_IDLE_TIME READ
ONLY

1 int32 Get I2S min idle time in 10ns ticks

I2S_RESET_MIN_IDLE_TI
ME

WRITE
ONLY

1 int32 I2S reset idle time. The value of the argu-
ment passed is ignored.

I2S_INPUT_PACKED READ /
WRITE

1 uint8 Will expect packed input on both I2S or USB
channels if this is not 0. Note, could take up
to 3 samples to take effect.. Valid range:
val0: [0 .. 1]. Default value(s): 0

AUDIO_MGR_SELECTED_AZ
IMUTHS

READ
ONLY

2 radians This returns the azimuths determined
by the beam_selection function in
post_shf_dsp.c. The default implementa-
tion will provide a processed DoA at index
0 and the DoA of the auto select beam at
index 1. The processed DoA uses speech
energy to select from theDoA on each fixed
beam to provide the direction of a speaker.
NAN will be returned if neither of the fixed
beams contain speech. Versions 2.0.0
and earlier of XVF3800 had a different
default implementation of beam_selection
which returned the DoA associated with
the AUDIO_MGR_SELECTED_CHANNELS

continues on next page

808080

Table 10.4 – continued from previous page
Command name Read /

Write
Params Param

format
Description

AU-
DIO_MGR_SELECTED_CH
ANNELS

READ /
WRITE

2 uint8 Default implementation of post
processing will use this to select
which channels should be output to
MUX_USER_CHOSEN_CHANNELS. Note
that a customer implementation of the
beam selection stage could override this
command. How this channel selection
aligns with actual output depends on the
mux configuration. Valid range: val0: [0 ..
3] val1: [0 .. 3]. Default value(s): (3, 3)

AUDIO_MGR_OP_PACKED READ /
WRITE

2 uint8 <L>, <R>; Sets/gets packing status for L
and R output channels. Valid range: val0:
[0 .. 1] val1: [0 .. 1]. Default value(s): (0, 0)

AU-
DIO_MGR_OP_UPSAMPLE

READ /
WRITE

2 uint8 <L>, <R>; Sets/gets upsample status for L
and R output channels, where appropriate.
Valid range: val0: [0 .. 1] val1: [0 .. 1]

AUDIO_MGR_OP_L READ /
WRITE

2 uint8 <category>, <source>; Sets category and
source for L output channel. Equivalent to
AUDIO_MGR_OP_L_PK0. Valid range: val0:
[0 .. 12] val1: [0 .. 5]. Default value(s): (8, 0)

AUDIO_MGR_OP_L_PK0 READ /
WRITE

2 uint8 <category>, <source>; Sets category and
source for first (of three) sources on the L
channel in packedmode. Equivalent to AU-
DIO_MGR_OP_L. Valid range: val0: [0 .. 12]
val1: [0 .. 5]

AUDIO_MGR_OP_L_PK1 READ /
WRITE

2 uint8 Sets category and source for second (of
three) sources on the L channel in packed
mode. Valid range: val0: [0 .. 12] val1: [0 ..
5]. Default value(s): (1, 0)

AUDIO_MGR_OP_L_PK2 READ /
WRITE

2 uint8 Sets category and source for third (of
three) sources on the L channel in packed
mode. Valid range: val0: [0 .. 12] val1: [0 ..
5]. Default value(s): (1, 2)

AUDIO_MGR_OP_R READ /
WRITE

2 uint8 <category>, <source>; Sets category and
source for R output channel. Equivalent to
AUDIO_MGR_OP_R_PK0. Valid range: val0:
[0 .. 12] val1: [0 .. 5]. Default value(s): (0, 0)

AUDIO_MGR_OP_R_PK0 READ /
WRITE

2 uint8 <category>, <source>; Sets category and
source for first (of three) sources on the R
channel in packedmode. Equivalent to AU-
DIO_MGR_OP_R. Valid range: val0: [0 .. 12]
val1: [0 .. 5]

AUDIO_MGR_OP_R_PK1 READ /
WRITE

2 uint8 Sets category and source for second (of
three) sources on the R channel in packed
mode. Valid range: val0: [0 .. 12] val1: [0 ..
5]. Default value(s): (1, 1)

