
XMOS XVF3800 - Programming Guide
Release: 3.2.0
Publication Date: 2024/09/24

Table of Contents

1 Overview 1

2 Theory of Operation 2
2.1 System Architecture Overview . 2

2.1.1 Control Plane Modules . 2
2.1.2 Data Plane Modules . 2

2.2 Control Plane Module Responsibilities . 3
2.2.1 Device Control . 3
2.2.2 Device Firmware Update Controller . 3
2.2.3 General Purpose Input Output . 3
2.2.4 Human Interface Device . 3
2.2.5 Input Output Configuration . 3
2.2.6 Inter-Integrated Circuit Master . 4
2.2.7 Inter-Integrated Circuit Slave . 4
2.2.8 Quad Serial Peripheral Interface . 4
2.2.9 Serial Peripheral Interface Slave . 4
2.2.10 Servicers . 4

2.3 Data Plane Module Responsibilities . 5
2.3.1 Acoustic Echo Cancellation . 5
2.3.2 Audio Manager . 5
2.3.3 Beamforming and Post-processing . 5
2.3.4 Customer DSP . 5
2.3.5 Inter-IC Sound . 6
2.3.6 Microphone Array . 6
2.3.7 Software Phase-Locked Loop . 6
2.3.8 Universal Serial Bus . 6

2.4 Product Configurations . 6
2.5 Module Placement and Interconnection . 9

2.5.1 Integrated Device with SPI Control . 9
2.5.2 Integrated Device with I2C Control . 10
2.5.3 USB Accessory . 11

2.6 Control Plane Detailed Design . 12
2.6.1 Control Plane Structure and Operation . 12
2.6.2 Control Protocol . 14

2.7 Data Plane Detailed Design . 15
2.8 Device Firmware update (DFU) Design . 16

2.8.1 DFU over USB implementation . 19
2.8.2 DFU over I2C implementation . 19

2.9 HID Interface design . 24
2.9.1 HID descriptors . 24
2.9.2 HID System Design . 28
2.9.3 HID Initialisation . 29
2.9.4 HID Operation . 30

2.9.4.1 Mute/Unmute device . 30
2.9.4.2 Inform call start . 32
2.9.4.3 Inform call end . 32

2.10 Expanding available IO for extended HID support . 33
2.10.1 System Design . 34
2.10.2 HID Operation with expanded GPIO set . 36

2.10.2.1 Handle Incoming Call . 36
2.10.2.2 End Call . 37

iiiiii

2.10.2.3 Hold/Unhold Call . 39
2.10.2.4 Volume Increment/Decrement . 40

3 Working With The Build System 41
3.1 Configuring CMake and Building the Firmware . 41

3.1.1 Adding or Modifying Build Configurations . 42
3.1.2 Adding New Files and Compilation Flags to the Build . 43

3.2 Building the Host Control App . 43

4 Testing the Software 45
4.1 Test Capabilities . 45

4.1.1 Loopbacks . 46
4.1.2 Signal Capture . 48
4.1.3 Signal Injection . 51
4.1.4 Signal Injection and Capture Simultaneously . 52

4.2 Measuring Resources . 54
4.2.1 Measuring Available Cycles . 54
4.2.2 Measuring Available Memory . 56

5 Modifying the Software 58
5.1 Adding a Control Command . 58

5.1.1 Adding a new control command . 59
5.2 Adding Custom Digital Signal Processing . 60

5.2.1 I2S Usage . 60
5.2.2 Custom DSP Within the DAC . 61
5.2.3 Custom DSP Within the XVF3800 Firmware . 61

5.2.3.1 Customer Far-End Reference DSP . 61
5.2.3.2 Custom Voice Post-Processing DSP . 62
5.2.3.3 Common Aspects to Custom DSP Within the XVF3800 Firmware 62

5.2.4 Meeting Timing . 64
5.2.5 Adding Control to Custom DSP . 64
5.2.6 Far-End Reference DSP . 64

5.2.6.1 Far-end reference example . 65
5.2.7 Voice Post-Processing DSP . 67

5.2.7.1 Spatial output example . 67
5.3 Modifying Existing Functionality . 67

5.3.1 Digital to Analogue Converter Configuration . 69
5.3.2 General Purpose Input and Output Operation . 70
5.3.3 USB configuration . 71
5.3.4 Programmatically Rebooting the Device . 71
5.3.5 Modifying the HID to GPIO mapping . 71

5.3.5.1 Changing button mapping . 72
5.3.5.2 Changing LED mapping . 72

5.3.6 Modifying the HID to GPIO mapping for the IO expander build 73
5.3.7 Adding a different I2C Expander . 74

5.3.7.1 Defining available GPIO on the IO expander . 75
5.3.7.2 Modifying the IO expander task . 76

iiiiiiiii

1 Overview

The XMOS VocalFusion ® XVF3800 is a high-performance voice processor that uses microphone array pro-
cessing and a sophisticated audio processing pipeline to capture clear, high-quality speech from anywhere in
a room. The XVF3800 uses the XMOS xcore.ai processor and supports a range of integrated and accessory
voice communication applications.

Fig. 1.1 shows the XVF3800 in context. Only one of the alternate reference audio paths may be present in the
product design.

Fig. 1.1: Context Diagram

This document provides information on:

• The XVF3800’s theory of operation,

• Advanced options for configuring and building the firmware,

• Methods for testing changes to the XVF3800 firmware, and

• Areas within the XVF3800 firmware intended for customisation.

111

2 Theory of Operation

2.1 System Architecture Overview
The XVF3800 system subdivides into two major sections: a Control Plane and a Data Plane.

The Control Plane includes all control interfaces, related logic, and housekeeping functions. Control Plane
functions have low performance requirements, relaxed timing constraints, and complex logic. The XVF3800
design uses a Real Time Operating System (RTOS) to distribute Control Plane functionality across xCORE tile
boundaries.

The Data Plane includes all functions that handle audio processing. These functions have hard real-time con-
straints and operate isochronously. They generally pass their audio data using buffers. The xCORE processor
package imposes a constraint on Data Plane functions receiving data from or providing data to an external
source due to the number and width of ports connected to physical pins within the package. The XVF3800
operates the Data Plane functions bare-metal, i.e. without the help of an RTOS.

Both the Control Plane and the Data Plane consist of several modules.

2.1.1 Control Plane Modules

The Control Plane includes the following modules:

• Device Control (DC)

• Device Firmware Update controller (DFU)

• General Purpose Input and Output (GPIO)

• Human Interface Device (HID)

• Input Output Configuration (IO Config)

• Inter-Integrated Circuit Master (I2C Master)

• Inter-Integrated Circuit Slave (I2C Slave)

• Quad Serial Peripheral Interface (QSPI)

• Serial Peripheral Interface Slave (SPI Slave)

• Servicers (SER)

2.1.2 Data Plane Modules

The Data Plane includes the following modules:

• Acoustic Echo Cancellation (AEC)

• Audio Manager (AM)

• Beamforming and Post-processing (BAP)

• Customer DSP (DSP)

• Inter-IC Sound (I2S)

• Microphone Array (MIC)

• Software Phase-Locked Loop (SW PLL)

222

• Universal Serial Bus (USB)

2.2 Control Plane Module Responsibilities

2.2.1 Device Control

The Device Control module handles the transfer of control messages between a host and the device. It con-
nects to the host control interface, e.g. I2C Slave, SPI Slave or USB, on one end and the command servicers
on the other end. It routes a command and its response between the host control interface and the intended
servicer for that command.

2.2.2 Device Firmware Update Controller

The Device Firmware Update (DFU) controller processes DFU messages received from a host control inter-
face, e.g. I2C Slave, SPI Slave or USB, and interacts with the QSPI Flash module to read/write to the external
flash.

2.2.3 General Purpose Input Output

The General Purpose Input Output (GPIO) module reads General Purpose Input (GPI) pins and writes to Gen-
eral Purpose Output (GPO) pins. These pins allow device interaction with buttons, sliders or knobs for input
and Light Emitting Diodes (LEDs) for output. The GPIO module includes the logic to drive GPO pins using
Pulse-Width Modulation (PWM).

2.2.4 Human Interface Device

The Human Interface Device (HID) module allows the XVF3800 to operate as a human interface device ac-
cording to the USBHuman Interface Devices specification. Compliancewith the USBHID specification allows
host devices to interact with physical controls and indicators connected to the XVF3800 through the GPIO
module such as buttons.

2.2.5 Input Output Configuration

The Input Output Configuration module configures GPIO devices and an attached Digital to Analogue Con-
verter (DAC). The number of GPIO devices can be extended using the I2C-to-GPIO expander. An example of
the IO expander is described in the Expanding available IO for extended HID support section.

333

https://www.usb.org/hid/

2.2.6 Inter-Integrated Circuit Master

The Inter-Integrated Circuit Master (I2C Master) module provides an XVF3800-clocked I2C data transport for
DAC configuration.

2.2.7 Inter-Integrated Circuit Slave

The Inter-Integrated Circuit Slave (I2C Slave) module provides an externally-clocked I2C data transport for
receiving and responding to control commands including the Direction of Arrival command. The XVF3800
cannot include both this module and the Serial Peripheral Interface Slave module in the same build configu-
ration.

2.2.8 Quad Serial Peripheral Interface

The Quad Serial Peripheral Interface (QSPI) module provides a QSPI data transport for input and output to
an attached QSPI Flash memory device. The XVF3800 uses this data transport when booting up from QSPI
Flash and during the DFU process.

2.2.9 Serial Peripheral Interface Slave

The Serial Peripheral Interface (SPI) Slavemodule provides an externally-clocked SPI data transport for receiv-
ing and responding to control commands including the Direction of Arrival command. The XVF3800 cannot
include both this module and the Inter-Integrated Circuit Slave module in the same build configuration.

2.2.10 Servicers

A set of Servicer (SER) modules handle requests from the Device Control module to get or set controllable
parameters. It also provides a response back to the Device Control module. Each Servicer handles a re-
quest either on its own or through an underlying resource. When using an underlying resource, each Servicer
manages the associated control packet queue and ensures thread safety whenmodifying shared memory or
altering a Data Plane module’s controllable parameter.

444

2.3 Data Plane Module Responsibilities

2.3.1 Acoustic Echo Cancellation

The Acoustic Echo Cancellation (AEC) module removes from the microphone signal the acoustic echos of
the reference signal projected into the room by the loudspeaker.

2.3.2 Audio Manager

The AudioManager (AM) performs a number of functions. It collects individual samples from themicrophone
array and the reference signal source, and it assembles them into a block for further audio processing. It pre-
pares the reference and microphone signals for acoustic processing by, for instance, changing the reference
signal sample rate, amplifying either signal as required, converting them between integer and floating point
format, and/or adding any necessary delay to synchronise them. It also includes an audio packing facility
that allows the XVF3800 to send a selection of six 16 kHz signals which it time-division multiplexes into two
48 kHz I2S or USB channels.

2.3.3 Beamforming and Post-processing

After the completion of acoustic echo cancellation, the Beamforming and Post-processing (BAP) module
further enhances the audio signal through the use of amulti-beam beamformer, de-reverberation, generalised
side-lobe cancellation, dynamic echo and noise suppression, automatic gain control, and application of a
limiter.

2.3.4 Customer DSP

The Customer DSP module includes two separate digital signal processing functions set aside to allow cus-
tomisation of signals as desired for a particular product. The first function allows the customer to alter the
reference signal before use by the Acoustic Echo Cancellation module and transmission over I2S. This func-
tion operates at the audio interface sample rate. The second function allows the customer to add processing
after the signal emerges from the Beamforming and Post-processing module. This function operates at the
internal audio processing sample rate. In it, the customer has access to all four beam signals produced by
the BAP module and to the residual signals produced by the AEC module.

555

2.3.5 Inter-IC Sound

The Inter-IC Sound (I2S) module provides an audio interface to an integrated processor which supplies the
reference signal, consumes the processed audio signal, or both. It also includes an audio unpacking facility
that allows the XVF3800 to receive the 16 kHz reference signal and four 16 kHz substitutemicrophone signals
as two 48 kHz time-division multiplexed I2S channels.

2.3.6 Microphone Array

The Microphone Array (MIC) operates four PDM microphones in either a linear or a square/rectangular con-
figuration. It converts the sample rate of the microphone output to match the audio processing sample rate.

2.3.7 Software Phase-Locked Loop

The Software Phase-Locked Loop (SW PLL) module enables the XVF3800 to synchronize the clock signal
used by the microphones with the reference audio signal received via I2S or USB.

2.3.8 Universal Serial Bus

The Universal Serial Bus (USB) module provides a USB Audio Class 2 (UAC2) interface to a USB host. The
host supplies the reference signal, consumes the processed audio signal, or both. This module includes
an audio unpacking facility that allows the XVF3800 to receive a 16 kHz reference signal and four 16 kHz
substitute microphone signals as two 48 kHz time-division multiplexed USB channels. It also provides a
control interface, a DFU interface, and a HID interface used by the Control Plane.

2.4 Product Configurations
The XVF3800 supports two primary use cases:

• Integrated device

• USB accessory

The integrated device use case embeds the XVF3800within a system that includes a separate, primarymicro-
controller. The primary microcontroller provides the reference signal to the XVF3800, receives the processed
microphone signal from the XVF3800, and initiates any control commands sent to the XVF3800. It also pro-
vides all system functionality outside of the audio processing performed by the XVF3800.

The USB accessory use case embeds the XVF3800 within a system that connects to a USB host. The USB
host provides the reference signal, receives the processed microphone signal, initiates any control com-
mands, and provides all functionality outside of the XVF3800.

Interface variations for each use case appear in the table below:

Table 2.1: Use Case Interface Variations

Interface Attribute Integrated Device USB Accessory

Control Protocol I2C slave or SPI slave USB
Data Bit Depth 32 16, 24, or 32
Data Protocol I2S slave USB and I2S master
Master Clock Derived or Input Output

666

All use cases support either a linear or a square/rectangular geometry of four microphones. Likewise, all use
cases support either 16 kHz or 48 kHz operation of the data interface.

A system diagram for each use case appears in Fig. 2.1 and Fig. 2.2.

Fig. 2.1: XVF3800 Integrated Device System Diagram

777

Fig. 2.2: XVF3800 USB Accessory System Diagram

888

2.5 Module Placement and Interconnection
The diagrams in this section show the location of the XVF3800 modules on the two tiles of the xcore.ai and
the interconnections between them.

Note: These diagrams do not depict logical cores or channel interconnections.

One diagram is included for the USB Accessory (Fig. 2.5) use case. The Integrated Device use case supports
a control data transport over either SPI or I2C, so two diagrams (Fig. 2.3 and Fig. 2.4) appear for it.

2.5.1 Integrated Device with SPI Control

Fig. 2.3: XVF3800 Integrated Device (SPI control) Location Diagram

999

2.5.2 Integrated Device with I2C Control

Fig. 2.4: XVF3800 Integrated Device (I2C control) Location Diagram

101010

2.5.3 USB Accessory

Fig. 2.5: XVF3800 USB Accessory Location Diagram

111111

2.6 Control Plane Detailed Design

2.6.1 Control Plane Structure and Operation

Fig. 2.6 shows the modules involved in processing control commands. In order to concentrate on their pro-
cessing, it does not include Control Plane modules, such as the DFU controller, HID, I2C Master or QSPI, that
are not directly involved with control command processing.

Fig. 2.6: XVF3800 Control Plane Components Diagram

121212

Fig. 2.7 shows the interaction between the Device Control module and a Servicer. In this diagram, boxes with
the same colour reside in the same RTOS task.

Fig. 2.7: XVF3800 Device Control – Servicer Flow Chart

This diagram shows a critical aspect of Control Plane operation. The Device Control module, having placed
a command on a Servicer’s command queue, waits on either the Gateway queue or on the Inter-tile context
for a response. As a result, it ensures processing of a single control command at a time. Limiting Control
Plane operation to a single command in-flight reduces the complexity of the control protocol and eliminates
several potential error cases.

Note: Since the Control Plane design requires the host application to poll read commands, limiting operation
to a single command in-flight does not limit operation to a single read transaction at a time. For example, a
host application may issue a read command to a particular Servicer, receive a status value indicating that it
should poll the device for the completion of that read operation, issue a second read command to the same
or a different Servicer, receive a status value indicating that it should poll the device for the completion of the
second read operation, and then issue additional read commands for either operation in any order until they
complete.

131313

2.6.2 Control Protocol

The XVF3800 uses a packet protocol to receive control commands and send each corresponding response.
Because packet transmission occurs over a very short-haul transport, e.g. I2C or SPI, or as the payload within
a USB packet, the protocol does not include fields for error detection or correction such as start-of-frame and
end-of-frame symbols, a cyclical redundancy check or an error correcting code. Fig. 2.8 depicts the structure
of each packet.

Fig. 2.8: XVF3800 Control Plane Packet Diagram

Packets containing a response from the XVF3800 to the host application place a status value in the first byte
of the payload.

141414

2.7 Data Plane Detailed Design
Fig. 2.9 shows the activities within each Data Plane logical core.

Fig. 2.9: XVF3800 Data Plane Activity Diagram

The portion of the Customer DSP module that allows processing of the reference signal prior to use by the
Acoustic Echo Cancellation module appears in the I2S logical core. The other portion of the Customer DSP
module, which allows further processing of the audio produced by the Beamforming and Post-processing
module, appears in the Audio Manager logical core.

