
AN02021: Using external memory with XCORE.AI

Publication Date: 2024/10/16
Document Number: XM-014230-AN v1.0.0

AN02021: Using external memory with XCORE.AI

IN THIS DOCUMENT

1 External memory overview . 2
2 Setting up the tools to recognise external memory 2

2.1 Setting up the configuration file . 2
2.2 Compiler flags required . 4

3 Using external memory in software . 4
4 What performance to expect . 4
5 Connecting memory in your design schematic . 6
6 Recommended PCB layout . 7
7 Errata . 10
8 Further information . 10
9 Document History . 11

1 External memory overview

xcore.ai processors can be connected to external LPDDR-1 memory. This document de-
scribes

· How to set-up the XTC tools to recognise the external memory

· How to use the external memory from software

· What performance to expect

· How to connect the memory in your design schematic

· Recommended PCB layout

This application note also has an accompanying software source file containing an a
simple example to illustrate how external memory access can be used.

xcore.ai processors have a built-in LPDDR-1 controller and PHY that, when activated,
maps an external LPDDR-1 memory into the address space of one of the xcore-
processors. You can connect an LPDDR-1 memory to the PHY, as long as it has a 16-bit
data-bus, complies with JEDEC standard JESD209B, and is 128, 256, 512, or 1024 Mbits
in size. LPDDR-1 is also known as Mobile-DDR and it uses 1.8V signalling levels. xcore.ai
supports LPDDR1 operating at a clock frequency of up to 166 MHz.

In an xcore.ai design with external memory, you can configure the XTC tools to place
functions and/or data in external memory. External memory is (much) slower than inter-
nal memory, but offers a way to work with large amounts of data and code.

2 Setting up the tools to recognise external memory

XTC Tools version 15.1 or later can automatically configure thememory for you. Memory
is configured by default on the XK-EVK-XU316 evaluation board that comeswith LPDDR-1
included.

2.1 Setting up the configuration file

For the tools to recognise the external memory, you need to change the XN configura-
tion file to include the external memory. In its simplest form, you specify the size of the
memory and the LPDDR clock frequency at which it should operate. The sizeMbit at-
tribute defines the size of the external LPDDR in megabits. Values of 256/512/1024 are

2

AN02021: Using external memory with XCORE.AI

allowed. By correctly supplying this value, the xcore will raise a HW exception if out-of-
bounds memory access occurs. The clock frequency is specified in Hz or typically MHz:

<Node Id="0" InPackageId="0" Type="XS3-L16A-1024"
Oscillator="24MHz" SystemFrequency="600MHz" ReferenceFrequency="100MHz">

<Extmem sizeMbit="1024" Frequency="100MHz">
<Padctrl clk="0x30" cke="0x30" cs_n="0x30" we_n="0x30"

cas_n="0x30" ras_n="0x30" addr="0x30" ba="0x30"
dq="0x31" dqs="0x31" dm="0x30"/>

<Lpddr emr_opcode="0x20" protocol_engine_conf_0="0x2aa"/>
</Extmem>
<Tile Number="0" Reference="tile[0]"/>
<Tile Number="1" Reference="tile[1]"/>

</Node>

In this simple case, the clock frequency must be a precise even division of the system
clock, and should not exceed 166 MHz. If you try and use a frequency that is not an even
division of the system clock, for example 166 MHz, the system will generate a warning.

An example XN file that uses the system PLL can be found in src/system-pll.xn.
The CMakeLists.txt file has a line that can be commented in to use this file.

If you cannot generate the desired frequency from the system clock, for example you
want to use a 166 MHz DDR clock and a 600 MHz system clock, you can use the sec-
ondary PLL to generate a clock for thememory. This is achieved by setting the secondary
PLL up in the XN file, and stating that the external memory should use the secondary PLL
with the specified divider:

<Node Id="0" InPackageId="0" Type="XS3-L16A-1024"
Oscillator="24MHz" SystemFrequency="600MHz" ReferenceFrequency="100MHz"
SecondaryPllInputDiv="1" SecondaryPllOutputDiv="3" SecondaryPllFeedbackDiv="83">

<Extmem sizeMbit="1024" SourcePll="SecondaryPll" Divider="2">
<Padctrl clk="0x30" cke="0x30" cs_n="0x30" we_n="0x30"

cas_n="0x30" ras_n="0x30" addr="0x30" ba="0x30"
dq="0x31" dqs="0x31" dm="0x30"/>

<Lpddr emr_opcode="0x20" protocol_engine_conf_0="0x2aa"/>
</Extmem>
<Tile Number="0" Reference="tile[0]"/>
<Tile Number="1" Reference="tile[1]"/>

</Node>

An exampleXN file that uses the secondary PLL can be found insrc/secondary-pll.
xn. The CMakeLists.txt file has a line that can be commented in to use this file.