AUDIO_MGR_OP_R_PK2 READ /
WRITE

2 uint8 Sets category and source for third (of
three) sources on the R channel in packed
mode. Valid range: val0: [0 .. 12] val1: [0 ..
5]. Default value(s): (1, 3)

continues on next page

818181

Table 10.4 – continued from previous page
Command name Read /

Write
Params Param

format
Description

AUDIO_MGR_OP_ALL READ /
WRITE

12 uint8 Sets category and source for all
3 sources on L channel and all 3
sources for R channel. Equivalent to
AUDIO_MGR_OP_[L,R]_PK[0,1,2] with suc-
cessive pairs of arguments. Valid range:
val0: [0 .. 12] val1: [0 .. 5] val2: [0 .. 12] val3:
[0 .. 5] val4: [0 .. 12] val5: [0 .. 5] val6: [0 ..
12] val7: [0 .. 5] val8: [0 .. 12] val9: [0 .. 5]
val10: [0 .. 12] val11: [0 .. 5]

I2S_INACTIVE READ
ONLY

1 uint8 Returns whether the main audio loop is ex-
changing samples with I2S (0). If not (1),
I2S is inactive

AUDIO_MGR_FAR_END_DSP
_ENABLE

READ /
WRITE

1 uint8 Enables/disables XVF3800 far-end DSP (if
implemented). Write a 1 to enable, 0 to dis-
able. Valid range: val0: [0 .. 1]. Default
value(s): 0

AUDIO_MGR_SYS_DELAY READ /
WRITE

1 int32 Delay, measured in samples, that is applied
to the reference signal before passing to
SHF algorithm. Valid range: val0: [-64 ..
256]. Default value(s): -32

I2S_DAC_DSP_ENABLE READ /
WRITE

1 uint8 Indicates if the DAC performs DSP on the
far-end reference signal. If enabled (1), use
the I2S signal as input to the audio pipeline,
even in the UA configuration. Valid range:
val0: [0 .. 1]. Default value(s): 0

828282

10.4 GPIO Commands
These commands set up and manipulate various functions of the device’s GPO and GPI services.

Table 10.5: GPIO control commands

Command name Read /
Write

Params Param
format

Description

GPI_INDEX READ /
WRITE

1 uint8 Set/get pin index for next and subse-
quent GPI reads. Maximum value should
be equal to GPIO_NUM_INPUT_PINS. Valid
range: val0: [0 .. 1]

GPI_EVENT_CONFIG READ /
WRITE

1 uint8 Set/get event config for selected pin. Valid
range: val0: [0 .. 3]

GPI_ACTIVE_LEVEL READ /
WRITE

1 uint8 Set/get active level for selected pin

GPI_VALUE READ
ONLY

1 uint8 Get current logic level of selected GPI pin.

GPI_EVENT_PENDING READ
ONLY

1 uint8 Get whether event was triggered for se-
lected GPI pin. Event flag is cleared for the
pin. Interrupt pin is set when all event flags
are cleared

GPI_VALUE_ALL READ
ONLY

1 uint32 Get current logic level of all GPI pins as a
bitmap, where GPI index n -> bit n of re-
turned value.

GPI_EVENT_PENDING_ALL READ
ONLY

1 uint32 Get whether event was triggered for all GPI
pins as a bitmap, where GPI index n -> bit n
of returned value. Event flag is cleared for
all GPI pins. Interrupt pin is set.

GPO_PORT_PIN_INDEX READ /
WRITE

2 uint32 GPO port index and pin index that the fol-
lowing commands would be directed to.
Valid range: val0: [0 .. 0] val1: [3 .. 7]

GPO_PIN_VAL WRITE
ONLY

3 uint8 value towrite to one pin of a GPO port. Pay-
load specifies port_index, pin_index and
value to write to the pin. Valid range: val0:
[0 .. 0] val1: [3 .. 7] val2: [0 .. 1]

GPO_PIN_ACTIVE_LEVEL READ /
WRITE

1 uint32 Active level of the port/pin specified by the
GPO_PORT_PIN_INDEX command. 1 = AC-
TIVE_HIGH, 0 = ACTIVE_LOW. Valid range:
val0: [0 .. 1]