151515

The Software Phase Locked Loopmodule appears in the I2S logical core. The other Data Planemodules each
appear in the logical core of the same name.

2.8 Device Firmware update (DFU) Design
The Device Firmware Update (DFU) allows updating the firmware of the device from a host computer, and
it can be performed over I2C or USB. This interface closely follows the principles set out in version 1.1 of
the Universal Serial Bus Device Class Specification for Device Firmware Upgrade, including implementing the
state machine and command structure described there.

The DFU process is internally managed by the DFU controller module within the firmware. This module is
tasked with overseeing the DFU state machine and executing DFU operations. The list of states and transac-
tions are represented in the diagram in Fig. 2.10.

Fig. 2.10: State diagram of the DFU operations

161616

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

The main differences with the state diagram in version 1.1 of Universal Serial Bus Device Class Specification
for Device Firmware Upgrade are:

• the appIDLE and appDETACH states are not implemented, and the device is started in the dfuIDLE state

• the device goes into the dfuIDLE state when a SET_ALTERNATE message is received

• the device is rebooted when a DFU_DETACH command is received.

The DFU allows the following operations:

• download of an upgrade image to the device

• upload of factory and upgrade images from the device

• reboot of the device.

The rest of this section describes the message sequence charts of the supported operations.

A message sequence chart of the download operation is below:

Fig. 2.11: Message sequence chart of the download operation

171717

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

Note: The end of the image transfer is indicated by a DFU_DNLOAD message of size 0.

Note: The DFU_DETACH message is used to trigger the reboot.

Note: For the I2C implementation, specification of the block number in download is not supported; all down-
loads must start with block number 0 and must be run to completion. The device will track this progress
internally.

A message sequence chart of the reboot operation is below:

Fig. 2.12: Message sequence chart of the reboot operation

Note: The DFU_DETACH message is used to trigger the reboot.

181818

A message sequence chart thisof the upload operation is below:

Fig. 2.13: Message sequence chart of the upload operation

Note: The end of the image transfer is indicated by a DFU_UPLOAD message of size less than the transport
medium maximum; this is 256 bytes in UA and 128 bytes in INT.

2.8.1 DFU over USB implementation

The UA variant of the device make use of a USB connection for handling DFU operations. This interface is a
relatively standard, specification-compliant implementation. The implementation is encapsulated within the
tinyUSB library, which provides a USB stack for the XVF3800.

2.8.2 DFU over I2C implementation

The INT variant of the device presents a DFU interface that may be controlled over I2C.

The INT DFU state machine is driven by use of control commands, as described in Control Plane Detailed
Design. The DFU state machine has its own servicer, which then interacts with a separate RTOS task in order
to asynchronously perform flash read/write operations.

Mirroring the USB DFU specification, the INT implementation supports a set of 9 control commands intended
to drive the state machine, along with an additional 2 utility commands:

191919

Table 2.2: DFU commands

Name ID Length Payload Structure Purpose

DFU_DETACH 0 1 Payload unused Write-only command. Restarts the de-
vice. Payload is required for protocol, but
is discarded within the device. This com-
mand has a defined purpose in the USB
DFU specification, but in a deviation to
that specification it is used with I2C sim-
ply to reboot the device. Future versions
of the XMOS DFU-by-device-control pro-
tocol (but not future versions of this
product) may choose to alter the func-
tion of this command to more closely
align with the USB DFU specification.

DFU_DNLOAD 1 130 2 bytes length marker,
followed by 128 bytes
of data buffer

Write-only command. The first two bytes
indicate how many bytes of data are be-
ing transmitted in this packet. These
bytes are little-endian, so byte 0 repre-
sents the low byte and byte 1 represents
the high byte of an unsigned 16b inte-
ger. The remaining 128 bytes are a data
buffer for transfer to the device. All con-
trol command packets are a fixed length,
and therefore all 128 bytes must be in-
cluded in the command, even if unused.
For example, a payload with length of
100 should have the first 100 bytes of
data set, but must send an additional 28
bytes of arbitrary data.

DFU_UPLOAD 2 130 2 bytes length marker,
followed by 128 bytes
of data buffer

Read-only command. The first two bytes
indicate how many bytes of data are be-
ing transmitted in this packet. These
bytes are little-endian, so byte 0 repre-
sents the low byte and byte 1 represents
the high byte of an unsigned 16b inte-
ger. The remaining 128 bytes are a data
buffer of data received from the device.
All control command packets are a fixed
length, and therefore this buffer will be
padded to length 128 by the device be-
fore transmission. The device will, as per
the USB DFU specification, mark the end
of the upload process by sending a “short
frame” - a packet with a length marker
less than 128 bytes.

continues on next page

202020

Table 2.2 – continued from previous page
Name ID Length Payload Structure Purpose

DFU_GETSTATUS 3 5 1 byte representing
device status, 3 bytes
representing the re-
quested timeout, 1 byte
representing the next
device state.

Read-only command. The first byte re-
turns the device status code, as de-
scribed in the USB DFU specification in
the table in section 6.1.2. The next 3
bytes represent the amount of time the
host should wait, in ms, before issuing
any other commands. This timeout is
used in the DNLOAD process to allow the
device time to write to flash. This value
is little-endian, so bytes 1, 2, and 3 rep-
resent the low, middle, and high bytes
respectively of an unsigned 24b integer.
The final byte returns the number of the
state that the device will move into im-
mediately following the return of this re-
quest, as described in the USBDFU spec-
ification in the table in section 6.1.2.

DFU_CLRSTATUS 4 1 Payload unused Write-only command. Moves the device
out of state 10, dfuERROR. Payload is
required for protocol, but is discarded
within the device.

DFU_GETSTATE 5 1 1 byte representing cur-
rent device state.

Read-only command. The first (and only)
byte represents the number of the state
that the device is currently in, as de-
scribed in the USB DFU specification in
the table in section 6.1.2.

DFU_ABORT 6 1 Payload unused Write-only command. Aborts an ongo-
ing upload or download process. Pay-
load is required for protocol, but is dis-
carded within the device.

DFU_SETALTERNATE 64 1 1 byte representing ei-
ther factory (0) or up-
grade (1) DFU target
images

Write-only command. Sets which of
the factory or upgrade images should
be targeted by any subsequent upload
or download commands. Use of this
command entirely resets the DFU state
machine to initial conditions: the de-
vice will move to dfuIDLE, clear all er-
ror conditions, wipe all internal DFU data
buffers, and reset all other DFU state
apart from the DFU_TRANSFERBLOCK
value. This command is included to em-
ulate the SET_ALTERNATE request avail-
able in USB.

continues on next page

212121

Table 2.2 – continued from previous page
Name ID Length Payload Structure Purpose

DFU_TRANSFERBLOCK 65 2 2 bytes, representing
the target transfer
block for an upload
process.

Read/write command. Sets/gets a 2
byte value specifying the transfer block
number to use for a subsequent up-
load operation. A complete image may
be conceptually divided into 128-byte
blocks. These blocks may then be
numbered from 0 upwards. Setting
this value sets which block will be re-
turned by a subsequent DFU_UPLOAD
request. This value is initialised to 0,
and autoincrements after each success-
ful DFU_UPLOAD request has been ser-
viced. Therefore, to read a whole im-
age from the start, there is no need to is-
sue this command - this command need
only be used to select a specific section
to read. Because this value is automat-
ically incremented after a DFU_UPLOAD
command is successfully serviced, read-
ing it will give the value of the next block
to be read (and this will be one greater
than the previous block read, if it has not
been altered in the interim). This value
is reset to 0 at the successful comple-
tion of a DFU_UPLOAD process. It is
not reset after a DFU_ABORT, nor after
a DFU_SETALTERNATE call. This com-
mand is included to emulate the ability
in a USB request to send values in the
header of the request - the device control
protocol used here does not allow send-
ing any data with a read request such as
DFU_UPLOAD.

DFU_GETVERSION 88 3 3 bytes, representing
major.minor.patch ver-
sion of device

Read-only command. Bytes 0, 1, and 2
represent the major, minor, and patch
versions respectively of the device. This
is a utility command intended to provide
an easy mechanism by which to verify
that a firmware download has been suc-
cessful.

DFU_REBOOT 89 1 Payload unused Write-only command. Restarts the de-
vice. Payload is required for proto-
col, but is discarded within the device.
This is a utility command intended to
provide a clear and unambiguous inter-
face for restarting the device. Use of
this command should be preferred over
DFU_DETACH for this purpose.

These commands are then used to drive the state machine described in the Device Firmware update (DFU)
Design.

When writing a custom compliant host application, the use of XMOS’ fwk_rtos library is advised; the de-
vice_control library provided there gives a host API that can communicate effectively with the XVF3800, as
demonstrated in the xvf_host application. However, a description of the I2C bus activity during the execution

222222

of the above DFU commands is provided below, in the instance that usage of the device_control library is
inconvenient or impossible.

The XVF3800’s I2C address is set by default as 0x2C. This may be confirmed by examination of the
I2C_ADDRESS field in the transport_config.yaml file, found in the release package at sources/app_xvf3800/
autogeneration/yaml_files/settings_and_defaults. The XVF3800’s I2C address may also be altered by
editing this file. The DFU resource has an internal “resource ID” of 0xF0. This maps to the register that
read/write operations on the DFU resource should target - therefore, the register to write to will always be
0xF0.

To issue a write command (e.g. DFU_SETALTERNATE):

• First, set up a write to the device address. For a default device configuration, a write operation will
always start by a write token to 0x2C (START, 7 bits of address [0x2C], R/W bit [0 to specify write]), wait
for ACK, followed by specifying the register to write [Resource ID 0xF0] (and again wait for ACK).

• Then, write the command ID (in this example, 64 [0x40]) from the above table.

• Then, write the total transfer size, including the register byte. In this example, that will be 4 bytes (register
byte, command ID, length byte, and 1 byte of payload), so write 0x04.

• Finally, send the payload - e.g. 1 to set the alternate setting to “upgrade”.

• The full sequence for this write command will therefore be START, 7 bits of address [0x2C], 0 (to specify
write), hold for ACK, 0xF0, hold for ACK, 0x40, hold for ACK, 0x04, hold for ACK, 0x01, hold for ACK,
STOP.

• To complete the transaction, the device must then be queried; set up a read to 0x2C (START, 7 bits of
address [0x2C], R/W bit [1 to specify read], wait for ACK). The device will clock-stretch until it is ready,
at which point it will release the clock and transmit one byte of status information. This will be a value
from the enum control_ret_t from device_control_shared.h, found in sources\modules\fwk_xvf\
modules\rtos\modules\sw_services\device_control\api.

To issue a read command (e.g. DFU_GETSTATUS):

• Set up a write to the device; as above, this will mean sending START, 7 bits of device address [0x2C], 0
(to specify write), hold for ACK. Send the DFU resource ID [0xF0], hold for ACK.

• Then, write the command ID (in this example, 3), bitwise ANDed with 0x80 (to specify this as a read
command) - in this example therefore 0x83 should be sent, and hold for ACK.

• Then, write the total length of the expected reply. In this example, the command has a payload of 5
bytes. The device will also prepend the payload with a status byte. Therefore, the expected reply length
will be 6 bytes [0x06]. Hold for ACK.

• Then, issue a repeated START. Follow this with a read from the device: the repeated START, 7 bits of
device address [0x2C], 1 (to specify read), hold for ACK. The device will clock-stretch until it is ready. It
will then send a status byte (from the enum control_ret_t as described above), followed by a payload
of requested data - in this example, the device will send 5 bytes. ACK each received byte. After the last
expected byte, issue a STOP.

It is heavily advised that those wishing to write a custom host application to drive the DFU process for the
XVF3800 over I2C familiarise themselves with version 1.1 of the Universal Serial Bus Device Class Specifica-
tion for Device Firmware Upgrade.

232323

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

2.9 HID Interface design
The UA variant of the device presents a USB HID interface. The HID interface adds support for USB standard
input and output reports for a telephony device.

2.9.1 HID descriptors

As shown in the trace captured during device enumeration (Fig. 2.14), the HID interface presents itself as
interface 5 in the configuration descriptor. The device enumerates with Endpoint 2 as the HID Input endpoint
which is responsible for sending HID input reports to the host.

Fig. 2.14: HID descriptor during enumeration

The device also supports using the UC Qualification (UCQ) descriptor for HID to inform the host of its capabil-
ities. The UCQ string descriptor returned by the device is “UCQ01001000001000” indicating a speakerphone
device with AEC capability.

Input reports are sent in response to button presses on the device or in response to specific HID output
reports. HID output reports are sent by the host on Endpoint 0. Feature reports are sent and received by the
host on Endpoint 0.

Note: While the HID device descriptor currently describes one feature report, the current HID implementation
doesn’t support parsing feature reports received from the host or responding with a non-zero feature report
to the host.

The HID descriptor structure is transcluded below from sources/modules/fwk_xvf/modules/xvf/src/usb/
config/usb_descriptors.c:

242424

uint8_t const desc_hid_report[] =
{

TUD_HID_REPORT_DESC_MISC_BUTTONS (HID_REPORT_ID(REPORT_ID_MISC_BUTTONS)),
TUD_HID_REPORT_DESC_VOLUME_BUTTONS (HID_REPORT_ID(REPORT_ID_VOLUME_BUTTONS)),
TUD_HID_REPORT_DESC_TEAMS_ASP (HID_REPORT_ID(REPORT_ID_TEAMS_ASP)),
TUD_HID_REPORT_DESC_TEAMS_BUTTON (HID_REPORT_ID(REPORT_ID_TEAMS_BUTTON)),

};

The macros defining the individual reports that are part of the desc_hid_report structure are transcluded
below from sources/modules/fwk_xvf/modules/xvf/src/usb/config/hid_telephony_device.h:

#define TUD_HID_REPORT_DESC_MISC_BUTTONS(...) \
HID_USAGE_PAGE (HID_USAGE_PAGE_TELEPHONY) ,\
HID_USAGE (HID_USAGE_TELEPHONY_PHONE) ,\
HID_COLLECTION (HID_COLLECTION_APPLICATION) ,\
/* Report ID if any */\
__VA_ARGS__ \
HID_USAGE (HID_USAGE_TELEPHONY_HOOKSWITCH) ,\
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX (1) ,\
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (1) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_TELEPHONY_PHONE_MUTE) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_TELEPHONY_FLASH) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_TELEPHONY_REDIAL) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE_PAGE (HID_USAGE_PAGE_BUTTON) ,\
/* This button has been chosen to support the HOLD procedure in Teams */ \
HID_USAGE (HID_USAGE_BUTTON_7) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
/* 3 bit padding */ \
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (3) ,\
HID_INPUT (HID_CONSTANT) ,\
HID_USAGE_PAGE (HID_USAGE_PAGE_TELEPHONY) ,\
HID_USAGE (HID_USAGE_TELEPHONY_KEYPAD) ,\
HID_LOGICAL_MIN (1) ,\
HID_LOGICAL_MAX (12) ,\
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (4) ,\
HID_USAGE_MIN (0xB0) ,\
HID_USAGE_MAX (0xBB) ,\
HID_INPUT (HID_DATA | HID_ARRAY | HID_ABSOLUTE) ,\
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX (1) ,\
/* 4 bit padding */ \
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (4) ,\
HID_INPUT (HID_CONSTANT) ,\
HID_USAGE_PAGE (HID_USAGE_PAGE_LED) ,\
HID_USAGE (HID_USAGE_LED_OFF_HOOK) ,\
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX (1) ,\
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (1) ,\
HID_OUTPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_LED_MUTE) ,\
HID_OUTPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_LED_RING) ,\

(continues on next page)

252525

(continued from previous page)

HID_OUTPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_LED_HOLD) ,\
HID_OUTPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
/* 4 bit padding */ \
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (4) ,\
HID_OUTPUT (HID_CONSTANT) ,\

HID_COLLECTION_END \

#define TUD_HID_REPORT_DESC_VOLUME_BUTTONS(...) \
HID_USAGE_PAGE (HID_USAGE_PAGE_CONSUMER), \
HID_USAGE (HID_USAGE_CONSUMER_CONTROL) ,\
HID_COLLECTION (HID_COLLECTION_APPLICATION) ,\
/* Report ID if any */ \
__VA_ARGS__ \
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX (1) ,\
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (1) ,\
HID_USAGE (HID_USAGE_CONSUMER_VOLUME_INCREMENT) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
HID_USAGE (HID_USAGE_CONSUMER_VOLUME_DECREMENT) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\
/* 6 bit padding */ \
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (6) ,\
HID_INPUT (HID_CONSTANT) ,\

HID_COLLECTION_END \

#define TUD_HID_REPORT_DESC_TEAMS_BUTTON(...) \
HID_USAGE_PAGE_N (0xFF99, 2) ,\
HID_USAGE (0x01) ,\
HID_COLLECTION (HID_COLLECTION_APPLICATION) ,\
/* Report ID if any */ \
__VA_ARGS__ \
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX (1) ,\
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (1) ,\
HID_USAGE (0x04) ,\
HID_INPUT (HID_DATA | HID_VARIABLE | HID_RELATIVE) ,\
/* 7 bit padding */ \
HID_REPORT_COUNT(1) ,\
HID_REPORT_SIZE (7) ,\
HID_INPUT (HID_CONSTANT) ,\

HID_COLLECTION_END \

#define TUD_HID_REPORT_DESC_TEAMS_ASP(...) \
HID_USAGE_PAGE_N (0xFF99, 2) ,\
HID_USAGE (0x03) ,\
HID_COLLECTION (HID_COLLECTION_APPLICATION) ,\
/* Report ID if any */ \
__VA_ARGS__ \
HID_LOGICAL_MIN (0) ,\
HID_LOGICAL_MAX_N (255, 2) ,\
HID_USAGE_MIN (0x00) ,\
HID_USAGE_MAX (0xff) ,\
HID_REPORT_COUNT_N(63, 2) ,\
HID_REPORT_SIZE (8) ,\
HID_FEATURE (HID_DATA | HID_VARIABLE | HID_ABSOLUTE) ,\

HID_COLLECTION_END \

262626

The HID report descriptor translates to three input reports, one output report and one feature report.