Formore details on how to set up and control the PLL, see the application note on xcore.ai
Clock Frequency Control.

Two sub-elements are required inside the <Extmem> element: <Padctrl> and
<Lpddr>.

Padctrl is used to explicitly change the settings of the pad and, for example, to increase
the drive-strength of specific pads:
<Padctrl clk="0x30" cke="0x30" cs_n="0x30" we_n="0x30"

cas_n="0x30" ras_n="0x30" addr="0x30" ba="0x30"
dq="0x31" dqs="0x31" dm="0x30"/>

The values passed in each element of Padctrl are port-settings and are specified in the
xcore.ai device datasheet.

The <Lpddr> element is used to specify values for the 18 LPDDR registers. More details
on these registers are provided in the xcore.ai device datasheet. An obligatory element
is the emr_opcode:
<Lpddr emr_opcode="0x20"/>

3

http://www.xmos.com/?s=XM-014200-AN
http://www.xmos.com/?s=XM-014200-AN

AN02021: Using external memory with XCORE.AI

2.2 Compiler flags required

In order to use external memory, youmust compile with the largememorymodel. This is
achieved by adding -mcmodel=large to the compiler flags. The use of external mem-
ory requires the use of a much larger address space than that is normally used. The
larger RAM and the presence of memory at differing base addresses means that the
successful use of immediates cannot now be assumed by the compiler.

For completeness, if external memory is not used then there are two othermemorymod-
els available:

· -mcmodel=small This is the default behaviour that minimizes code size and maxi-
mizes speed.

· -mcmodel=medium Uses small offsets for code and data in the same source file for
objects that are not explicitly placed in a section.

-mcmodel=large Uses absolute addresses for all code and data. This option allows
sparse placement of code/data across the memory space. In terms of code speed and
code size the small model is the most efficient, and the large model the least efficient.
It depends on the relative sizes of code and data as to which model is required.

3 Using external memory in software

The external memory is available in the core that uses it from address 0x1000 0000 to
0x1FFF FFFF, and can be used just like ordinary internal memory, except that accesses
to external memory will be slower. That range assumes a 128 Mbit memory, for smaller
memories the top of the range should not be used. Only one of the two physical cores
should be using external memory, otherwise an error will be raised by the XTC compila-
tion/build tool.

The declaration below shows how to place data in external memory:
__attribute__((section(".ExtMem_data")))
unsigned int array_ext[MEMCPY_EXT_BLOCK_BYTES / sizeof(int) * BLOCKS] = {1,5,20};

The code below shows how to place code in external memory:
__attribute__((section(".ExtMem_code")))
unsigned int add_six(unsigned int a) {

return a + 6;
}

In this snippet of code, the array array_ext and function add_six are placed in exter-
nal memory. The attributes __attribute__((section(".ExtMem_data"))) and
__attribute__((section(".ExtMem_code"))) affect the declaration immedi-
ately following the attribute.

4 What performance to expect

Externalmemory is limited to the speed specified in the datasheet for thememory device
you use, however xcore.ai devices do not support clock rates over 166 MHz.

This maybe sufficient for many applications. But there is a significant latency and a
reduction in bandwidth when making accesses to LPDDR compared with accesses to
internalmemory. And these factors are particularly noticeablewhenusing the vector unit.
A vector load/store from external memory requires at least 10 clock cycles at 166 MHz,
whereas internal memory can provide a vector every clock cycle on each tile. Internal
memory has close to 80x more bandwidth than external memory.

4

AN02021: Using external memory with XCORE.AI

External memory is routed through a very small buffer that enables the programmer to,
for example, walk through an array one byte at a time without each byte being loaded
separately. The behaviour is one of a cache with eight lines (each with eight words),
using LRU replacement. A prefetch instruction is available that will initiate a fetch from
memory into the buffer. This instruction is needed to get maximum performance.