GPO_PIN_PWM_DUTY READ /
WRITE

1 uint8 PWM duty cycle of the pin specified by the
GPO_PORT_PIN_INDEX command. Spec-
ified as an integer percentage between 0
and 100. Valid range: val0: [0 .. 100]

GPO_PIN_FLASH_MASK READ /
WRITE

1 uint32 Serial flash mask for the pin specified
by the GPO_PORT_PIN_INDEX command.
Each bit in the mask specifies the GPO pin
state for a 100 ms time period interval

838383

11 APPENDIX – Tuning the Loudspeaker

Tuning the XVF3800 to optimise loudspeaker performance with the XK-VOICE-SQ66 development kit involves
four steps:

1. Optionally adding EQ to the loudspeaker frequency response,

2. Setting the maximum loudspeaker volume,

3. Retraining the non-linear matrix in the XVF3800 audio pipeline,

4. Rebuilding the XVF3800 executable image.

11.1 Adding EQ to the Loudspeaker Frequency Response
Many communication specifications expect roll-off at low frequencies, e.g., as shown in Fig. 11.1.

Fig. 11.1: Frequency response mask for a typical communication specification

Small loudspeakers often have a boost at 100-200 Hz to add more bass to the sound. This may need to be
removed to meet the specification, e.g., by adding a low shelf to reduce the response by 6 to 10 dB. The steps
below describe the process:

848484

1. Use the Room EQ Wizard (REW) to determine the filtering to add. Start by measuring the loudspeaker
response at a close distance, then add EQ filters to shape the response as required.

2. Use the Audio EQ Cookbook equations to generate biquad coefficients.

3. Convert these coefficients into the format used with the Texas Instruments TLV320DAC3101 Digital to
Analogue Converter.

4. Set the biquad in the TLV320DAC3101 DAC on the XK-VOICE-SQ66 development kit using its page 8
registers. Table 6-14 of the TLV320DAC3101 datasheet provides some useful details.

Note: ThePython script sources/modules/bsp/dac/dac3101/dac3101_biquad_converter.py provides sup-
port for generating the biquad coefficients and converting them into the form required by the TLV320DAC3101
Digital to Analogue Converter.

11.2 Setting the Maximum Loudspeaker Volume
See Speaker Operation for information on setting the loudspeaker volume. When using the TLV320DAC3101,
registers 36 (0x24) and 37 (0x25) in page 1 may require new values. Tables 6-24, 6-103, and 6-104 of the
TLV320DAC3101 datasheet provide useful details.

11.3 Remaining Steps
Check the mic level with the new loudspeaker, see Microphone Gain. To retrain the non-linear matrix in the
XVF3800 audio pipeline, see Tuning the Non-Linear Model. To rebuild the XVF3800 executable image, see
Building the Application Firmware.

858585

https://www.roomeqwizard.com
https://www.musicdsp.org/en/latest/_downloads/3e1dc886e7849251d6747b194d482272/Audio-EQ-Cookbook.txt
https://www.ti.com/lit/an/slaa447/slaa447.pdf
https://www.ti.com/lit/an/slaa447/slaa447.pdf
https://www.ti.com/lit/ds/symlink/tlv320dac3101.pdf
https://www.ti.com/lit/ds/symlink/tlv320dac3101.pdf

12 APPENDIX – Alternative Tuning Parameters

The default tuning parameters have been selected such the XK-VOICE-SQ66 development kit will perform
well against the Microsoft Teams V5 “Personal Space Speakerphone” specification. Parameters related to
the loudspeaker, such as EQ and the non-linear model, are unique to specific loudspeakers. Different gain
and AGC settings may also be needed, depending on the requirements of the specification.

In this appendix, alternative tuning parameters for specific loudspeakers and specifications are provided:

• MS Teams V5 Personal Space Speakerphone using a Logitech Z50 loudspeaker

• MS Teams V5 Shared Space Speakerphone at 4.5 m using a Genelec 8020 loudspeaker

12.1 Personal Space Speakerphone using a Logitech Z50
loudspeaker

For meeting the Teams Personal Space Speakerphone specification using a Logitech Z50 loudspeaker, the
following changes are required:

• DAC output needs an attenuation of low frequencies using a low shelf filter (280 Hz, -6 dB gain, Q=1.3)
to remove the low frequency boost caused by the table under the loudspeaker.