Input report ID 1 contains the Hook Switch, Mute, Flash, Redial and the Dialpad buttons.

Note: The current HID implementation doesn’t support Dialpad buttons.

Fig. 2.15: Input report ID 1

Output report ID 1 contains the Off-hook, Mute, Ring and Hold LEDs.

Fig. 2.16: Output report ID 1

Input report ID 2 contains the Volume Increment and Volume Decrement buttons.

Fig. 2.17: Input report ID 2

Input report ID 155 contains a custom button meant to be used as the Teams button.

Note: The Teams button implementation requires the device to respond to feature reports and is currently
unimplemented.

Fig. 2.18: Input report ID 155

272727

2.9.2 HID System Design

The HID interface is implemented in the RTOS. Fig. 2.19 shows the tasks involved in the HID implementation.

Fig. 2.19: HID task diagram

The io_config_servicer detects button presses and notifies a button press event to the hid_in_servicer
through a control command sent on the device_control_gpio_ctx. It also forwards the GPO commands for
LED control to the gpo_servicer.

The gpo_servicer receives GPO LED commands over the device_control_gpio_ctx and programmes the
LEDs.

The hid_in_servicer notifies the hid_in_task of the button press event notifications that it receives from
the io_config_servicer.

The tud_task implements USB Endpoint 0 and calls the callback function tud_hid_set_report_cb on re-
ceiving a HID output report from the host on Endpoint 0. If an LED state needs to change in response
to the output report, tud_hid_set_report_cb initiates it by sending GPO LED control commands to the
io_config_servicer. tud_hid_set_report_cb also notifies the the hid_in_task when specific output re-
ports are received.

The hid_in_task implements the HID Input endpoint. It is a timer based task that wakes up periodically and

282828

sends a HID input report to the host over the HID Input endpoint. The logic for deciding which report to send
is as follows:

• If the previous iteration attempted to send a report but could not, re-attempt sending the report,

• else, if a One Shot Control (OSC) button press sequence is in progress, send the report to complete the
button press sequence,

• else, check if there is an output report notification from tud_hid_set_report_cb that requires sending
an input report in response,

• else, check if there is a button press notification from io_config_servicer and send an input report
corresponding to the pressed button.

To summarise, Fig. 2.20 shows the path through which a GPI button press translates into a HID input report,
and Fig. 2.21 shows the path through which a HID output report that the device receives translates to a GPO
LED program. Additionally, Fig. 2.21 also shows the path through which a HID output report translates to a
HID input report sent from the device to USB.

Fig. 2.20: HID button path

Fig. 2.21: HID LED path

2.9.3 HID Initialisation

During device initialisation, the hid_init function is called to do all HID related initialisations. The HID button
and LED configurations are captured in the hid_button_config_t and hid_led_config_t structures. These
structures contain the mapping from a given HID button to the GPI button on the device and from a given HID
LED to the GPO LED on the device.

The init_hid_button_config function initialises the HID buttons. There is one button on the XK-VOICE-SQ66
development kit (XS1_PORT_4A pin 3) and it’s currently mapped to the HID Mute button as can be seen in the
code transcluded from the init_hid_button_config in sources/modules/fwk_xvf/modules/xvf/src/usb/
control_plane/hid_init.c:

hid_button_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = BUTTON_MUTE_OFFSET,�
↪→.size = 1, .gpi_source = GPI_SOURCE_EVK, .gpi_pin_index = EVK_BUTTON_INDEX, .button_type = BUTTON_
↪→TYPE_OSC, .button_press_precondition=HOOKSWITCH_BUTTON};

hid_button_config[MUTE_BUTTON] = config;

Note the .gpi_source = GPI_SOURCE_EVK and .gpi_pin_index = EVK_BUTTON_INDEX in the code above that
map the button on the XK-VOICE-SQ66 development kit to the HID Mute button.

292929

Note: TheHID implementation supports two types of buttons, One Shot Control (OSC) andRe-Trigger Control
(RTC). The Volume Increment and Volume Decrement buttons are set as RTC while all the other buttons are
configured to be of OSC type. For the OSC buttons, only after the button is released, the device sends an input
report with the button set to 1 followed by another input report with the button set to 0. For the RTC buttons,
in a button press event, an input report with button set to 1 is sent and in a button release event, an input
report with button set to 0 is sent by the device.

The init_hid_led_config function initialises the HID LEDs. The Red LED (XS1_PORT_8C, pin 6) on the XK-
VOICE-SQ66 development kit is mapped to the MUTE_LED and the Green LED (XS1_PORT_8C, pin 7) on the
XK-VOICE-SQ66 development kit is mapped to the OFFHOOK_LED as shown in the code transcluded from
sources/modules/fwk_xvf/modules/xvf/src/usb/control_plane/hid_init.c below:

hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_OFFHOOK_OFFSET, .
↪→gpo_source = GPO_SOURCE_EVK, .gpo_pin_index = EVK_LED_GREEN, .notify_hid_task = true, .trigger_hid_
↪→input_index = HOOKSWITCH_BUTTON, .led_mode=LED_MODE_STEADY};

hid_led_config[OFFHOOK_LED] = config;

Note the .gpo_source = GPO_SOURCE_EVK and .gpo_pin_index = EVK_LED_GREEN in the code above that
map the green LED on the XK-VOICE-SQ66 development kit to the HID OffHook LED.

hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_MUTE_OFFSET, .gpo_
↪→source = GPO_SOURCE_EVK, .gpo_pin_index = EVK_LED_RED, .notify_hid_task = false, .trigger_hid_
↪→input_index = NO_HID_IN_TRIGGER, .led_mode=LED_MODE_STEADY};

hid_led_config[MUTE_LED] = config;

Note the .gpo_source = GPO_SOURCE_EVK and .gpo_pin_index = EVK_LED_RED in the code above that map
the red LED on the XK-VOICE-SQ66 development kit to the HID Mute LED.

The HID buttons/LEDs to GPIO button/LEDs mapping can be changed by modifying the
init_hid_button_config and init_hid_led_config functions. Modifying the HID to GPIO mapping
describes this in detail.

2.9.4 HID Operation

With the HID Buttons and LEDs initialised as described in HID Initialisation, the following use cases are imple-
mented.

2.9.4.1 Mute/Unmute device

When the device is used in an ongoing Teams call, the user pressing the Mute button on the device ends
up with the microphone mute status toggled on the Teams client. Fig. 2.22 depicts this use case. The Mute
button is a One Shot Control button typewhichmeans that a 0 -> 1 in the button state in the HID report triggers
an event and a 1 -> 0 transition in the button state has to happen before the next event. As a result, the Mute
button pressed on the device has the device sending two hid reports, with the Mute button set to 1 and 0
respectively.

303030

Fig. 2.22: Mic mute/unmute

313131

2.9.4.2 Inform call start

At the start of the Teams call, the Teams client sends a HID output report with Off-Hook LED set to 1. The
device responds with an input report with HookSwitch set to 1. Note that this is an example of the device
sending an input report in response to a given HID output report.

Fig. 2.23: Call Start

2.9.4.3 Inform call end

Similar to Inform call start, to inform call end, the host sends an output report with Off-Hook set to 0 which
the device follows up with an input report with HookSwitch set to 0.

323232

Fig. 2.24: Call End

2.10 Expanding available IO for extended HID support
This section describes extending the HID support by expanding the number of GPIOs available on the device
for mapping to HID events. This is done by attaching an IO expander to the XK-VOICE-SQ66 development
kit device. IO Expander ICs provide programmable GPIO and are controlled via an interface. The XVF3800
supports a build configuration (application_xvf3800_ua-io48-lin-io-exp) that adds support for an IO ex-
pander connected to the XK-VOICE-SQ66 development kit. The IO expander used is the PCAL6416A, which is
a GPIO expander providing remote IO support and is controlled over the I2C bus.

The PCAL6416A I2C expander (referred to as just I2C expander in the rest of the document) has the I2C slave
address of 0x21. Pins 0, 1, 2 and 3 on Port 0 are configured as input pins and are used for extra buttons. The
incoming logic levels of these pins is read from the Input port register (00h) of the I2C expander.

The default GPI pin to HID button mapping for the application_xvf3800_ua-io48-lin-io-exp build is sum-
marised in GPI to HID button mapping:

Table 2.3: GPI to HID button mapping

GPI button HID button

I2C expander, register 00h, pin 0 Mute button
I2C expander, register 00h, pin 1 Volume Increment button
I2C expander, register 00h, pin 2 Flash button
I2C expander, register 00h, pin 3 Volume Decrement button
XK-VOICE-SQ66 development kit button, HookSwitch button

This mapping can be seen in the code wihin the #if (IO_EXPANDER_ENABLED) define in the
init_hid_button_config function in sources/modules/fwk_xvf/modules/xvf/src/usb/control_plane/
hid_init.c.

Pin 4 on Port 0 is configured as an output pin and is used for one extra LED. The output logic level of this
pin is written to the Output port register register 02h of the I2C expander. In addition to the PCAL6416A

333333

https://www.nxp.com/docs/en/data-sheet/PCAL6416A.pdf

I2C expander, the I2C expander board that is connected to the XK-VOICE-SQ66 development kit in the
application_xvf3800_ua-io48-lin-io-exp build configuration has another LED, IS31FL3193, that is pro-
grammable via the I2C interface on address 0x68.

The default GPO pin to HID LED mapping for the application_xvf3800_ua-io48-lin-io-exp build is sum-
marised in GPO to HID LED mapping:

Table 2.4: GPO to HID LED mapping

GPO LED HID LED

PCAL6416A I2C expander, register 02h, pin 4 Mute LED
IS31FL3193 LED Ring LED
IS31FL3193 LED Hold LED
XK-VOICE-SQ66 development kit Green LED, Off-Hook LED

This mapping can be seen in the code within the #if (IO_EXPANDER_ENABLED) define in the
init_hid_led_config function in sources/modules/fwk_xvf/modules/xvf/src/usb/control_plane/
hid_init.c.

Note: The Ring and Hold LED are mapped to the same GPO LED but with different flash modes (look at
the led_mode field initialisation in init_hid_led_config). This allows distinguishing between the two events.
The Ring event causes a fast flash while the Hold event causes a slow flash of the LED. The led_mode field
initialisation in the init_hid_led_config configures the flash mode.

2.10.1 System Design

The system design in HID System Design is extended to add the I2C expander tasks. Fig. 2.25 describes the
extended design:

343434

https://www.lumissil.com/assets/pdf/core/IS31FL3193_DS.pdf

Fig. 2.25: HID with IO expander task diagram

The io_expander_task reads button states and programs LEDs on the I2C expander over the I2C master
interface. It is a timer driven task that wakes up periodically, reads the button statuses and notifies button
press events to the hid_in_servicer through control commands sent over the device_control_gpio_ctx.
It also configures the I2C expander LEDs if notified to do so by the io_expander_gpo_servicer task.

The io_expander_gpo_servicer handles GPO commands sent from tud_hid_set_report_cb to program
LEDs in response to HID output reports. It updates the LED state in a structure shared in memory with the
io_expander_task which then configures the LED registers over the I2C interface.

The hid_in_task gets notified by both io_expander_task and io_config_servicer taskswith different com-
mands sent over the same device control context about button press events.

The tud_hid_set_report_cb sends GPO control commands to io_config_servicer and
io_expander_gpo_servicer depending on where the LED that needs to be configured resides.

Fig. 2.26 shows the updated path through which a GPI button press translates into a HID input report.

Fig. 2.26: HID button path with IO expander present

Fig. 2.27 shows the updated path through which a HID output report translates into a GPO LED state change.

353535

Fig. 2.27: HID LED path with IO expander present

Note: The system design can bemodified to support an I2C expander different from the PCAL6416A. Section
Adding a different I2C Expander describes the steps required to do so.

2.10.2 HID Operation with expanded GPIO set

With the I2C expander providing extra buttons and LEDs available tomap to HID events, somemore use cases
are implemented as described below.

2.10.2.1 Handle Incoming Call

Fig. 2.28 shows the device handling an incoming Teams call. The two scenarios shown are the user choosing
to accept or reject the call by pressing the respective buttons on the device.

363636

Fig. 2.28: Handle Incoming Call

2.10.2.2 End Call

Fig. 2.29 shows the user ending an ongoing Teams call by pressing a button on the device. This use case
assumes an ongoing call as its precondition.

373737

Fig. 2.29: End Call

383838

2.10.2.3 Hold/Unhold Call

Fig. 2.30 shows the use case for placing an ongoing Teams call on hold, followed by bringing an on-hold call
off hold. This use case assumes as ongoing call as its precondition.

Fig. 2.30: Hold/Unhold Call

393939

2.10.2.4 Volume Increment/Decrement

Fig. 2.31 shows the user adjusting the device volume by pressing the Volume up or down buttons on the
device.

Fig. 2.31: Adjust Volume

Note: Unlike the other use cases, the volume buttons work outside of a Teams call as well. Pressing the
volume button on the device has the host send SetCur volume control commands on Endpoint 0 for control-
ling the USB output volume. The volumes buttons are Re-Trigger Control (RTC) type which means the host
continues to send the SetCur commands as long as the button is pressed.

404040

3 Working With The Build System

This section will provide details on how the software is constructed. The basic steps and build requirements
can be found in the README.md file which is distributed with the source.

3.1 Configuring CMake and Building the Firmware
The XVF3800 firmware follows a standard approach to building software using CMake. CMake is a cross
platform build tool that supports most targets through configurable toolchains. For more details on CMake
and to learnmore about what the build scripts do, see the documentation at the CMakewebsite. Each release
is built with CMake 3.24.1, but any version greater than 3.21 should work.

The build process for XVF3800 works by creating CMake targets with add_executable() and add_library()
that specify source files and compile flags. Each target is then linked togetherwith target_link_libraries()
forming the final binary. If a library is STATIC then it is compiled into an archive (.a file) using only the compi-
lation flags that are added to that library and the ones it inherits from the libraries it is linked to. If a library is
INTERFACE then it is not compiled into an archive; instead, all the source files and compilation flags are added
to the library or executable it is linked against. The key difference is that when applying compilation flags
to an executable, they will be applied to linked INTERFACE libraries, but not the linked STATIC libraries. The
XVF3800 build process uses both INTERFACE and STATIC libraries, but mostly uses INTERFACE. This means
that adding flags to the executable will usually have the desired effect.

While the above describes a standard CMake build, the toolchain used in the XVF3800 presents one key
difference to the standard approach, which stems from the multi-tile design of the xcore. To enable each
tile to have a separate build configuration, the toolchain constructs the XVF3800 application by merging two
applications together. Multiple “.xe” files are produced for each target, one for each tile and a final one that is
their combination. The CMake function merge_binaries(), which is defined in xmos_macros.cmake, creates
the combined application. Only the merged binary is important; the others can be ignored.

The CMake build process follows two stages. The first is configuration; in this stage the script in the top
level CMakeLists.txt is run, which in turn runs many other CMakeLists.txt and CMake scripts. To run the
configuration a number of parameters need to be passed into CMake. In order to ensure the correct flags are
used, a CMakePresets.json has been included which provides the necessary configuration presets:

• rel_app_xvf3800 for Linux and macOS

• rel_app_xvf3800_windows for Windows

Configuration will generate the Makefiles for building the executable in the directory specified by the preset.
The XVF3800 build process is designed so that one CMake configuration defines all target executables so
managing multiple configurations is not required.

The second stage is the build stage. In this stage, GNUMake (when using Linux, macOS, or Raspberry Pi OS)
or Ninja (when using Windows) is used to compile the sources as specified in CMakeLists.txt. To build a
specific target there is a choice of using one of the build presets specified in CMakePresets.json or to name
the target explicitly. Presets are available for existing targets, but will not exist for any new targets added to
the released package. Below shows the two ways to build the same target:

Build with preset.
cmake --build --preset=intdev-lr48-lin-i2c

Build with explicit target name.
cmake --build build/app_xvf3800 --target application_xvf3800_intdev-lr48-lin-i2c

414141

https://cmake.org/cmake/help/latest/

3.1.1 Adding or Modifying Build Configurations

The source release of XVF3800 defines a number of executables with a different combination of features.
Each of these are defined in a section titled “Build profiles” in the CMakeLists.txt that can be found at
sources/app_xvf3800 in the source release package. The script takes the following steps:

1. Define a variable named BUILD_PROFILES which is a list of the names of all the targets.

2. Iterate through the build profiles, defining a list of definitions, source files and libraries for each one. A set
of patterns are checked for common build flags; this is documented as comments in CMakeLists.txt.