Given the very small size, it is best to think of it as a buffer that can be used for one of
the following:

· Execute code in one thread directly from external memory

· Walk through data in external memory sequentially

· Write data in external memory sequentially

Using data in a random order (for example by having two threads execute code from
memory, or by writing random bytes), will result in lower performance.

For best performance, data should be accessed on 32-byte boundaries. An exam-
ple function that copies data at maximum performance is written in assembly in
memcpy_ext.S with an associated header file memcpy_ext.h. In order to attain full
performance, a prefetch instruction is used to start loading the next line from LPDDR
early.

The main program times copying data and shows data can be read at around 420
MByte/s using a 166 MHz LPDDR RAM on a 600 MHz processor.

5

AN02021: Using external memory with XCORE.AI

5 Connecting memory in your design schematic

X
0
D
3
0

X
0
D
3
1

X
0
D
3
2

X
0
D
3
3

X
0
D
3
4

X
0
D
3
9

X
0
D
4
0

X
0
D
4
1

X
0
D
4
2

X
0
D
4
3

X
0
D
4
9

X
0
D
5
0

X
0
D
5
1

X
0
D
5
2

X
0
D
5
3

X
0
D
5
4

X
0
D
5
5

X
0
D
5
6

X
0
D
5
7

X
0
D
5
8

X
0
D
6
1

X
0
D
6
2

X
0
D
6
3

X
0
D
6
4

X
0
D
6
5

X
0
D
6
6

X
0
D
6
7

X
0
D
6
8

X
0
D
6
9

X
0
D
7
0

X
1
D
2
4

X
1
D
2
5

X
1
D
2
6

X
1
D
2
7

X
1
D
2
8

X
1
D
2
9

X
1
D
3
0

X
1
D
3
1

X
1
D
3
2

X
1
D
3
3

X
1
D
3
4

X
1
D
3
5

X
1
D
4
3

xCORE0

X
0
D
3
0

X
0
D
3
1

X
0
D
3
2

X
0
D
3
3

X
0
D
3
4

X
0
D
3
9

X
0
D
4
0

X
0
D
4
1

X
0
D
4
2

X
0
D
4
3

X
0
D
4
9

X
0
D
5
0

X
0
D
5
1

X
0
D
5
2

X
0
D
5
3

X
0
D
5
4

X
0
D
5
5

X
0
D
5
6

X
0
D
5
7

X
0
D
5
8

X
0
D
6
1

X
0
D
6
2

X
0
D
6
3

X
0
D
6
4

X
0
D
6
5

X
0
D
6
6

X
0
D
6
7

X
0
D
6
8

X
0
D
6
9

X
0
D
7
0

LPDDR PHY

D
Q
4

D
Q
3

D
Q
2

D
Q
1

D
Q
0

A
1
3

A
1
2

A
1
1

A
1
0

A
9

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

C
L
K
_N

C
L
K

C
K
E

C
S
_N

B
A
1

B
A
0

W
E
_N

C
A
S
_N

R
A
S
_N

U
D
M

U
D
Q
S

D
Q
8

D
Q
9

D
Q
1
0

D
Q
1
1

D
Q
1
2

D
Q
1
3

D
Q
1
4

D
Q
1
5

L
D
M

L
D
Q
S

D
Q
7

D
Q
6

D
Q
5

A
8

SRAM
Execution

pipeline

8-line

buffer

xCORE1

SRAM
Execution

pipeline

8-line

buffer

X
1
D
2
4

X
1
D
2
5

X
1
D
2
6

X
1
D
2
7

X
1
D
2
8

X
1
D
2
9

X
1
D
3
0

X
1
D
3
1

X
1
D
3
2

X
1
D
3
3

X
1
D
3
4

X
1
D
3
5

X
1
D
4
3

Address

Data

LPDDR memory device

D
Q
4

D
Q
3

D
Q
2

D
Q
1

D
Q
0

A
1
3

A
1
2

A
1
1

A
1
0

A
9

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

C
L
K
_
N

C
L
K

C
K
E

C
S
_
N

B
A
1

B
A
0

W
E
_
N

C
A
S
_
N

R
A
S
_
N

U
D
M

U
D
Q
S

D
Q
8

D
Q
9

D
Q
1
0

D
Q
1
1

D
Q
1
2

D
Q
1
3

D
Q
1
4

D
Q
1
5

L
D
M

L
D
Q
S

D
Q
7

D
Q
6

D
Q
5

A
8

xCORE device

Fig. 1: LPDDR pin muxing

The LPDDR-1 controller is located in the VDDIOT voltage domain of the xcore.ai device,
and is only pinned out in large packages. Check the xcore.ai device datasheet to verify
that LPDDR is pinned out on a particular device. When using the LPDDR controller, you
should supply 1.8V to VDDIOT, and ground the LV_T_N pin to signal that the top IO domain
is “Low Voltage”.