• Microphone gain can be increased, the Logitech Z50 has a lowmaximumSPL so this can occur without
the risk of clipping the microphone signal.

• Non-linear model must be trained tomatch the non-linearities of the Logitech Z50 with this DAC EQ and
microphone gain.

• AGC gain and maximum gain must be adjusted for microphone gain for a speech level of 89 dBSPL at
the mouth reference point.

This requires changes to the following files:

• sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/
control_param_values.yaml

• sources/app_xvf3800/nl_model_gen/nlmodel_bin/nlmodel_buffer_override.bin.r16.c40

• sources/modules/fwk_xvf/modules/bsp/dac/dac3101.c

Copies of these files configured for the Logitech Z50 are included in the folder sources/app_xvf3800/
configurations/logitech_z50. Copy each file from the folder to their respective locations listed above.
The firmware can then be built using the instructions in Build Process, and flashed to the device.

The Logitech Z50 has no controls, so requires no additional configuration. Simply connect it’s 3.5 mm input
cable to the line out on the XK-VOICE-SQ66 development kit.

868686

12.2 Shared Space Speakerphone at 4.5 m using a Genelec
8020 loudspeaker

Formeeting the TeamsSharedSpace Speakerphone at 4.5mspecification using aGenelec 8020 loudspeaker,
the following changes are required:

• XK-VOICE-SQ66 development kit line outputmust be configured to balanced tomatch the Genelec 8020
input. This involves setting the DAC registers for differential output mode, see the TLV320DAC3101
datasheet for more details. Note that connecting a balanced output to a stereo input will result in a very
small signal level if the channels are summed.

• Line out volume must be reduced by 1.5 dB to set maximum loudspeaker SPL within limits.

• DAC output needs an attenuation of low frequencies using a low shelf filter (328 Hz, -10 dB, Q=1.1) to
remove the low frequency boost caused by the table under the loudspeaker.

• DAC output also needs a 150 Hz high pass filter (Q=0.707) applied to reduce loudspeaker bass level.
This filter is applied twice.

• Non-linear model must be trained to match the non-linearities of the Genelec 8020 with this DAC EQ
and microphone gain.

• Slower AGC parameters are needed. This is to avoid collisions with the Teams Client AGC, which is also
included in the signal path for the specification. This improves the MOS (Mean Opinion Score) in echo
tests with the Teams client.

• Equalization filter must be applied to the processed output to fit within the send frequency response
limits in the specification.

• A small increase in noise suppression is required to meet test specification.

This requires changes to the following files:

• sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/
control_param_values.yaml

• sources/app_xvf3800/nl_model_gen/nlmodel_bin/nlmodel_buffer_override.bin.r16.c40

• sources/app_xvf3800/eq_filter_gen/eq_filter_bin/eq_filter_override.bin

• sources/modules/fwk_xvf/modules/bsp/dac/dac3101.c

Copies of these files configured for the Genelec 8020 are included in the folder sources/app_xvf3800/
configurations/genelec_8020. Copy each file from the folder to their respective locations listed above.
The firmware can then be built using the instructions in Build Process, and flashed to the device.

To configure the Genelec 8020 loudspeaker, set all the switches on the rear down. The sensitivity control
should be set to +6 dB (fully anti-clockwise), which is the quietest setting. An XLR-to-TRS jack cable, with a
6.35 mm to 3.5 mm jack adapter, is required to connect to the line out on the XK-VOICE-SQ66 development
kit.

878787

https://www.ti.com/lit/ds/symlink/tlv320dac3101.pdf

13 APPENDIX – List of applications

The application file names are described here.

More information about the applications below can be found in the User Guide.

All paths are relative to the /binaries/ directory in the release package.