3. Iterate through them again defining the libraries and executables required for the target, including the
extra flags defined in the previous step.

To add a new target, the namemust be included in the BUILD_PROFILES list. There are twopathways available
for configuring a new target. The first is to build the name out of the patterns described in CMakeLists.txt to
configure the desired combination of data rate, microphone geometry, etc. Alternatively, choose a completely
different name and then add the flags that are needed. Care must be taken to ensure a valid combination of
flags and sources are used, start by copying from an existing target. An example of what that may look
like is shown in this example which creates a target named “my-custom-target”. This shows the sections of
CMakeLists.txt which would need to be modified, “…” represents skipped parts of the file.

set(BUILD_PROFILES
"intdev-lr16-lin-spi"
"intdev-lr16-sqr-spi"
...
"my-custom-target" # 1. Add target to the list.

)

...

foreach(PROFILE ${BUILD_PROFILES})

... assorted checks for common patterns ...

2. Add build flags for the target with the new name.
Note that this must be *above* the check for EXTRA_BUILD_INCLUDED.
if(PROFILE STREQUAL "my-custom-target")

add_to_build_opts("INT_DEVICE=1")
add_to_build_opts("appconfLRCLK_NOMINAL_HZ=48000")
add_to_build_opts("appconfSPI_CTRL_ENABLED=0")
add_to_build_opts("appconfI2C_CTRL_ENABLED=1")
add_to_build_opts("appconfUSER_CONFIG_ENABLED=0")
add_to_build_sources(src/default_params/product_defaults.c)
add_to_build_libs(fwk_xvf::bsp_config::xk_voice_sq66_evk)

Set a boolean to indicate if this is an extra build.
set(EXTRA_BUILD_INCLUDED ON)

endif()
endforeach()

This will create a target named application_xvf3800_my-custom-target which can be compiled as ex-
plained in section Configuring CMake and Building the Firmware.

424242

3.1.2 Adding New Files and Compilation Flags to the Build

For simple changes, such as adding individual files and new definitions, the example shown in Adding or
Modifying Build Configurations can easily be extended to add as many files and defines as desired using
add_to_build_sources() and add_to_build_opts(). If something more complex is desired, the best option
will be to define a new INTERFACE library and include it in the build.

The following is a basic example of how to do this. This will not cover anything an experienced CMake user
hasn’t seen before. To create a library namedmy_custom_lib, create a directory named my_custom_lib under
the sources/app_xvf3800 directory with the contents shown:

sources/app_\ |project_lc|
��� CMakeLists.txt
��� my_custom_lib

��� CMakeLists.txt
��� my_custom_source.c
��� my_other_source.c
��� my_custom_source.h

Somewhere near the top of sources/app_xvf3800/CMakeLists.txt add the following line so that CMake
knows the new directory exists:

add_subdirectory(my_custom_lib)

Now add the following to sources/app_xvf3800/my_custom_lib/CMakeLists.txt:

create the target.
add_library(my_custom_lib INTERFACE)

add the sources.
target_sources(my_custom_lib INTERFACE my_custom_source.c my_other_source.c)

add current directory to the search path so the header
file can be used in other places.
target_include_directories(my_custom_lib INTERFACE ${CMAKE_CURRENT_LIST_DIR})

Add arbitrary defines and flags and anything else CMake will allow.
target_compile_definitions(my_custom_lib INTERFACE MY_CUSTOM_FEATURE=1)

Add flag to individual file.
set_source_files_properties(my_other_source.c PROPERTIES COMPILE_OPTIONS "-O0")

The final step is to link the library against the new target. This requires adding the following line to sources/
app_xvf3800/CMakeLists.txt alongside the rest of the configuration for the target that is shown in Adding
or Modifying Build Configurations.

add_to_build_libs(my_custom_lib)

3.2 Building the Host Control App
The host control application is distributed with the release as a binary alongside its associated shared li-
braries. The control app requires awareness of all the control parameters in the software. The control pa-
rameters are defined in YAML files that are located at sources/app_xvf3800/autogeneration/yaml_files/
control_commands in the source release package. When one of these files is modified it is not necessary
to rebuild the whole host control application; only the shared library containing the command map needs to
be updated. This shared library is named command_map.dll for Windows, libcommand_map.so for Linux and
Raspbian, and libcommand_map.dylib for macOS.

434343

Warning: The shf_aec_cmds.yaml and shf_pp_cmds.yaml files are auto-generated and should not be
manually updated.

(lib)command_map.(so/dll/dylib) is compiled from source files that are generated based on the YAML
files. Updating the command map library requires:

• the XVF3800 source release package, including all sub-modules

• CMake with minimum version 3.13

• Python with the required packages.

CMake can be installed from any location using:

sudo apt install -y cmake

The required Python packages can be installed by running the following commands from the directory con-
taining the source release package:

pushd sources
pip3 install -r requirements.txt
popd

To build the command map, run the following commands from the directory containing the source release
package:

pushd sources/modules/fwk_xvf/modules/host_cmd_map
cmake -B build
pushd build
make
popd
popd

The compiled libcommand_map.so should then be copied to the same directory as xvf_host, and it will be
used automatically. The build process is defined by sources/modules/fwk_xvf/modules/host_cmd_map/
CMakeLists.txt. This includes finding the YAML files, generating the source code and finally building the
shared library. The default output folder is sources/build/release/host/product/<OS>, where OS is the
name of the platform used to build the files.

It is possible to generate different libcommand_map files for different products. For example a
user may need multiple files each with different USB product and vendor ID’s. These values
are set in the file sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/product/
usb_param_values.yaml. To have multiple libcommand_map files, do the following:

1. Create a new folder in sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/,
for example new_product

2. Copy theYAMLfiles in sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/
product into the new folder

3. Update the values in the new YAML files

4. Overwrite the CMake variable PRODUCT_DEFAULT_SPECIFIER in sources/modules/fwk_xvf/modules/
host_cmd_map/CMakeLists.txt for example by adding:

set(PRODUCT_DEFAULT_SPECIFIER new_product)

5. Re-build the command map.

The new files will be generated and stored in sources/build/release/host/new_product/<OS>, where OS is
the name of the platform used to build the files.

444444

4 Testing the Software

The XVF3800 is supplied as a verified package built under a CI systemwith extensive regression tests to cover
all key aspects of the functionality. Since it is supplied as source, any usermodificationsmay potentially affect
functionality, and/or timing, of the firmware. Themulti-core and hard real-time XCORE architecture lends itself
very well to runningmultiple tasks robustly; however, there are ultimately cycle andmemory limitations which
are present. The following section describes the various tests that can be performed following source code
modification of the firmware to verify that it is still functional and works as expected.

4.1 Test Capabilities
Each of the following sections details the classes of test that are supported. These generally use the audio
muliplexer (mux) capability of the XVF3800, which allows output sources to choose between a number of
internal (and external input) signals.

The mux and routing capability is extremely flexible and powerful. A single output mux (represented in Fig.
4.1) has the ability to individually choose a specific signal. Each output channel (left or right) on an output
stream has its own mux.

Fig. 4.1: A single output channel’s Mux and Packing/SRC block

The complete signal path of the XVF3800 is shown in Fig. 4.2. There are many useful signals which can be
routed out of the device and the following sections provide some practical examples of using this capability
for testing specific parts of the system.

454545

Fig. 4.2: Complete audio path through the XVF3800

The Setting Up the Hardware section of the XVF3800 User Guide provides additional details on the numerous
signals available via the mux and how to translate the desired audio source into the enumerated value for
passing to the host app.

4.1.1 Loopbacks

When integrating the XVF3800 into the overall system it can be helpful to test signal path from and back to
the host.

Note: All examples below assume a host rate of 48 kHz, which is 3 the voice-DSP rate.

Note: In the rest of this document when using the xvf_host app in the code examples, the command is
written as (sudo) xvf_host(.exe). The .exe extension is only required on Windows. The sudo command
is only required on Linux, macOS and Raspberry Pi OS if the user does not have the necessary permissions
to access the device. On these platforms it may be necessary to use ./ before the command if the directory

464646

https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html

containing the xvf_host app is not in the PATH.

This ‘round trip’ test is useful for validating the host->device and device->host paths at the same time. Nor-
mally, an audio stream provides the far-end reference, the microphones provide the near-end and an audio
output stream provides the processed microphone output.

In this example, the mux will be modified so that the far-end reference is looped back to the audio output
stream. This can be useful for evaluating propagation delays and/or volume scaling within the complete
system. The first command ensures that the native signal is used (instead of being down-sampled and then
up-sampled) and the second command routes the raw far-end DSP signal to the output mux.

Note: Any far-end DSP used will be included in this signal path and so it can also be used to check far-end
DSP operation. See Modifying the Software for an example of adding custom far-end DSP.

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 0 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_ALL 10 0 10 2 10 4 10 1 10 3 10 5

Another useful feature is to be able to capture the rawmicrophone signals and listen to themwithout passing
them through the voice-DSP. This can be helpful when validating custom hardware to check that the micro-
phones are properly connected and also evaluate the relative gain between them. This is useful for debugging
when developing custom enclosures.

The first command ensures that up-sampling is used (if the host interface is different from the native micro-
phone rate of 16 kHz) and the subsequent commands route the raw microphone signals to the output mux.
No microphone gain will be applied. The microphone front-end is tuned to support the acoustic overload
point of the microphones without clipping and hence sounds quiet for normal listening without gain.

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 1 1
Set the left output to raw mic 0 and the right output to raw mic 1
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 1
Set the left output to raw mic 2 and the right output to raw mic 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 1 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 1 3

The amplified microphone signal (again without voice-DSP) is also available at the mux. This is helpful for
tuning the system for the voice-DSP which is optimised for a certain microphone level.

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 1 1
Set the left output to amplified mic 0 and the right output to amplified mic 1
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 3 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 3 1
Set the left output to amplified mic 2 and the right output to amplified mic 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 3 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 3 3

The AEC residuals are also available at the mux. These signals are the output directly from the AEC and can
be helpful for tuning other echo suppression functions such as non-linear echo and echo suppression.

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 1 1
Set the left output to aec residuals of mic 0 and the right output to aec residuals of
mic 1
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 7 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 1
Set the left output to aec residuals of mic 2 and the right output to aec residuals of
mic 3
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 7 2
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 7 3

474747

Finally, it may useful to test the background noise of a system. The mux can also provide zero samples. The
below commands show how to do this.

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 1 1
Set the left and right outputs to silence
(sudo) xvf_host(.exe) AUDIO_MGR_OP_L 0 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_R 0 0

For instruction on capturing more than two signals at a time, please see the Signal Capture section.

4.1.2 Signal Capture

It can be very useful to capture the entire voice-DSP pipeline input including the unprocessed microphones
and the far-end reference. This allows a test vector for a particular acoustic environment to be captured
which can then be inspected or even processed offline, such as being run through a simulated or hardware
voice-DSP processing system. Processing the same vector offline allows repeatable testing while tuning
parameters for example, or even providing a test vector when requesting technical support. See the Signal
Injection and Signal Injection and Capture Simultaneously sections for how to provide a test vector and re-use
it in the system.

Note: All signal injection/capture features require the host audio rate to be running at 3 the voice-DSP rate.
The reason for this is that the voice-DSP requires multiple channels (microphones and reference signals) and
the output is normally 2 channels. The multiple channels of the voice-DSP signals are packed into a stereo
signal at one third the rate. Scripts are provided for packing/unpacking the signals.

The signal injection/capture features support different bit depths depending on the firmware configuration
and the host platform. Over I2S the XVF3800-INT device requires a bit depth of 32 bits. Over USB the
XVF3800-UA device supports 16, 24 and 32 bit depths, but there are some limitations due to the host OS
platforms, as described in the table below.

Note: The USB bit depth does not affect the precision of internal computations, and will not affect the
algorithm performance.

Table 4.1: USB bit depths supported by host platform

Host platform Supported bit depths

Linux 16, 24 and 32

macOS 16 and 24

Windows 16 and 24

32 bit audio devices are not supported by Windows and macOS operating systems. However, 24 bit audio
provides 144 dB of dynamic range, which is more than enough for professional audio applications. 16 bit
audio provides 96 dB of dynamic range, which should be adequate for most applications.

Note: Whilst 32 bit packed recordings can only be made on Linux, the resulting wav files can be unpacked

484848

and processed on any operating system.

Windowsmay experience issues when changing the bit depth between 16 and 24 bits. If an issue occurs, the
audio device can be reinstalled with the following steps:

1. Connect the XK-VOICE-SQ66 development kit to the host computer using a USB cable, configured at
the desired sample rate.

2. OpenDeviceManager and find the “XVF3800 Voice Processor” under Sound, video and game controllers.

3. Right-click on the device and select Uninstall device. Click Uninstall on the warning box that appears.

4. Right-click anywhere in the list of devices and select Scan for hardware changes.

5. The XVF3800 should now reinstall and enumerate at the correct bit depth.

The Python scripts in this section make use of the script xvf_tools.pywhich is located in the sources folder
of the XVF3800 source release package. This program allows the user to call a script from the sources folder,
bymapping the desired script name to the correct location in the source release package. It is used as follows:

python3 xvf_tools.py <script_name without .py extension> [command arguments]

and the help menu of the script to run can be printed with:

python3 xvf_tools.py <script_name without .py extension> --command-help

In the remainder of this section the script to be used will be referred to as a command.

Formaking packed recordings on USB devices, xvf_tools.py provides the command packed_recorder. This
command requires the installation of the Python packages listed in requirements_build.txt. If using a Linux
platform, the package sounddevice requires the installation of the libportaudio2 library.

To make a recording while playing back a 48 kHz reference signal, use the command:

python3 xvf_tools.py packed_recorder <host_app> --playback_file <my_48kHz_stereo_reference_signal.
↪→wav> --packed_output

where <host_app> is the path to the xvf_host file, this can be an absolute path or a path relative to the current
working directory.

To make a 10 second recording without playback, specify a recording length instead of a playback file:

python3 xvf_tools.py packed_recorder <host_app> --recording_length 10 --packed_output

By default the output is saved to packed_rec.wav and unpacked_rec.wav. The paths can be changed using
the --packed_output_file and --unpacked_output_file command line arguments. The following 6 chan-
nels are output:

• Channel 1 is the left far-end reference, with reference gain and system delay applied

• Channel 2 is the processed output (autoselect beam)

• Channel 3 is MIC 0, with mic gain and system delay applied

• Channel 4 is MIC 1, with mic gain and system delay applied

• Channel 5 is MIC 2, with mic gain and system delay applied

• Channel 6 is MIC 3, with mic gain and system delay applied

packed_rec.wav contains the 6 channels interleaved in a stereo 48 kHz stream, with packing markers in the
LSB. unpacked_rec.wav splits this into a 16 kHz 6 channel signal.

An image of an example 6 channel unpacked captured wav can be seen in Fig. 4.3. The far-end reference
can be seen playing and each of the microphones (0..3) have been tapped in sequence to show a large noise
source being captured.

494949

Fig. 4.3: Unpacked output from the XVF3800

To change the channels that are packed, use the --op_all flag. The available categories and sources are as
detailed in the Output Selection section of the XVF3800 User Guide. For additional usage instructions, please
run python3 xvf_tools.py packed_recorder --command-help.

If not using the provided python script or using an I2S device, the following commands can be used to cap-
ture the mono far-end signal (with delay and gain if enabled), the four amplified (and optionally delayed) raw
microphone signals and the processed output (autoselect beam in this case):

Enable packed output
(sudo) xvf_host(.exe) AUDIO_MGR_OP_PACKED 1 1
Set the 48 kHz stereo to output all 5 channels of input to the voice-DSP
(sudo) xvf_host(.exe) AUDIO_MGR_OP_ALL 12 0 3 0 3 2 6 3 3 1 3 3

Next, the output signal may be recorded and unpacked to a channel wav file. The example below uses the
Linux arecord utility to capture the signal of a XVF3800-INT device connected to a Raspberry Pi over I2S. It
may be beneficial to invoke a background aplay instance to provide far-end audio before this is run:

Play the desired far-end reference signal in the background
aplay <my_48kHz_stereo_far_end_reference_signal.wav> &
Run a stereo audio capture at 48 kHz with 32b bit depth for 60 sec
arecord -r 48000 -f S32_LE -c 2 -d 60 <capture_48k_2ch.wav>
Unpack the 48 kHz stereo packed file into a 6ch 16 kHz unpacked wav using 32b sample depth
python3 xvf_tools.py packing unpack <capture_48k_2ch.wav> <unpacked_16k_6ch.wav> -b 32

505050

https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html

The file <capture_48k_2ch.wav> has been recorded at 48 kHz stereo and at the full bit width of I2S of 32b
which includes the packing markers in the LSB. The output from the unpack operation is a 16 kHz, 6 channel
signal with the channel designation as in the previous example.

Since the packer needs chunks of three samples, it is likely that the first and last frame are not complete; this
may cause the following warning which means partial frames at the start and finish have been discarded.
Discarding partial frames is important to ensure the remaining unpacked samples are correctly time aligned:

Warning: Bad indices: [[113999 0]]

The packing command may produce the following error message with no output file generated:

Error: Over 50 markers incorrectly spaced so giving up.

It means that:

• The audio mux in the XVF3800 has not been configured to properly produce a packed output,

• The sample resolution is incorrect,

• The capture process has been corrupted (perhaps by volume scaling), or

• The --skip-leading-zeros option was not included on the command line (USB build configurations
only).