The pin layout and the GPIO muxing are shown in LPDDR pin muxing. Inside the device,
the LPDDRcontroller shownon the right has 43 pins (DQ0..15, A0..13, and 13 control pins).
These are muxed by the mux with 43 IO pins (30 GPIO pins from core 0, 13 GPIO pins
from core 1), and the muxed signals then connect to 43 package pins. These package
pins can be used as GPIO (this is the default), or an LPDDR device can be wired up to it
as shown. The pins are hard-coded, so if you want to use LPDDR you must connect pin
X0D30 to DQ4, pin X0D31 to DQ3, etc.

The schematics are shown in LPDDR schematics.

6

AN02021: Using external memory with XCORE.AI

VDD_DDR

GND

C8

100N

C9

100N

C10

100N

C11

100N

GND

C12

100N

C13

100N

C14

100N

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13

BA0
BA1

CK_P
CK_N

CKE

WE_N
CAS_N
RAS_N
CS_N

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

LDQS

LDM
UDM

UDQS

i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass

i NetClass

i NetClass

i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass
i NetClass

i NetClass

i NetClass

iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass
iNetClass

iNetClass
iNetClass

iNetClass

iNetClass
iNetClass
iNetClass
iNetClass

iNetClass
iNetClass

DQ15 A2

DQ0 A8

DQ13 B2

DQ14 B3

DQ1 B7

DQ2 B8

DQ11 C2

DQ12 C3

DQ3 C7

DQ4 C8

DQ9 D2

DQ10 D3

DQ5 D7

DQ6 D8

UDQS E2

DQ8 E3DQ7 E7

LDQS E8

UDM F2

A13F7

LDM F8

CKEG1

CKG2

CK_N
G3

WE_NG7

CAS_NG8

RAS_NG9

A9H1

A11H2

A12H3

CS_NH7

BA0H8

BA1H9

A6J1

A7J2

A8J3

A10/APJ7

A0J8

A1J9

A4K2

A5K3

A2K7

A3K8

NC F3

TEST D9

1GBIT

U2A

MT46H64M16LFBF-5IT:B

VSS A1

VSSQ A3VDDQA7

VDDA9

VDDQB1 VSSQ B9

VSSQ C1VDDQC9

VDDQD1 VSSQ E1

VDDQE9

VSS F1VDDF9

VSS K1VDDK9

1GBIT

U2B

MT46H64M16LFBF-5IT:B

GND

A0
A1
A2
A3
A4
A5
A6
A7

A8A9
A10
A11
A12
A13

BA0
BA1

CK_P
CK_N

CKE

WE_N
CAS_N
RAS_N

CS_N

DQ0
DQ1
DQ2
DQ3
DQ4

DQ5
DQ6
DQ7

DQ8

DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

LDQS
LDM

UDM
UDQS

LPDDR DRAM

VDD_DDR

C100

4U7

VDD_DDR

R85
4K7

X0D04 A1

X0D00 D1

X0D01 C1

X0D02 T8

X0D03 U8

X0D05 C2

X0D06 B2

X0D07 B1

X0D08 T9

X0D09 U9

X0D10 D2

X0D11 E2

X0D12 P7

X0D13 R7

X0D14 D4

X0D15 D3

X0D16 E4

X0D17 E3

X0D18 E1

X0D19 F2

X0D20 F1

X0D21 G2

X0D22 P8

X0D23 R8

X0D24 F16

X0D25 F17

X0D26 E16

X0D27
F14

X0D28 F15

X0D29 E14

X0D30 A4

X0D31 B5

X0D32 A3

X0D33 B4

X0D34 B3

X0D35 E15

X0D36 E17

X0D37 D16

X0D38 D17

X0D39 A17

X0D40 B16

X0D41 A16

X0D42 C15

X0D43 D14

X0D49 A14

X0D50 B13

X0D51 A15

X0D52 B14

X0D53 C14

X0D54 D13

X0D55 C13

X0D56 D12

X0D57 C12

X0D58 C11

X0D61 A11

X0D62 D11

X0D63 C10

X0D64 B10

X0D65 A10

X0D66 B9

X0D67 A9

X0D68 C9

X0D69 D9

X0D70 C8

IO
I
T
L
E

U

0

1C

XU316-1024-FB265

X1D00 L4

X1D01 L3

X1D02 H3

X1D03 H4

X1D04 J1

X1D05 J2

X1D06 K2

X1D07 K4

X1D08 K3

X1D09 K1

X1D10 L2

X1D11 L1

X1D12 T10

X1D13 R16

X1D14 R17

X1D15 P16

X1D16 P14

X1D17 P15

X1D18 N14

X1D19 N15

X1D20 P17

X1D21 N16

X1D22 N17

X1D23 U10

X1D24 D8

X1D25 C7

X1D26 D7

X1D27
C6

X1D28 D6

X1D29 C5

X1D30 D5

X1D31 A7

X1D32 A6

X1D33 B7

X1D34 A5

X1D35 B6

X1D36 G1