13.1 UA device applications

Build with USB audio at 16 kHz

/usb/16kHz/application_xvf3800_ua-io16-lin.xe linear microphone array, control over USB
/usb/16kHz/application_xvf3800_ua-io16-
sqr.xe

square/rectangular microphone array, control over USB

Build with USB audio at 48 kHz

/usb/48kHz/application_xvf3800_ua-
io48-lin.xe

linear microphone array, control over USB

/usb/48kHz/application_xvf3800_ua-
io48-sqr.xe

square/rectangular microphone array, control over USB

/additional/application_xvf3800_ua-
io48-lin-io-exp.xe

linear microphone array, control over USB, and I2C-to-IO expander
to control buttons and LEDs

/additional/application_xvf3800_ua-
io48-lin-spatial.xe

linear microphone array, control over USB, and mapping of fo-
cused beams to stereo output

13.2 INT device applications

Build with I2S audio at 16 kHz

/i2s/16kHz/i2c/application_xvf3800_intdev-lr16-
lin-i2c.xe

linear microphone array, control over I2C slave

/i2s/16kHz/i2c/application_xvf3800_intdev-lr16-
sqr-i2c.xe

square/rectangular microphone array, control over
I2C slave

/i2s/16kHz/spi/application_xvf3800_intdev-lr16-
lin-spi.xe

linear microphone array, control over SPI slave

/i2s/16kHz/spi/application_xvf3800_intdev-lr16-
sqr-spi.xe

square/rectangular microphone array, control over
SPI slave

/additional/external_master_clock/application_xvf3800_intdev-
lr16-lin-i2c-extmclk.xe

linear microphone array, control over I2C slave, and
external Master clock

/additional/external_master_clock/application_xvf3800_intdev-
lr16-sqr-i2c-extmclk.xe

square/rectangular microphone array, control over
I2C slave, and external Master clock

/additional/external_master_clock/application_xvf3800_intdev-
lr16-lin-spi-extmclk.xe

linear microphone array, control over SPI slave, and
external Master clock

/additional/external_master_clock/application_xvf3800_intdev-
lr16-sqr-spi-extmclk.xe

square/rectangular microphone array, control over
SPI slave, and external Master clock

888888

Build with I2S audio at 48 kHz

/additional/application_xvf3800_intdev-lr48-lin-
i2c-spatial.xe

linear microphone array, control over I2C slave, and
mapping of focused beams to stereo output

/i2s/48kHz/i2c/application_xvf3800_intdev-
lr48-lin-i2c.xe

linear microphone array, control over I2C slave

/i2s/48kHz/i2c/application_xvf3800_intdev-
lr48-sqr-i2c.xe

square/rectangular microphone array, control over I2C
slave

/i2s/48kHz/spi/application_xvf3800_intdev-
lr48-lin-spi.xe

linear microphone array, control over SPI slave

/i2s/48kHz/spi/application_xvf3800_intdev-
lr48-sqr-spi.xe

square/rectangular microphone array, control over SPI
slave

/additional/external_master_clock/application_xvf3800_intdev-
lr48-lin-i2c-extmclk.xe

linear microphone array, control over I2C slave, and ex-
ternal Master CLK

/additional/external_master_clock/application_xvf3800_intdev-
lr48-sqr-i2c-extmclk.xe

square/rectangular microphone array, control over I2C
slave, and external Master CLK

/additional/external_master_clock/application_xvf3800_intdev-
lr48-lin-spi-extmclk.xe

linear microphone array, control over SPI slave, and ex-
ternal Master CLK

/additional/external_master_clock/application_xvf3800_intdev-
lr48-sqr-spi-extmclk.xe

square/rectangular microphone array, control over SPI
slave, and external Master CLK

898989

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

909090

	1 Overview
	2 Setting Up the Hardware
	2.1 Introduction
	2.2 Hardware Setup - USB Accessory (UA) Configuration
	2.2.1 UA - Required Components
	2.2.2 Setting up the Evaluation System in UA Configuration
	2.2.3 Installing the UA firmware

	2.3 Hardware Setup - I2S (INT-Device) Configuration
	2.3.1 INT-Device Required Components
	2.3.2 Setting up the INT-Device configuration
	2.3.3 Installing the INT-Device Firmware

	2.4 Setting up the Audio
	2.4.1 Loudspeaker
	2.4.2 Playback and Recording
	2.4.2.1 I2S Audio Configuration
	2.4.2.2 UA Audio Configuration

	2.5 Troubleshooting
	2.5.1 Audio Signals
	2.5.2 Low volume of recorded audio during audio playback
	2.5.3 Low volume of playback audio on Linux for XVF3800-UA
	2.5.4 AEC Convergence