Re-check the mux configuration commands, the host system controls and the options on the packing.py
command.

Note: Signal packing uses least-significant bit markers to encode the channel packing sequence. These are
then stripped so do not contribute to noise. For 32b audio, the least-significant bit is over 190 dB down from
full scale and the loss of precision is insignificant. However, it is critical to ensure that any volume controls
are disabled (volume = 100%) to prevent the packed audio frame being corrupted.

4.1.3 Signal Injection

The XVF3800 supports a mode where the input to DSP pipeline can be fed directly from a 5-channel test
vector whichmay either be pre-generated or even pre-captured by recording directly from an XVF3800 device
- see Signal Capture. This can be helpful when re-creating a previously seen scenario or when tuning the
system via the control interface in the presence of a fixed and repeatable test vector.

Note: TheXVF3800 contains a lot of state such as pre-learnedAEC coefficients. When re-running a particular
test vector it is important to ensure the device is reset, either by individually resetting the various blocks or
alternatively by resetting the entire firmware using (sudo) xvf_host(.exe) TEST_CORE_BURN 0, which will
force a reboot of the firmware from the host application.

The vector injectionmodeworks by packing 6-channel 16 kHz input data (fourmicrophones, amono reference
and an unused channel) into a 48 kHz stereo input signal. The device then unpacks the 48 kHz wav file into
a 16 kHz multi-channel input and feeds it directly into the front end of the voice-DSP pipeline.

Note: It is essential to use a 48 kHz host audio rate for this process to work since the higher rate is needed
to support channel packing.

The required format of the 6 channel test vector should be as follows:

• Channel 1 is the far-end reference signal

• Channel 2 is ignored

515151

• Channel 3 is the amplified raw MIC 0

• Channel 4 is the amplified raw MIC 1

• Channel 5 is the amplified raw MIC 2

• Channel 6 is the amplified raw MIC 3

Suitable test vectors may be obtained directly from the XVF3800 using the Signal Capture procedure.

If using packed_recorder, the packed_rec.wav can be used as a packed input. This can then be replayed
using:

python3 xvf_tools.py packed_recorder <host_app> --playback_file my_packed_vector.wav --packed_input

The output audio location can be set using the --unpacked_output_file command line argument.

Otherwise, to turn the six channel 16 kHz test vector into a 48 kHz packed file call:

Pack the 6ch 16 kHz unpacked wav into a 48 kHz stereo file using 32b sample depth
python3 xvf_tools.py packing pack <my_6ch_vector.wav> <my_packed_vector.wav> -b 32

Then, with the firmware freshly booted and running, configure the input to accept a packed signal. It is impor-
tant to consider gain and system delay when playing a packed input signal. The commands below indicate
how to remove those completely. When packed input is enabled, the fixed 6 dB attenuation is skipped on the
assumption that the packed reference signal was captured from the device and has already been attenuated.
If this is not the case then set AUDIO_MGR_REF_GAIN to 0.5 to emulate this behaviour.

Configure I2S or USB to unpack a 48 kHz packed input
(sudo) xvf_host(.exe) I2S_INPUT_PACKED 1
The next steps assume the input signal was captured after gain and system delay was applied.
These commands will prevent additional gain and system delay being applied to the test signal.
(sudo) xvf_host(.exe) AUDIO_MGR_MIC_GAIN 1.0
(sudo) xvf_host(.exe) AUDIO_MGR_REF_GAIN 1.0
(sudo) xvf_host(.exe) AUDIO_MGR_SYS_DELAY 0

With the firmware ready to run a packed input, now is a good time to perform any configuration via the control
utility such as tweaking tuning parameters.

Finally, play the input vector. In this case a background arecord session has also been run to capture the
output from the XVF3800 simultaneously.

Run a stereo audio capture at 48 kHz with 32b bit depth in the background
arecord -r 48000 -f S32_LE -c 2 <test_output.wav> &
Play the pre-packed test vector signal and terminate the recording when done
aplay <my_packed_vector.wav> && killall arecord

Listen to and inspect the output file, which contains the processed output from the input test vector.

4.1.4 Signal Injection and Capture Simultaneously

Enablingmulti-channel input and output at the same time allows a full hardware-in-the-loop (HIL) systemwith
a high degree of repeatability and visibility, as represented in Fig. 4.4. Not only can the same test vector be
repeatably run through the system but multiple outputsmay be observed simultaneously from different parts
of the system including:

• The raw inputs to the voice-DSP to ensure correct transport and injection/capture.

• The delayed microphone/far-end inputs to check that the input to the AEC is causal (the far-end refer-
ence must arrive before the acoustically coupled echo).

• The amplified microphones to ensure that the microphone amplifier gain has been tuned correctly.

• Multiple beam outputs to help determine which of the beams performs best in the desired application.

525252

• The AEC residual signals to determine how much to tune the post-processing stages to trade off echo
cancellation versus double-talk performance.

• Processed far-end DSP to ensure that the far-end DSP is performing as expected.

• …and many more.

Fig. 4.4: Representation of a fully HIL workflow with the XVF3800

If using packed_recorder, simultaneous packed input and output can be used by calling:

python3 xvf_tools.py packed_recorder <host_app> --playback_file <my_packed_vector.wav> --packed_
↪→input --packed_output

The --op_all flag may be used to customise the packed channels.

Otherwise, an example of simultaneously injecting 5 channels of near and far-end signals whilst capturing the
same 5 channels (plus the auto-select processed output) is shown below. For further details on the individual
steps shown below, please consult the Signal Capture and Signal Injection sections above and be aware that
resetting the firmware before each run is essential for consistency. See here for instructions on how to reset
the firmware from the host app.

Enable packed output
(sudo) xvf_host(.exe) AUDIO_MGR_OP_PACKED 1 1
Set the 48 kHz stereo to output all 5 channels of input to the voice-DSP
(sudo) xvf_host(.exe) AUDIO_MGR_OP_ALL 5 0 3 0 3 2 6 3 3 1 3 3
Configure I2S or USB to unpack a 48 kHz packed input
(sudo) xvf_host(.exe) I2S_INPUT_PACKED 1
The next steps assume the input signal was captured after gain and system delay was applied.
These commands will prevent additional gain and system delay being applied to the test signal.
(sudo) xvf_host(.exe) AUDIO_MGR_MIC_GAIN 1.0
(sudo) xvf_host(.exe) AUDIO_MGR_REF_GAIN 1.0
(sudo) xvf_host(.exe) AUDIO_MGR_SYS_DELAY 0

Pack the 6ch 16 kHz unpacked wav into a 48 kHz stereo file using 32b sample depth
python3 xvf_tools.py packing pack <my_6ch_vector.wav> <my_packed_vector.wav> -b 32

Play the test vector in the background
(continues on next page)

535353

(continued from previous page)

aplay <my_packed_vector.wav> &
Run a stereo audio capture at 48 kHz with 32b bit depth for 60 sec and stop the
test_vector playback when done
arecord -r 48000 -f S32_LE -c 2 -d 60 <packed_capture.wav> && killall aplay

Unpack the 48 kHz stereo packed file into a 6ch 16 kHz unpacked wav using 32b
sample depth
python3 xvf_tools.py packing unpack <packed_capture.wav> <unpacked_capture.wav> -b 32

4.2 Measuring Resources
In any embedded system, resources are limited and the XVF3800 is no exception. The main resources of
concern are memory and processing cycles when adding additional source code. The methods for ensuring
the application remains within the available resources are described in the following subsections.

4.2.1 Measuring Available Cycles

Adding extra control code for initialising hardware, in general, has no effect on the real-time portion of the
firmware thanks to the hardware scheduler and multiple logical cores of the XCORE. However, limited pro-
cessing cycles are available to add user-DSP. Exceeding these limits will cause audio glitching or in some
cases cause firmware instability.

Tools are provided, via the command interface, to allow quantifying of the number of cycles available and
exercise the worst case timing case within the firmware. Exercising the worst case timing in the firmware
and ensuring a non-zero number of processing cycles are still available is the best way to gain confidence
that the code will always meet timing when deployed in the field under any operating conditions.

A number of control commands are available to assist with verifying that timing has not been violated. These
commands report idle time, which is the amount of free time available within the audio loops. As this number
approaches zero there is an increasing risk of violating timing. A basic command help string is available by
executing (sudo) xvf_host(.exe) --list-commands. A more detailed description of the function of these
commands can be seen below.

Note: The TEST_CORE_BURN command is hidden from --list-commands since it is used only in test situa-
tions.

I2S idle times relate to far-end user DSP integration and audio manager idle times relate to output DSP in-
tegration. However, it is recommended to monitor both idle times since there is some interaction between
these two tasks.

The commands in Table 4.2 provide information and control mechanisms relevant to achieving the necessary
timing constraints.

545454

Table 4.2: Control commands relevant to measuring timing

Function Comment

I2S_CURRENT_IDLE_TIME This command provides the current idle time of the last I2S loop executed
in system timer ticks of 10 ns. This reports the real-time value and should
only be used as an indication of how much the processing varies. Note
that the amount of idle time heavily depends on the frequency of the I2S
interface. For example, a 16 kHz I2S interface will offer significantly more
idle time than the 48 kHz setting due to having fewer samples to process.

I2S_MIN_IDLE_TIME This command provides the minimum idle time of all I2S loops executed
in system timer ticks of 10 ns. This reports the worst case value since
boot or since the idle timemetric was last reset. It is the value that should
be used to close timing when adding DSP.

I2S_RESET_MIN_IDLE_TIME Use this control to reset the minimum idle time.
AUDIO_MGR_CURRENT
_IDLE_TIME

This command provides the current idle time of the last audio manager
loop executed in system timer ticks of 10 ns. This reports the real-time
value and should only be used as an indication of howmuch the process-
ing varies.

AUDIO_MGR_MIN
_IDLE_TIME

This command provides the minimum idle time of all audio manager
loops executed in system timer ticks of 10 ns. This reports the worst case
value since the idle time metric was last reset. It is the value that should
be used to close timing when adding DSP.

AUDIO_MGR_RESET_MIN
_IDLE_TIME

Use this control to reset the minimum idle time.

SHF_BYPASS The bypass command causes the far-field voice pipeline to be bypassed
and the raw (but amplified)microphone signals to be passed to the output.
In addition, it adds poll loops to burn processor cycles up to themaximum
available for the voice pipeline section of the design. This means it exer-
cises a tougher timing case compared with running the normal voice-DSP
operation and so should be used when ascertaining the worst-case.

TEST_CORE_BURN This hidden command places the firmware in ‘burn’ mode. Note this re-
sets the firmware and consequently subsequent commands may be ig-
nored while the firmware initialises. Because it performs a reset, all previ-
ously written parameters will be lost and all internal state will be set to the
defaults that would be expected following power-on-reset. For this rea-
son, it is recommended that this command be executed at the beginning
of the timing-closure session.

Note: The TEST_CORE_BURN command ensures all idle cycles in other parts of the XVF3800 are used up
by creating polling loops. This significantly increases core power consumption of the XVF3800 when set to
1 (enable core burn). Expect increased power consumption of up to double the normal operating value when
this test mode is used.

A typical sequence of commands to ascertain worst-case timing would be:

Switch on burn mode and reboot the device. Wait at least 2 seconds before the next
command to allow reboot time.
(sudo) xvf_host(.exe) TEST_CORE_BURN 1
sleep(2)
Bypass the voice-DSP and exercise worst case timing of the voice pipeline
(sudo) xvf_host(.exe) SHF_BYPASS 1

Allow the application to run for a while. Try restarting I2S a few times.
for i in {0..10}; do arecord -r 48000 -f S32_LE -c 2 -d 1 /dev/null; sleep 0.5; done

(continues on next page)

555555

(continued from previous page)

Read the I2S minimum idle time (important if doing far-end DSP)
(sudo) xvf_host(.exe) I2S_MIN_IDLE_TIME
Read the audio manager minimum idle time (important if doing post voice-pipeline DSP)
(sudo) xvf_host(.exe) AUDIO_MGR_MIN_IDLE_TIME

Enable the voice-DSP and reset the minimum idle times
(sudo) xvf_host(.exe) SHF_BYPASS 0
(sudo) xvf_host(.exe) I2S_RESET_MIN_IDLE_TIME 1
(sudo) xvf_host(.exe) AUDIO_MGR_RESET_MIN_IDLE_TIME 1

Allow the application to run for a while. Try restarting I2S a few times.
for i in {0..10}; do arecord -r 48000 -f S32_LE -c 2 -d 1 /dev/null; sleep 0.5; done

Read the I2S minimum idle time (important if doing far-end DSP)
(sudo) xvf_host(.exe) I2S_MIN_IDLE_TIME
Read the audio manager minimum idle time (important if doing post voice-pipeline DSP)
(sudo) xvf_host(.exe) AUDIO_MGR_MIN_IDLE_TIME

Always use the smallest minimum idle times noted in the previous steps as a guide to how many cycles
remain to ensure that the worst case has been covered. Always start and stop I2S a few times (10 times
is enough), if possible, as this will further exercise the timing paths. If at any point the number of available
cycles becomes close to zero, then the code exceeds the time slot available, and it will be necessary to either
optimise the DSP code to meet timing or reduce the amount of processing required.

4.2.2 Measuring Available Memory

When building the software, the makefile settings are configured to produce amemory report which is printed
at the end of the build. This report is generated by the compiler to account for all statically allocated memory
used by the firmware. The firmware runs on two XCORE tiles, each with its own on-chip memory and con-
sequently its own report. The majority of user configuration when modifying the software, such as adding
hardware configuration code and user-DSP, will take place on tile[1] and so this is generally the number that
will normally decrease with added functionality.

Warning: The compiler memory report includes the memory set aside for the RTOS heap and stacks.
The compiler cannot, however, track dynamic memory allocations from these set aside areas. Changes
to an RTOS task that increases its heap or stack usage, including creating new tasks, adding parameters or
local variables to a function called from an RTOS task, or operations on RTOS primitives such semaphores,
queues, etc., may result in running out of memory. The specific effect of running out of memory will vary.
Possible effects include hardware exceptions or the firmware hanging.

The appconfTOTAL_HEAP_SIZE symbols in app_conf.h determine the amount ofmemory set aside on each
tile for the RTOS heap and stacks.

Note: The compiler builds the entire application twice due to the need to build the FreeRTOS kernel twice,
once for each tile. This means that the compiler generates twomemory constraints reports. In all cases, use
the highest number number of the two reports.

The report shown below (with irrelevant lines deleted for clarity) shows a typical report for the
application_xvf3800_intdev-lr48-lin-i2c firmware. Note that the precise memory usage varies con-
siderably depending on the actual build, firmware version and the code that may have been added:

565656

Constraint check for tile[0]:
Memory available: 524288, used: 6980 . OKAY
(Stack: 356, Code: 4064, Data: 2560)
Constraints checks PASSED.
Constraint check for tile[0]:
Memory available: 524288, used: 491112 . OKAY
(Stack: 10068, Code: 358940, Data: 122104)
Constraints checks PASSED WITH CAVEATS.
Constraint check for tile[1]:
Memory available: 524288, used: 487908 . OKAY
(Stack: 8340, Code: 397580, Data: 81988)
Constraints checks PASSED WITH CAVEATS.
Constraint check for tile[1]:
Memory available: 524288, used: 6324 . OKAY
(Stack: 356, Code: 3520, Data: 2448)
Constraints checks PASSED

Ignoring the lower numbers reported, in this case Tile[0] is using 491112 of 524288 bytes available and Tile[1]
is using 487908 of 524288 bytes available. Therefore the free memory available is:

• Tile[0]: 524288 - 491112 = 33176 Bytes

• Tile[1]: 524288 - 487908 = 36380 Bytes

If usage exceeds the availablememory the link stage of compilation will fail and the compiler will issue a clear
error. In this case, reduce the memory usage.

575757

5 Modifying the Software

5.1 Adding a Control Command
The XVF3800 software allows for easily extensible control. Each time the firmware is built, the command
definition YAML files are parsed and the firmware hooks and enums are updated automatically. SeeWorking
With The Build System for how to build the XVF3800 firmware.

The command definition files can be found in sources/app_xvf3800/autogeneration/yaml_files/
Control_commands. There is a file for each control servicer within the firmware. The control servicers are:

• aec_cmds.yaml - This is where high level voice-DSP parameters are accessed as well as AEC informa-
tion. The voice-DSP is not modifiable other than the published API. It is not expected that this file will
need to be modified.

• application_cmds.yaml - This is where build information is accessed and some test features. The
application servicer does not directly connect to any peripherals, however commands requiring internal
storage or calling a user API may be added here.

• audio_cmds.yaml - This is where high-level aspects of the audio framework including SRC, packing, I2S
and user-DSP are accessed. If extending the DSP capabilities of the design it is likely that commands
may be added here, for example to control user-DSP. See Adding CustomDigital Signal Processing. Note
that two tasks are controlled by this servicer (Audio Manager and I2S) with the I2S task being accessed
via a shared-memory structure.

• dfu_cmds.yaml - This is where DFU messages are handled and processed. It is not expected that this
file will need to be modified. This servicer is only used in the INT device.

• hid_task_cmds.yaml - This is where internal messages to send HID IN events are handled. It is not
expected that this file will need to be modified. This servicer is only used in the UA device.

• io_config_cmds.yaml - This is where GPIO parameters are accessed. Commands are already provided
formanipulatingmany aspects of these pins, although any custom requirements involving GPIO access
may be added here.