X1D37 H2

X1D38 F4

X1D39 F3

X1D40 G4

X1D41 G3

X1D42 H1

X1D43 B15

X1D49 M16

X1D50 M17

X1D51 L16

X1D52 M14

X1D53 M15

X1D54 L14

X1D55 L15

X1D56 L17

X1D57 K16

X1D58 K17

X1D61 J16

X1D62 J17

X1D63 H16

X1D64 H14

X1D65 H15

X1D66 G14

X1D67 G15

X1D68 H17

X1D69 G16

X1D70 G17

IO
I
T
L
E

U

1

1D

XU316-1024-FB265

Fig. 2: LPDDR schematics

6 Recommended PCB layout

In order for the external memory to perform reliably, it is important to route the signal
wires from xcore.ai to LPDDR very carefully and to put them right next to each other. We
identify four key timing groups:

Data rate Group end-points

Double data rate Data Write DQ and DM to DQS
Double data rate Data Read DQ to DQS
Single data rate Address/Command to CK/CK#
Cross domain CK/CK# to DQS

Traces should be amaximumof 2 inches in length. You can have the following variations:

· CK to CK# trace length: ±20 mil. (Matching the differential pair).

· CK/CK# trace lengths to DQS trace length: ±500 mil.

· Data group low (DQ0..7, LDM and LDQS): matched within ±50 mil of each other.

· Data group high (DQ8..15, UDM and UDQS): matched within ±50 mil of each other.

· Address/Control/CK group: matched within ±400 mil of each other.

· Data groups low and high: matched to within ±500 mil of each other.

7

AN02021: Using external memory with XCORE.AI

As a guideline, the layout that XMOS uses is shown in Routing of signals on bottom to
Routing of signals on all layers. This shows three of the layers onwhich signals are routed.
The Gerber file for the XK-XU316-EVK board that uses LPDDR can be downloaded from
the xmos.com website.

Fig. 3: Routing of signals on bottom

Fig. 4: Routing of signals on signal 2

8

http://www.xmos.com/?s=XM-014283-DF

AN02021: Using external memory with XCORE.AI

Fig. 5: Routing of signals on top

Fig. 6: Routing of signals on all layers

9

AN02021: Using external memory with XCORE.AI

7 Errata

Some VPU instructions should not access external memory unless data is guaranteed
to be present in the buffer: VLADD, VLSUB, VLMUL, VLADDSB, VLMACC, VLMACCR, VL-
MACCR1, and VLSAT. For correct operations, these instructions should operate from in-
ternal memory only.

8 Further information

· XTC Tools Guide

· The XS3 architecture manual

· XU316-1024-FB265 datasheet

· xcore.ai Clock Frequency Control

· Design and manufacturing data for XK-XU316-EVK

Note that only some packages expose the LPDDR controller GPIO.

10

https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/
https://www.xmos.com/?s=XM-014007-PS
https://www.xmos.com/?s=XM-014035-PC
http://www.xmos.com/?s=XM-014200-AN
http://www.xmos.com/?s=XM-014283-DF

AN02021: Using external memory with XCORE.AI

9 Document History

Date Release Comment

2024-09-12 1.0.0 First release

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

11

	External memory overview
	Setting up the tools to recognise external memory
	Setting up the configuration file
	Compiler flags required

	Using external memory in software
	What performance to expect
	Connecting memory in your design schematic
	Recommended PCB layout
	Errata
	Further information
	Document History