	3 Using the Host Application
	3.1 Installing the Host Application
	3.2 Instructions for Windows USB Driver Installation
	3.3 Connecting to the XVF3800 Device
	3.4 xvf_host Command Syntax
	3.5 Microphone orientation
	3.5.1 Beam forming subsystem and Direction of Arrival indicator
	3.5.2 Using azimuth data For Direction of Arrival indication

	3.6 Example Uses
	3.6.1 Output Selection
	3.6.2 Setting an Output Pin

	4 Tuning the Application
	4.1 System Preparation
	4.1.1 Prerequisites
	4.1.2 Initial Parameter Setting
	4.1.3 Initial Tests
	4.1.3.1 Input Path
	4.1.3.2 Control Path
	4.1.3.3 Output Path
	4.1.3.4 Speaker Operation
	4.1.3.5 Microphone Operation

	4.2 Tuning the XVF3800 Parameters
	4.2.1 Reference Gain
	4.2.2 Microphone Gain
	4.2.3 Silence level
	4.2.4 System Delay
	4.2.5 AEC Operation
	4.2.6 AGC Configuration
	4.2.7 Emphasis
	4.2.8 MGSCALE
	4.2.9 FMIN_SPEINDEX
	4.2.10 Tuning the Non-Linear Model
	4.2.10.1 Non-linear Echo
	4.2.10.2 Tuning Setup for Non Linear model
	Local Device
	Remote Device
	Support for multiple products

	4.2.11 Echo Suppression
	4.2.11.1 PP_DTSENSITIVE
	4.2.11.2 PP_GAMMA_E and PP_GAMMA_ENL
	4.2.11.3 PP_GAMMA_ETAIL

	4.2.12 Noise Suppression
	4.2.13 ATTNS
	4.2.13.1 ATTNS_NOMINAL
	4.2.13.2 ATTNS_SLOPE

	4.2.14 Path Change Detection
	4.2.15 Output equalization

	4.3 Changing Default Parameter Values

	5 Building the Application Firmware
	5.1 Introduction
	5.2 Prerequisites
	5.2.1 Python3
	5.2.2 XMOS tools
	5.2.3 Build Tools

	5.3 XVF3800 Release Package
	5.3.1 Standard Configurations
	5.3.2 Image Names

	5.4 Build Process
	5.4.1 Set up the environment
	5.4.2 Configure the build system
	5.4.3 Build an executable

	5.5 Installing the Executable Image
	5.5.1 Install Using xrun
	5.5.2 Install Using xflash

	5.6 Using SPI Boot
	5.6.1 Creating a SPI Boot File
	5.6.2 Using a SPI Boot File
	5.6.2.1 Safe SPI Booting
	5.6.2.2 Fast SPI booting

	6 Some Acoustic Design Guidelines
	6.1 Microphones
	6.2 Loudspeaker(s)
	6.3 Enclosure and mounting

	7 DFU operations
	7.1 Setting up the host computer (UA)
	7.2 Setting up the host computer (INT)
	7.3 Generation of Binary Upgrade Image
	7.4 Examples of DFU operations
	7.4.1 Download an upgrade image to the device
	7.4.2 Revert the device to factory image
	7.4.3 Reboot the device
	7.4.4 Upload the images from the device
	7.4.4.1 Error handling

	8 Automatic speech recognition
	9 HID Interface
	10 APPENDIX – Control Commands
	10.1 AEC Tuning and Control Commands
	10.2 Device Metadata Commands
	10.3 Audio Manager Commands
	10.4 GPIO Commands

	11 APPENDIX – Tuning the Loudspeaker
	11.1 Adding EQ to the Loudspeaker Frequency Response
	11.2 Setting the Maximum Loudspeaker Volume
	11.3 Remaining Steps

	12 APPENDIX – Alternative Tuning Parameters
	12.1 Personal Space Speakerphone using a Logitech Z50 loudspeaker
	12.2 Shared Space Speakerphone at 4.5 m using a Genelec 8020 loudspeaker

	13 APPENDIX – List of applications
	13.1 UA device applications
	13.2 INT device applications