• io_expander_cmds.yaml - This is where internal messages to control the IO expander GPO’s are han-
dled. It is not expected that this file will need to be modified. This servicer is only used in the builds with
the IO expander enabled.

• pll_cmds.yaml - This is where PLL information is accessed. Generation of the MCLK signal uses the
PLL.

• pp_cmds.yaml - This is where high level voice-DSP parameters are accessed as well as post processing
information. The voice-DSP is not modifiable other than the published API. It is not expected that this
file will need to be modified.

• shf_aec_cmds.yaml - This is where low-level voice-DSP parameters are accessed. The voice-DSP is not
modifiable other than the published API. This file is auto-generated and should not be modified.

• shf_pp_cmds.yaml - This is where low-level voice-DSP parameters are accessed. The voice-DSP is not
modifiable other than the published API. This file is auto-generated and should not be modified.

• usb_buffer_cmds.yaml - This is where USB information and parameters are accessed. It only applies
to UA configurations.

585858

5.1.1 Adding a new control command

This process is illustrated by adding a simple read/write parameter via application_cmds.yaml. As an
example of how to extend this to controlling IO, see the FAR_END_DSP_ENABLE parameter contained in
audio_cmds.yaml.

First, add a command to the YAML file. The valid types that can be used for command parameters are as
follows:

TYPE_INT32
TYPE_UINT32
TYPE_INT16
TYPE_UINT16
TYPE_INT8
TYPE_UINT8
TYPE_CHAR
TYPE_FLOAT
TYPE_RADIANS

Any number of these parameters may be defined in a control command, up to the total maximum command
size of 64 bytes. Commands attributable to the pp_cmds servicer are exceptions; these are limited to 20
bytes.

The following access permissions may be assigned to parameters:

CMD_READ_ONLY
CMD_WRITE_ONLY
CMD_READ_WRITE

For write commands, a range must be provided for each value. If no value range is specified for such com-
mands, the firmware code will fail to compile. The ranges must be listed in the value_ranges array and must
follow one of the two formats:

1. list of intervals - each interval is listed using the syntax [A .. B]

• the syntax is the same for both integers and float values

• multiple intervals can be specified, for example [0 .. 5, 10 .. 15]

• all the intervals must be closed, meaning that they include all the limit points

• if only one value is valid, the range can be specified as [E .. E]

2. any value is valid - this is declared using the word any and the range depends on the maximum and
minimum values of the specific type. For example, TYPE_UINT8 can have values from 0 to 255.

An example of a command with two arguments, where the first requires a list of intervals and the second
accepts any value, is shown below:

value_ranges:
- value0: [0 .. 5, 10 .. 15]
- value1: any

Note: The host control application performs range checking before sending the control command to the
device and it returns an error if any argument value is out of range.

An example of adding a command to application_cmds.yaml is shown below. The position in the list at
which the command is added is not important so long as it is in the appropriate section:

- cmd: MY_INTERNAL_REGISTER
number_of_values: 1
type: CMD_READ_WRITE

(continues on next page)

595959

(continued from previous page)

help: A simple example of setting / getting a variable in the firmware
value_type: TYPE_UINT32

Next, in the appropriate servicer C file, add the handlers for the command. In this case we are adding the
following code to sources/modules/fwk_xvf/modules/xvf/src/control_plane/application_servicer.c:

// Global variable to get or set
uint32_t my_var = 0;

In the function control_ret_t application_servicer_read_cmd() add the following case. Note the pre-pending of
the resource ID to the command name:

case APPLICATION_SERVICER_RESID_MY_INTERNAL_REGISTER:
memcpy(payload, &my_var, sizeof(my_var));
break;

In the function control_ret_t application_servicer_write_cmd() add the following case:

case APPLICATION_SERVICER_RESID_MY_INTERNAL_REGISTER:
memcpy(&my_var, payload, sizeof(my_var));
break;

Next, build the firmware and host app; see Working With The Build System for instructions on this. Test the
new command:

(sudo) xvf_host(.exe) MY_INTERNAL_REGISTER
0
(sudo) xvf_host(.exe) MY_INTERNAL_REGISTER 1066
(sudo) xvf_host(.exe) MY_INTERNAL_REGISTER
1066

5.2 Adding Custom Digital Signal Processing
The XVF3800 supports the addition of custom DSP at three locations in the signal path. These points are:

• Far-end reference signal DSP within the DAC

• Far-end reference signal DSP within the XVF3800 firmware

• Post-processing of the voice signal within the XVF3800 firmware after it exits the voice pipeline.

5.2.1 I2S Usage

Understanding the two options for far-end reference signal DSP requires knowledge of how the XVF3800
uses the I2S signals. The purpose of each signal depends on the device configuration as shown in Table 5.1.

Table 5.1: I2S usage

Signal Integrated Device (INT) USB Accessory (UA)

I2S_DATA0 Input from host Output to DAC
I2S_DATA1 Output to host Optional input from DAC
I2S_DATA2 Optional output to DAC Not used

606060

5.2.2 Custom DSP Within the DAC

SomeDigital to Analogue Converters include optional DSPwith the ability to transmit the altered signal before
conversion via I2S and after conversion to an amplifier or loudspeaker. For designs using such a DAC and
receiving the reference audio via USB, the XVF3800UA configuration includes an option to accept a processed
far-end reference signal over an I2S interface.

To enable this option, use the host control application to set the I2S_DAC_DSP_ENABLE control to 1 or modify
the default value of the I2S_DAC_DSP_ENABLE control to 1. Information about using the host control ap-
plication appears in the Using the Host Application section of the XVF3800 User Guide. Information about
modifying the default value of a control parameter appears in the Changing Default Parameter Values section
of the XVF3800 User Guide.

5.2.3 Custom DSP Within the XVF3800 Firmware

5.2.3.1 Customer Far-End Reference DSP

CustomDSP between the far-end (reference) input and the start of the far-field voice pipeline allows additional
processing of the far-end signal, for instance correcting speaker/amplifier imperfections to ensure optimum
AEC performance. The voice pipeline, and optionally the DAC via I2S, receives a copy of the processed far-end
signal.

Fig. 5.1 shows the audio paths for the far-end DSP as well as where up/down-sampling may occur.

616161

https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html
https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html

Fig. 5.1: Audio paths for far-end DSP and where up/down-sampling may occur in the XVF3800.

5.2.3.2 Custom Voice Post-Processing DSP

While the standard voice processing offers a wide range of typically needed functions such as AGC, high-pass
filtering and automatic beam selection, some usersmaywish to augment these functions. CustomDSP post-
processing occurs immediately after the processed microphone signal leaves the voice pipeline and before
the XVF3800 sends it to the host.

5.2.3.3 Common Aspects to Custom DSP Within the XVF3800 Firmware

Both DSP hooks provide an API in which processing of a single sample occurs for each function call. This
approach reduces latency (block based algorithms introduce aminimum latency of the block size) and simpli-
fies integration into themain firmware framework. The lib_xcore_math library provides various DSP functions
including FIR filters and Biquad IIR filters. An example of the latter is given further on.

Note: Integration of user DSP consumes processing cycles from the processor. These are limited according
to the build and host sample rates used. Please see Meeting timing for details.

TheAPI for the firmware-based customDSP functions is transcluded below from sources/modules/fwk_xvf/
modules/xvf/src/user_interfaces/user_dsp.h:

626262

// Copyright 2022-2023 XMOS LIMITED.
// This Software is subject to the terms of the XCORE VocalFusion Licence.

#ifndef __USER_DSP_H_
#define __USER_DSP_H_

#include "aec_cmds.h"
#include "shf_wrapper.h"
#include <stdint.h>

/// There is a timing limit on the time spent in these functions. Please use the
/// minimum idle time control commands in conjunction with the TEST_CORE_BURN command to
/// characterise the amount of cycles available.
/// The far_end_dsp function is called from I2S and so check min_idle time for that task
/// The far_end_dsp function is called from Audio so check min_idle time for that task

/// @brief callback to pre-process one sample of the far end before outputting to DAC/SHF DSP input
/// Note that this callback runs at the I2S sample rate.
/// @param far_end_sample input and output (sample is processed in place)
/// @param far_end_dsp_enable Set to 1 to enable, 0 to disable. This is handled by the user.
void far_end_dsp(int32_t far_end_samples[BECLEAR_NUMBER_OF_FAR], bool far_end_dsp_enable);

/// Struct passed to post_shf_dsp which contains all the information that is available
/// for additional post-processing.
typedef struct {

/// Pointer to array containing the BECLEAR_NUMBER_OF_OUTPUTS processed microphone channels.
int32_t* post_shf_processed_mic_samples;

/// BECLEAR_NUMBER_OF_MICS channels containing the microphones after AEC before post-processing.
int32_t* aec_residuals;

/// Pointer to array of BECLEAR_NUMBER_OF_OUTPUTS azimuths, each element is the azimuth for the
/// post_shf_processed_mic_samples of the same index. It can be NULL if azimuths have not been
/// calculated.
float* azimuths;

/// The spenergy (speech energy) for each beam in post_shf_processed_mic_samples. If the spenergy
/// is non-zero then it contains energy that is likely speech. The value will be higher for louder
/// or closer voices, noise and distortion will cause the speech energy to decrease. This points
/// to an array of size BECLEAR_NUMBER_OF_OUTPUTS where each value corresponds to the beam of the
/// same index. It can be NULL if spenergy has not been calculated.
float* spenergy;

/// Output of xmos algorithm to determine the direction of voice, NAN if no voice detected
float direction_of_voice;

} user_dsp_post_shf_input_t;

/// @brief callback to post-process one sample of audio after the SHF voice DSP stage
/// Note that this callback runs at the SHF sample rate.
/// @param out Array to fill with the output of this function.
/// @param input See user_dsp_post_shf_input_t comments for details.
void post_shf_dsp(int32_t out[BECLEAR_NUMBER_OF_OUTPUTS],

user_dsp_post_shf_input_t* input);

#define USER_DSP_NUM_OUTPUT_CHANNELS 2

/// @brief called immediately after post_shf_dsp and will be used to determine the
/// channels that MUX_USER_CHOSEN_CHANNELS will consist of. It also sets the azimuth
/// of each chosen channel so that it can be requested via control command.
///
/// @param[in,out] out_idx 2 chosen channels from `out` which were written by

(continues on next page)

636363

(continued from previous page)

/// the function `post_shf_dsp`. Before being passed to beam_selection,
/// out_idx will be populated by the suggested indices.
/// @param[out] out_azimuths azimuths of the two channels that have been
/// selected. Most likely a copy of the correct input from above.
void beam_selection(uint8_t out_idx[USER_DSP_NUM_OUTPUT_CHANNELS],

float out_azimuths[USER_DSP_NUM_OUTPUT_CHANNELS]);

#endif

5.2.4 Meeting Timing

When adding custom DSP, it is important to check timing. It is not sufficient just to check that audio is play-
ing cleanly because the available cycles within the XVF3800 varies significantly depending on operation and
will increase under certain conditions. A comprehensive method for checking worst case timing is included
and can be found in the Testing the Software section of the Programming Guide.

5.2.5 Adding Control to Custom DSP

In some cases it may be desirable to add a new control command to allow the host application to en-
able/disable or adjust the custom DSP. The steps in Adding a Control Command show how to add controls
to the firmware and the below examples include adding a control for each case.

For far-end reference DSP within the XVF3800 firmware, a built-in control named AU-
DIO_MGR_FAR_END_DSP_ENABLE has already been provided. It is possible to add further controls if
needed.

5.2.6 Far-End Reference DSP

Both far-end reference DSP locations offer the opportunity to add processing between the host audio signal
and the DAC output. If adding non-linear processing (eg. bass-enhancement, dynamic-range compression),
placing that processing in one of these locations will avoid degradation in AEC performance. If it is located
somewhere else in the system, this DSP may significantly degrade AEC performance due to the far-end ref-
erence given to the voice pipeline differing from the signal played through the loudspeaker. The remainder of
this section will discuss far-end reference DSP placed within the XVF3800 firmware.

The rate of the DSP is the host interface rate. For example, if I2S runs at 48 kHz, then the far-end DSP also
runs at 48 kHz. The samples will not be sent to the voice pipeline until after the far-end DSP has occurred
and will be down-sampled if required.

Because the far-end DSP block will add delay to the voice pipeline reference signal, it is essential that any
delay added is not so large that the direct path (loudspeaker to microphone) of the far-end signal arriving
at the microphones gets to the voice pipeline before the processed far-end signal does. This non-causal
relationship will cause a rapid degradation in AEC performance. For more information on this topic, including
how to measure this effect, see the Tuning the Application section of the XVF3800 User Guide.

Depending on the external audio path and the type of processing applied (linear vs non-linear) it may be
necessary to add an additional audio line. For example, an I2S connected system may need one audio line
for the reference input, one audio line for the processed microphone output and an additional line for the
processed far-end output to the DAC. Where the far-end audio source is USB, this additional audio line is not
necessary since the processed far-end output will always be sent to the DAC pin.

The XVF3800 allows provision of a third I2S line for processed far-end output using the following steps:

• Increase appconfNUM_I2S_PINS_OUT in app_conf.h from 1 to 2. This will enable PORT_I2S_DATA2 as

646464

https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html

an I2S output pin. The default is to set the second pin to output the post-processed far-end input with
sample rate conversion disabled.

• Set USE_FAR_END_DSP in far_end_dsp.c to 1.

• Make sure the DAC input is connected to the processed far-end DSP signal.

Note: Far-end reference DSP is disabled by default in the standard build to avoid using extra memory and
processing cycles.

In the USB build, the pin formerly used as the I2S input to the device is used by default as an I2S out-
put to send the far-end signal to the DAC. Therefore, for the USB build, it is usually sufficient to keep
appconfNUM_I2S_PINS_OUT set to 1. By default, the processed far-end signal will be routed to this output.
However, the secondary I2S line may still be enabled with the above steps if desired.

In order to verify the effect of the DSP, you may wish to send the product of the far-end DSP directly to the
DAC without any incident down- or up-sampling. The following commands ensure up-sampling is disabled
and route far-end DSP signal to the output:

(sudo) xvf_host(.exe) AUDIO_MGR_OP_UPSAMPLE 0 0
(sudo) xvf_host(.exe) AUDIO_MGR_OP_ALL 10 0 10 2 10 4 10 1 10 3 10 5

A control command has already been provided which passes a boolean to the far_end_dsp() function, which
allows the user to enable and disable the far-end DSP and verify its functionality. Thismay be controlled using:

(sudo) xvf_host(.exe) AUDIO_MGR_FAR_END_DSP_ENABLE 1
(sudo) xvf_host(.exe) AUDIO_MGR_FAR_END_DSP_ENABLE 0

5.2.6.1 Far-end reference example

For example purposes, a three stage biquad filter has been implemented which boosts bass and treble by 6
dB and cuts mid-range by 6 dB. This filter produces a noticeable effect suitable for demonstration purposes
and for verification that the far-end DSP is active. This example has coefficients that have been generated
assuming a 48 kHz sample rate. They will not work properly at 16 kHz and will need to be re-calculated.

The code is shown below, transcluded from sources/app_xvf3800/src/user_dsp/far_end_dsp.c:

// Copyright 2022-2023 XMOS LIMITED.
// This Software is subject to the terms of the XCORE VocalFusion Licence.

#include "user_dsp.h"

#ifndef USE_FAR_END_DSP
#define USE_FAR_END_DSP 0

#endif

#if USE_FAR_END_DSP
#include "xmath/xmath.h"

// Simple example DSP that processes far end using an EQ. Note the coeffs are correct for 48kHz only
// Each filter_biquad_s32_t can store (up to) 8 biquad filter sections
#define SECTION_COUNT 3

filter_biquad_s32_t filter[BECLEAR_NUMBER_OF_FAR] = {{
// Number of biquad sections in this filter block
.biquad_count = SECTION_COUNT,

// Filter state, initialized to 0
.state = {{0}},

(continues on next page)

656565

(continued from previous page)

// Filter coefficients
// Section 0: Frequency = 100 Hz, Q Factor = +1.2, Gain = +6.0dB
// Section 1: Frequency = 1000 Hz, Q Factor = +0.2, Gain = -6.0dB
// Section 2: Frequency = 8000 Hz, Q Factor = +1.3, Gain = +6.0dB
.coef = {

{ Q30(+1.00286226693868), Q30(+0.86561763867029), Q30(+1.58124059575259)},
{ Q30(-1.98608850422494), Q30(-1.44869047773446), Q30(-1.32398889950623)},
{ Q30(+0.98346660965693), Q30(+0.59557353208939), Q30(+0.56062804987035)},
{ Q30(+1.98614845462853), Q30(+1.44869047773446), Q30(+0.45958190453639)},
{ Q30(-0.98626892619203), Q30(-0.46119117075968), Q30(-0.27746165065311)}
}

}};

void far_end_dsp(int32_t far_end_samples[BECLEAR_NUMBER_OF_FAR], bool far_end_dsp_enable)
{

// See note in user_dsp.h and user documentation about timing constraints
if(far_end_dsp_enable)
{

for(int channel = 0; channel < BECLEAR_NUMBER_OF_FAR; channel++)
{

far_end_samples[channel] >>= 1; // Simple 6db pre-attenuate to account for gain in filter
far_end_samples[channel] = filter_biquad_s32(&filter[channel], far_end_samples[channel]);

}
} else {

for(int channel = 0; channel < BECLEAR_NUMBER_OF_FAR; channel++)
{

far_end_samples[channel] >>= 1; // Simple 6db attenuate to account for filter gains to�
↪→give similar apparent volume

}
}

}

#else

void far_end_dsp(int32_t far_end_samples[BECLEAR_NUMBER_OF_FAR], bool far_end_dsp_enable)
{

// Do nothing - samples unmodified
}

#endif

Testing the effect on available cycles, we can see a modest drop from the three stage biquad of just 85 x 10
ns = 0.85 us. This small drop is due in part to the use of the Vector Processing Unit (VPU), which is highly
efficient for signal processing purposes. Note that the idle time is not calculated until I2S runs:

(sudo) xvf_host(.exe) TEST_CORE_BURN 1
(sudo) xvf_host(.exe) I2S_MIN_IDLE_TIME
2083
aplay <short wav>
aplay <short wav>
aplay <short wav>
(sudo) xvf_host(.exe) I2S_MIN_IDLE_TIME
1245
(sudo) xvf_host(.exe) AUDIO_MGR_FAR_END_DSP_ENABLE 1
aplay <short wav>
aplay <short wav>
aplay <short wav>
(sudo) xvf_host(.exe) I2S_MIN_IDLE_TIME
1160

666666

5.2.7 Voice Post-Processing DSP

As the name suggests, this DSP hook allows the user to add any required DSP after the microphone signals
have passed through the voice pipeline. The rate of the processing is always the rate of the voice pipeline
(nominally 16 kHz). A number of audio signals are available including multiple output beams and AEC resid-
uals which are the echo-cancelled only signals for each of the four microphones.

To allowmore informed selection of the output beam, the Direction of Arrival (DoA) azimuths and the speech
energy are also provided to allow custom logic to choose the desired signal.

Adding processing to this part of the chain will not affect the performance of the core voice pipeline. However,
it will add to the total delay through the device from microphones to output interface.

Follow the same steps as per the Far-end reference example except when checking timing, please use AU-
DIO_MGR_MIN_IDLE_TIME instead of I2S_MIN_IDLE_TIME since the processing cycles are consumed from a
different task. The Testing the Software section also provides detailed information on how to check timing.

5.2.7.1 Spatial output example

An example is provided in post_shf_dsp.cwhich uses the DoA information to pan the auto select beam onto
the left and right output channel. This allows for a stereo output from the device giving audible indication
of the location of the speaker. This feature can be enabled using a macro named appconfSPATIAL and is
enabled in build configs with the -spatial suffix. These configs also configure the output multiplexer (mux)
to play the left and right outputs back to the host correctly.

To get the best output from this example themacro LEFT_ANGLE_RADIANSmay need to be updated so that the
correct output is heard. For linearmicrophone arrays thiswill either be 0 or M_PI depending on themicrophone
geometry. After changing the software, it will need to be recompiled and flashed to the device.

5.3 Modifying Existing Functionality
The XVF3800 provides the ability to customise the initialisation code for any connected hardware at firmware
boot time. During run-time, the GPIO pins may be modified via control commands from the host control
application. Initialisation typically involves setting GPO pins to control board level features such as LEDs and
configuring I2C connected devices such as an IO expander, a DAC, or a digital amplifier. The code for user
hardware initialisation can be found in sources/app_xvf3800/src/user_config. Themain file to bemodified
is user_config.c which is shown below.

// Copyright 2022-2023 XMOS LIMITED.
// This Software is subject to the terms of the XCORE VocalFusion Licence.

#include "FreeRTOS.h"
#include "app_conf.h"
#include "user_config.h"
#include "io_config_servicer.h"
#include "dac3101.h"

// This file contains the user hardware configuration code. It uses the implementations in dac3101.h�
↪→(EVK3800)
// and the lower level hardware implementations in dac_port.c

int user_init_hardware(device_control_t *device_control_gpio_ctx)
{

int errors_encountered = 0;

rtos_printf("user_init_hardware\n");

(continues on next page)

676767

(continued from previous page)

#if !defined(MIC_ARRAY_TYPE)
#error
#endif
#if MIC_ARRAY_TYPE == BECLEAR_LINEAR_ARRAY

write_gpo_pin(device_control_gpio_ctx, GPO_SQ_nLIN_PIN, 0);
#elif MIC_ARRAY_TYPE == BECLEAR_CIRCULAR_ARRAY

write_gpo_pin(device_control_gpio_ctx, GPO_SQ_nLIN_PIN, 1);
#else

#error MIC_ARRAY_TYPE invalid
#endif

// De-assert HOST INTERRUPT line
write_gpo_pin(device_control_gpio_ctx, GPO_INT_N_PIN, 1); // No interrupt to host asserted when�

↪→high

#if (appconfUSER_CONFIG_ENABLED == 1)
// Reset the DAC
dac3101_codec_reset(device_control_gpio_ctx);

errors_encountered |= dac3101_init(appconfLRCLK_NOMINAL_HZ);
#endif

// Test that we can turn on a LED by sending a command from this task to the GPO task
// Note even though LEDs are active low, we have setup the LED pins in gpo_servicer to drive�

↪→negaive logic
for(int i = 0; i < 5; i++){

write_gpo_pin(device_control_gpio_ctx, GPO_LED_GREEN_PIN, 1); // Turn the green LED on
vTaskDelay(pdMS_TO_TICKS(100));
write_gpo_pin(device_control_gpio_ctx, GPO_LED_GREEN_PIN, 0); // Turn the green LED off
vTaskDelay(pdMS_TO_TICKS(100));

}

return errors_encountered;
}

This file is currently configured for the XK-VOICE-SQ66 development kit and its associated hardware set.

In this file we can see the following actions taken:

• Setting of GPO output line on the XK-VOICE-SQ66 development kit to control the microphone array
topology.

• Setting of GPO output line to de-assert the host interrupt line.

• Resetting of the DAC. See the next section Digital to Analogue Converter Configuration for details.

• Configuring the DAC. See the next section Digital to Analogue Converter Configuration for details.

• Flashing the green LED five times to show that booting of the XVF3800 is occurring.

Note: The control plane part of the XVF3800 firmware, responsible for servicing control commands from
the host, will not start until the call to user_init_hardware() is complete. Any control commands issued by the
host before initialisation is complete will not be serviced.

686868

5.3.1 Digital to Analogue Converter Configuration

Each DAC or digital amplifier selected will normally have its own set of registers that need to be configured.
There are two parts to the DAC configuration code. The first is the abstraction layer responsible for providing
the I2C, GPO, and wait functions. These may need to be modified if the GPO responsible for resetting the
DAC or the I2C register access methods needs to be altered. This file can be seen below, transcluded from
sources/app_xvf3800src/user_config/dac_port.c:

// Copyright 2022-2023 XMOS LIMITED.
// This Software is subject to the terms of the XCORE VocalFusion Licence.

// This file contains the implementations of the DAC configuration steps such as which registers to�
↪→write with which values
// Note there are currently two implementations because in I2C slave we init the DAC pre-RTOS

/* FreeRTOS headers */
#include "FreeRTOS.h"

/* App headers */
#include "xcore/port.h"
#include "rtos_i2c_master.h" // Includes "i2c.h" too
#include "platform/driver_instances.h"
#include "io_config_servicer.h"
#include "user_config.h"
#include "dac3101.h"

void dac3101_wait(uint32_t wait_ms)
{

vTaskDelay(pdMS_TO_TICKS(wait_ms));
}

#if (appconfUSER_CONFIG_ENABLED == 1) // Some builds use a specific control transport but DO NOT�
↪→require setting up of DAC HW

int dac3101_reg_write(uint8_t reg, uint8_t val)
{

rtos_i2c_master_t * i2c_master_ctx = get_i2c_master_ctx();
i2c_regop_res_t ret = rtos_i2c_master_reg_write(i2c_master_ctx, DAC3101_I2C_DEVICE_ADDR, reg,�

↪→val);

if (ret == I2C_REGOP_SUCCESS) {
return 0;

} else {
return -1;

}
}

void dac3101_codec_reset(void * args)
{

device_control_t *device_control_gpio_ctx = args;

write_gpo_pin(device_control_gpio_ctx, GPO_DAC_RST_N_PIN, 0);
dac3101_wait(1); /* From DS - The hardware reset pin (RESET) must be pulled low for at least 10ns�

↪→*/
write_gpo_pin(device_control_gpio_ctx, GPO_DAC_RST_N_PIN, 1);
dac3101_wait(1); /* From DS - This initialization takes place within 1 ms after pulling the RESET�

↪→signal high */
}
#endif

696969

The second file, which specifies the sequence of GPO accesses and I2C register writes specific to the chosen
DAC, can be found in sources/modules/fwk_xvf/modules/bsp/dac. There are two fileswhichmay need to be
modified: dac3101.h, which contains the defines and function prototypes, and dac3101.c, which contains the
dac3101_init() function that is called from user_config.c and performs the sequence of operations required
to configure the DAC. These sources are not printed here for documentation brevity.

Note: Error detection is included and errors (non-zero return) will be reported back to the application if
encountered.

5.3.2 General Purpose Input and Output Operation

Several GPIO ports are provided by the XVF3800 to allow input and output capability. Thesemay be accessed
from the firmware at startup via user_config.c or by the host application using GPO and GPI commands.
The XVF3800 ports contain a single direction register and therefore groups of pins on a single port are all
either input or output. The firmware provides functionality to address individual pins within a port.

GPI ports provide the capability to read the current state of pins, invert their logic, and capture an edge (event).
GPO ports provide the ability to output a logic level, autonomously flash a 32b serial pattern, or provide a PWM
signal suitable for dimming LEDs.

The initial configuration of the roles of each GPO pin can be found in the function init_gpo() in sources/
modules/fwk_xvf/modules/xvf/src/control_plane/gpo_servicer.c. This contains the GPO setup for the
XVF3800 demonstration board including initial level and drive invert. Drive invert can be useful for negative
logic hardware such as LEDs connected between the 3v3 rail and the GPO pin.

Note: Because GPO pins support PWM, setting the duty to 100% or 0% is the same as setting a 1 or 0. The
write_gpo_pin() function hides this functionality by providing a simple logic write; however, the initialisation
section in gpo_servicer.c initialises a PWM value of 0 or 100. Additionally, the flash mask is set to 0xffffffff
so that there is no flash sequence enabled.

Individual bit defines for the individual pins in the default firmware can be found in sources/app_xvf3800/
src/app_conf.h.

Once the pin roles and initial values have been configured, theymay be accessed using a simple API providing
logic level access. An example is shown in the code listing in Modifying Existing Functionality which asserts
GPO pins during the DAC setup.

Note: In the XVF3800 firmware, the GPI servicer is currently only defined on tile[1]; therefore, ports associated
with tile[0] cannot be used as GPI pins without first modifying the firmware to instantiate a GPI servicer on
tile[0]. Such a change will require significant alteration of the existing functionality. Consequently, it is not
possible to easily use ports on tile[0] as GPI sources within the application. However, depending on desired
functionality, it may be possible to use certain ports outside of the application layer, for example during boot
as sense pins for a custom flash loader as described in the XMOS XTC Tools User Guide.

707070

https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tutorials/design-with-flash/flash.html#customize-the-flash-loader

5.3.3 USB configuration

In the XVF3800-UA device, several settings related to the USB interfaces can be configured. The USB au-
dio sample rate can be configured using the appropriate build configuration as described in the Building
the Application section of the XVF3800 User Guide. The remaining USB settings can be updated using the
usb_param_values.yaml in sources/app_xvf3800/autogeneration/yaml_files/settings_and_defaults/
. This file contains additional configurable parameters used in the USB descriptors, such as vendor ID and
product ID, and the default data bit depths of the input and output audio. The full list of parameters and their
default values are below:

VENDOR_ID: 0x20B1
PRODUCT_ID_IO_16KHZ: 0x4F01
PRODUCT_ID_IO_32KHZ: 0x0000
PRODUCT_ID_IO_48KHZ: 0x4F00
MANUFACTURER_STR: "XMOS"
PRODUCT_STR: "XVF3800 Voice Processor"
SERIAL_NUMBER_STR: "000000"
CONTROL_INTERFACE_STR: "XMOS Control"
HID_INTERFACE_STR: "XMOS HID"
DFU_FACTORY_INTERFACE_STR: "XMOS DFU Factory"
DFU_UPGRADE_INTERFACE_STR: "XMOS DFU Upgrade"
DEFAULT_BIT_DEPTH_IN: "16"
DEFAULT_BIT_DEPTH_OUT: "16"

5.3.4 Programmatically Rebooting the Device

In both the XVF3800-UA and XVF3800-INT devices, the function reboot_xvf3800(unsigned delay) is pro-
vided in tile_common.h to facilitate rebooting the device from within the application. It is declared as

/// @brief reboot the package that called this function after delay ms
/// @param delay a count in ms that will wait until the reboot happens
void reboot_xvf3800(unsigned delay);

This will enable thewatchdog timer and instruct it to operate after delaymilliseconds. The functionwill return
when complete, but the reboot will have been scheduled as requested. Formore information on the operation
of the watchdog timer, see the datasheet for the relevant xcore.ai package.

The device may also be rebooted by use of the RST_N pin. Pulling this pin low externally will force a hardware
reboot of the device. Formore information, including the pin number of the RST_N pin on the relevant package,
see the Device Datasheet included in the XVF3800 documentation set.

5.3.5 Modifying the HID to GPIO mapping

The init_hid_button_config and init_hid_led_config functions in sources/modules/fwk_xvf/modules/
xvf/src/usb/control_plane/hid_init.c can be modified to change the mapping between the HID but-
tons/LEDs and the GPIO buttons/LEDs. For more details about the HID design, refer to HID Interface design

717171

https://www.xmos.com/documentation/XM-014888-PC-LATEST/html/doc/user_guide/index.html

5.3.5.1 Changing button mapping

By default, the code in init_hid_button_config maps the HID Mute button to the button on the XK-VOICE-
SQ66 development kit.

hid_button_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = BUTTON_MUTE_OFFSET,�
↪→.size = 1, .gpi_source = GPI_SOURCE_EVK, .gpi_pin_index = EVK_BUTTON_INDEX, .button_type = BUTTON_
↪→TYPE_OSC, .button_press_precondition=HOOKSWITCH_BUTTON};

hid_button_config[MUTE_BUTTON] = config;

This mapping can be changed subject to some contraints:

• the Dialpad buttons are not supported.

• the Teams button is not supported.

Any of the other remaining buttons, HookSwitch, Flash, Redial, Volume Increment and Volume Decre-
ment, can be mapped to the EVK button. To do that, change the gpi_source and gpi_pin_index to BUT-
TON_GPI_UNMAPPED for the Mute button.

{
hid_button_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = BUTTON_MUTE_OFFSET, .

↪→size = 1, .gpi_source = BUTTON_GPI_UNMAPPED, .gpi_pin_index = BUTTON_GPI_UNMAPPED, .button_type =�
↪→BUTTON_TYPE_OSC, .button_press_precondition=HOOKSWITCH_BUTTON};

hid_button_config[MUTE_BUTTON] = config;
}

Then, for the HID button that needs to be mapped to the EVK button, change the gpi_source to
GPI_SOURCE_EVK and change the gpi_pin_index to EVK_BUTTON_INDEX. Below is an example of mapping
the Volume Increment button to the EVK button.

{
hid_button_config_t config = {.report_id = REPORT_ID_VOLUME_BUTTONS, .offset = BUTTON_VOL_UP_

↪→OFFSET, .size = 1, .gpi_source = GPI_SOURCE_EVK, .gpi_pin_index = EVK_BUTTON_INDEX, .button_type =�
↪→BUTTON_TYPE_RTC, .button_press_precondition = NO_BUTTON_PRESS_PRECONDITION};

hid_button_config[VOLUME_UP_BUTTON] = config;
}

Note: This code change needs to bemade for the code that is not in the #if (IO_EXPANDER_ENABLED) define
block.

5.3.5.2 Changing LED mapping

By default, the code in init_hid_led_configmaps the HID Off-Hook LED to the Green LED on the XK-VOICE-
SQ66 development kit and the HID Mute LED to the Red LED on the XK-VOICE-SQ66 development kit.

hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_OFFHOOK_OFFSET, .
↪→gpo_source = GPO_SOURCE_EVK, .gpo_pin_index = EVK_LED_GREEN, .notify_hid_task = true, .trigger_hid_
↪→input_index = HOOKSWITCH_BUTTON, .led_mode=LED_MODE_STEADY};

hid_led_config[OFFHOOK_LED] = config;

hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_MUTE_OFFSET, .gpo_
↪→source = GPO_SOURCE_EVK, .gpo_pin_index = EVK_LED_RED, .notify_hid_task = false, .trigger_hid_
↪→input_index = NO_HID_IN_TRIGGER, .led_mode=LED_MODE_STEADY};

hid_led_config[MUTE_LED] = config;

This can be changed and any of the remaining HID LEDs, the Ring and Hold LED, can be mapped to the
XK-VOICE-SQ66 development kit LEDs. To make the change, first make sure that the existing mapping is

727272

removed. For example, when mapping the Green LED to something else, make sure that the existing Off-
Hook to Green LED mapping is removed. This is done by changing the gpo_source and gpo_pin_index to
LED_GPO_UNMAPPED for the OffHook LED.

{
hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_OFFHOOK_OFFSET, .

↪→gpo_source = LED_GPO_UNMAPPED, .gpo_pin_index = LED_GPO_UNMAPPED, .notify_hid_task = true, .
↪→trigger_hid_input_index = HOOKSWITCH_BUTTON, .led_mode=LED_MODE_STEADY};

hid_led_config[OFFHOOK_LED] = config;
}

Then, for the HID LED that needs to be mapped to the Green XK-VOICE-SQ66 development kit LED, set the
.gpo_source asGPO_SOURCE_EVK and gpo_pin_index as EVK_LED_GREEN. For example, if mapping the Ring
LED to the Green LED, change

{
hid_led_config_t config = {.report_id = REPORT_ID_MISC_BUTTONS, .offset = LED_RING_OFFSET, .gpo_

↪→source = GPO_SOURCE_EVK, .gpo_pin_index = EVK_LED_GREEN, .notify_hid_task = true, .trigger_hid_
↪→input_index = NO_HID_IN_TRIGGER, .led_mode=LED_MODE_FAST_FLASH};

hid_led_config[RING_LED] = config;
}

Note: This code change needs to bemade for the code that is not in the #if (IO_EXPANDER_ENABLED) define
block.

5.3.6 Modifying the HID to GPIO mapping for the IO expander build

Similar to Modifying the HID to GPIO mapping the GPIO to HID events mapping can be changed by
modifying the code in the init_hid_button_config and init_hid_led_config functions in sources/
modules/fwk_xvf/modules/xvf/src/usb/control_plane/hid_init.c. For the IO expander build
(application_xvf3800_ua-io48-lin-io-exp), the code within #if (IO_EXPANDER_ENABLED) needs to
be modified.

The GPI button is defined by the gpi_source and gpi_pin_index fields in the hid_button_config_t struc-
ture. To change the GPI button mapped to a given HID button, change the gpi_source and gpi_pin_index
fields in the initialisation code for that button in the init_hid_button_config function. The available GPI
sources and pin indexes for every source are defined in sources/modules/fwk_xvf/modules/xvf/src/usb/
control_plane/usb_hid.h

/// @brief Buttons sources. The EVK and the IO expander board
typedef enum
{

GPI_SOURCE_EVK = 0,
GPI_SOURCE_IO_EXP

}all_gpi_sources_t;

/// @brief Button indexes for the buttons on the EVK.
typedef enum
{

EVK_BUTTON_INDEX = 0,
TOTAL_EVK_BUTTONS

}all_evk_buttons_t;

/// @brief Button indexes for the buttons on the IO expander
typedef enum
{

IO_EXP_MUTE_BUTTON_INDEX = 0,
(continues on next page)

737373

(continued from previous page)

IO_EXP_VOL_UP_BUTTON_INDEX,
IO_EXP_VOL_DN_BUTTON_INDEX,
IO_EXP_ACTION_BUTTON_INDEX,
TOTAL_IO_EXP_BUTTONS

}all_io_exp_buttons_t;

The GPO LED is defined by the gpo_source and gpo_pin_index fields in the hid_led_config_t structure. To
change the GPO LED mapped to a given HID LED, change the gpo_source and gpo_pin_index fields in the
initialisation code for that LED in init_hid_led_config function. The available GPO sources and pin indexes
for every source are defined in sources/modules/fwk_xvf/modules/xvf/src/usb/control_plane/usb_hid.
h

/// @brief LED sources. The EVK and the IO expander board
typedef enum
{

GPO_SOURCE_EVK = 0,
GPO_SOURCE_IO_EXP

}all_gpo_sources_t;

/// @brief LEDs on the EVK board
typedef enum
{

EVK_LED_GREEN,
EVK_LED_RED,
TOTAL_EVK_LEDS

}all_evk_leds_t;

/// @brief LEDs on the IO Expander board
typedef enum
{

IO_EXP_PCAL6416A_LED, // Red LED on the IO expander
IO_EXP_IS31FL3193_RGB_LED, // IS31FL3193 RGB LED on the IO expander
TOTAL_IO_EXP_LEDS

}all_io_exp_leds_t;

5.3.7 Adding a different I2C Expander

The HID + I2C expander design described in System Design mentions the io_expander_task that is respon-
sible for responding to buttons and driving LEDs on the I2C expander. The existing io_expander_task is
written for supporting the PCAL6416A I2C expander and requires modifications when supporting a different
I2C expander.

In addition, the definitions for the buttons and LEDs supported on the I2C expander that get exposed to theHID
tasks will need to be modified. Section Defining available GPIO on the IO expander describes this, followed by
Modifying the IO expander taskwhich describes the changes required to the io_expander_task for supporting
a different I2C exapnder.

747474

https://www.nxp.com/docs/en/data-sheet/PCAL6416A.pdf

5.3.7.1 Defining available GPIO on the IO expander

The (gpi_source, gpi_pin_index) fields in the hid_button_config_t structure and the (gpo_source,
gpo_pin_index) fields in the hid_led_config_t structure define the GPIO buttons/LEDs that are mapped
to HID buttons/LEDs. The available GPIO sources and the buttons/LEDs supported per source are defined as
enums in sources/modules/fwk_xvf/modules/xvf/src/usb/control_plane/usb_hid.h.

/// @brief Buttons sources. The EVK and the IO expander board
typedef enum
{

GPI_SOURCE_EVK = 0,
GPI_SOURCE_IO_EXP

}all_gpi_sources_t;

/// @brief Button indexes for the buttons on the EVK.
typedef enum
{

EVK_BUTTON_INDEX = 0,
TOTAL_EVK_BUTTONS

}all_evk_buttons_t;

/// @brief Button indexes for the buttons on the IO expander
typedef enum
{

IO_EXP_MUTE_BUTTON_INDEX = 0,
IO_EXP_VOL_UP_BUTTON_INDEX,
IO_EXP_VOL_DN_BUTTON_INDEX,
IO_EXP_ACTION_BUTTON_INDEX,
TOTAL_IO_EXP_BUTTONS

}all_io_exp_buttons_t;

/// @brief LED sources. The EVK and the IO expander board
typedef enum
{

GPO_SOURCE_EVK = 0,
GPO_SOURCE_IO_EXP

}all_gpo_sources_t;

/// @brief LEDs on the EVK board
typedef enum
{

EVK_LED_GREEN,
EVK_LED_RED,
TOTAL_EVK_LEDS

}all_evk_leds_t;

/// @brief LEDs on the IO Expander board
typedef enum
{

IO_EXP_PCAL6416A_LED, // Red LED on the IO expander
IO_EXP_IS31FL3193_RGB_LED, // IS31FL3193 RGB LED on the IO expander
TOTAL_IO_EXP_LEDS

}all_io_exp_leds_t;

These enums are used in the init_hid_button_config and init_hid_led_config functionswhen initialising
the hid_button_config_t and hid_led_config_t structures for all HID buttons and LEDs.

When replacing the existing I2C expander with a different one, change the all_io_exp_buttons_t
and all_io_exp_leds_t enums to define the available GPIO buttons and LEDs, and change the
init_hid_button_config and init_hid_led_config functions to map the HID buttons/LEDs to these new
ones.

757575

5.3.7.2 Modifying the IO expander task

This section describes the modifications required in the io_expander_task to support a different I2C ex-
pander. It walks through the io_expander_task code describing the purpose of each bit and the changes
required in it when supporting a different I2C expander.

1. Initialise the IO expander registers. At the start of the io_expander_task there is code for initialising the
I2C expander registers.

res = rtos_i2c_master_reg_write(i2c_master_ctx, addr_ioexp, 0x2, 0x00); // drive mute led and dac_rst�
↪→low
res |= rtos_i2c_master_reg_write(i2c_master_ctx, addr_ioexp, 0x6, ~(int8_t)0b10010000); // all input�
↪→except mic_off and dac_rst
res |= rtos_i2c_master_reg_write(i2c_master_ctx, addr_ioexp, 0x7, ~0x00); // all input
res |= rtos_i2c_master_reg_write(i2c_master_ctx, addr_ioexp, 0x44, 0x0f); // Latching on bits 0..3
res |= rtos_i2c_master_reg_write(i2c_master_ctx, addr_ioexp, 0x45, 0x00); // No latching

When using a different I2C expander the register initialisation code will need to change accordingly.

2. Call the init_io_exp_gpo function to initialise the GPO LED states and initialise the io_exp_gpo_config
structure. The io_exp_gpo_config structure is of type io_exp_gpo_config_t and is defined to contain
the information for mapping from the LED index exposed to the HID task (all_io_exp_leds_t) to the
actual LED on the I2C expander. Since the two LEDs added via the I2C expander in the current design are
completely different and reside on different I2C addresses, the io_exp_gpo_config_t doesn’t contain
any information other than the location of the LED. Instead, the code in io_exp_drive_leds which is
the function responsible to drive the LEDs does so by executing different pieces of code selected based
on the LED port.

if(led_port == IO_EXP_GPO_PORT_PCAL6416A) // Red LED on the PCAL6416A
{

// Program the LED on PCAL6416A
}
else if(led_port == IO_EXP_GPO_PORT_IS31FL3193) // RGB LED on the IS31FL3193
{

// Program the LED on the IS31FL3193
}

The GPO LED states initialisation and the structure and initialisation of the io_exp_gpo_config_t structure
will change when using a different I2C expander.

3. Initialise the io_exp_gpi_info structure. This structure is of type io_exp_gpi_info_t which con-
tains the information required to map from the I2C expander buttons exposed to the HID tasks
(all_io_exp_buttons_t) to the actual GPI buttons on the IO expander. It currently contains the GPI
pin index in the IO expander Input Port register 00h for the all_io_exp_buttons_t buttons and is ini-
tialised as follows:

io_exp_gpi_info_t io_exp_gpi_info[TOTAL_IO_EXP_BUTTONS] = {
{.pin = IO_EXP_MUTE_BUTTON_PIN, ._previous_event_time = 0}, // IO_EXP_MUTE_BUTTON_INDEX
{.pin = IO_EXP_VOL_UP_BUTTON_PIN, ._previous_event_time = 0}, // IO_EXP_VOL_UP_BUTTON_INDEX
{.pin = IO_EXP_VOL_DN_BUTTON_PIN, ._previous_event_time = 0}, // IO_EXP_VOL_DN_BUTTON_INDEX
{.pin = IO_EXP_ACTION_BUTTON_PIN, ._previous_event_time = 0}, // IO_EXP_ACTION_BUTTON_INDEX

};

The io_exp_gpi_info_t structure and its initialisation will change when using a different I2C expander.

4. Create the io_expander_gpo_servicer task:

// Create task for receiving internal GPO commands from tud_hid_set_report_cb()
xTaskCreate((TaskFunction_t) io_expander_gpo_servicer,

"io_expander_gpo_task",
portTASK_STACK_DEPTH(io_expander_gpo_servicer),
&io_exp_gpo_state,

(continues on next page)

767676

(continued from previous page)

appconfTEST_TASK_PRIORITY,
NULL);

The io_expander_gpo_servicer responds to the LED control commands from the HID task. The
io_exp_gpo_state is shared between the io_expander_gpo_servicer and the io_expander_task.
io_expander_gpo_servicer receives the IO_EXPANDER_SERVICER_RESID_INTERNAL_GPO_LED_STATE
control command from tud_hid_set_report_cb -> handle_hid_output_report_bit_change ->
send_led_command path. The IO_EXPANDER_SERVICER_RESID_INTERNAL_GPO_LED_STATE contains the
LED index (all_io_exp_leds_t) and LED state (e_led_mode_t) that a given LED needs to be set
to. The io_expander_gpo_servicer updates the gpo_state->led_state[led_index].led_mode and
gpo_state->led_state[led_index].counter. Since the io_expander_gpo_servicer doesn’t actually
program the LEDs on the I2C expander, it shouldn’t need to change when modifying the code for a different
I2C expander.

5. In a timer driven loop, for every button, read its state and if changed from the previous read, send
a HID_TASK_RESID_INTERNAL_BUTTON_PRESS command to the hid_in_servicer notifying button state
change.

for(;;){

// Read the GPI pins logic levels from the input port register 00h over I2C master

// For every pin with a state change, populate the button_info structure

//Call send_write_cmd_to_servicer() and send a HID_TASK_RESID_INTERNAL_BUTTON_PRESS command to hid_
↪→in_servicer over the device_control context.

vTaskDelay(pdMS_TO_TICKS(IO_EXP_POLL_TIME_MS));
}

The code for reading the GPI pin logic level and deducing the button state is I2C expander spe-
cific and will change when using a different one. Once the button_info structure is populated, the
send_write_cmd_to_servicer call to send it via a control command to the HID task will remain the same.

6. Configure any LED states that need changing. This in done in the io_exp_drive_leds function that is
called at the end of the timer driven loop described above.

for(;;){

io_exp_drive_leds(&io_exp_gpo_state, io_exp_gpo_config, i2c_master_ctx);

vTaskDelay(pdMS_TO_TICKS(IO_EXP_POLL_TIME_MS));
}

The io_exp_drive_leds function reads the LED modes from the shared io_exp_gpo_state structure that
the io_expander_gpo_servicer updates and configures the LED registers over the I2C interface accordingly.
The io_exp_drive_leds function will need to be modified when using a different I2C expander.

777777

Copyright © 2024, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

787878

	1 Overview
	2 Theory of Operation
	2.1 System Architecture Overview
	2.1.1 Control Plane Modules
	2.1.2 Data Plane Modules

	2.2 Control Plane Module Responsibilities
	2.2.1 Device Control
	2.2.2 Device Firmware Update Controller
	2.2.3 General Purpose Input Output
	2.2.4 Human Interface Device
	2.2.5 Input Output Configuration
	2.2.6 Inter-Integrated Circuit Master
	2.2.7 Inter-Integrated Circuit Slave
	2.2.8 Quad Serial Peripheral Interface
	2.2.9 Serial Peripheral Interface Slave
	2.2.10 Servicers

	2.3 Data Plane Module Responsibilities
	2.3.1 Acoustic Echo Cancellation
	2.3.2 Audio Manager
	2.3.3 Beamforming and Post-processing
	2.3.4 Customer DSP
	2.3.5 Inter-IC Sound
	2.3.6 Microphone Array
	2.3.7 Software Phase-Locked Loop
	2.3.8 Universal Serial Bus

	2.4 Product Configurations
	2.5 Module Placement and Interconnection
	2.5.1 Integrated Device with SPI Control
	2.5.2 Integrated Device with I2C Control
	2.5.3 USB Accessory

	2.6 Control Plane Detailed Design
	2.6.1 Control Plane Structure and Operation
	2.6.2 Control Protocol

	2.7 Data Plane Detailed Design
	2.8 Device Firmware update (DFU) Design
	2.8.1 DFU over USB implementation
	2.8.2 DFU over I2C implementation

	2.9 HID Interface design
	2.9.1 HID descriptors
	2.9.2 HID System Design
	2.9.3 HID Initialisation
	2.9.4 HID Operation
	2.9.4.1 Mute/Unmute device
	2.9.4.2 Inform call start
	2.9.4.3 Inform call end

	2.10 Expanding available IO for extended HID support
	2.10.1 System Design
	2.10.2 HID Operation with expanded GPIO set
	2.10.2.1 Handle Incoming Call
	2.10.2.2 End Call
	2.10.2.3 Hold/Unhold Call
	2.10.2.4 Volume Increment/Decrement

	3 Working With The Build System
	3.1 Configuring CMake and Building the Firmware
	3.1.1 Adding or Modifying Build Configurations
	3.1.2 Adding New Files and Compilation Flags to the Build

	3.2 Building the Host Control App

	4 Testing the Software
	4.1 Test Capabilities
	4.1.1 Loopbacks
	4.1.2 Signal Capture
	4.1.3 Signal Injection
	4.1.4 Signal Injection and Capture Simultaneously

	4.2 Measuring Resources
	4.2.1 Measuring Available Cycles
	4.2.2 Measuring Available Memory

	5 Modifying the Software
	5.1 Adding a Control Command
	5.1.1 Adding a new control command

	5.2 Adding Custom Digital Signal Processing
	5.2.1 I2S Usage
	5.2.2 Custom DSP Within the DAC
	5.2.3 Custom DSP Within the XVF3800 Firmware
	5.2.3.1 Customer Far-End Reference DSP
	5.2.3.2 Custom Voice Post-Processing DSP
	5.2.3.3 Common Aspects to Custom DSP Within the XVF3800 Firmware

	5.2.4 Meeting Timing
	5.2.5 Adding Control to Custom DSP
	5.2.6 Far-End Reference DSP
	5.2.6.1 Far-end reference example

	5.2.7 Voice Post-Processing DSP
	5.2.7.1 Spatial output example

	5.3 Modifying Existing Functionality
	5.3.1 Digital to Analogue Converter Configuration
	5.3.2 General Purpose Input and Output Operation
	5.3.3 USB configuration
	5.3.4 Programmatically Rebooting the Device
	5.3.5 Modifying the HID to GPIO mapping
	5.3.5.1 Changing button mapping
	5.3.5.2 Changing LED mapping

	5.3.6 Modifying the HID to GPIO mapping for the IO expander build
	5.3.7 Adding a different I2C Expander
	5.3.7.1 Defining available GPIO on the IO expander
	5.3.7.2 Modifying the IO expander task

