
AN02022: xcore.ai Clock Frequency Control

AN02022: xcore.ai Clock Frequency Control

Publication Date: 2024/9/23
Document Number: XM-014200-AN v1.1.0

IN THIS DOCUMENT

1 PLL and Clock Divider Overview . 1
2 Static configuration of the PLLs through the XN File 3
3 Configuring the system PLL of xcore.ai manually . 4
4 Configuring the Secondary PLL . 7
5 Further reading . 10
6 Document history . 11

1 PLL and Clock Divider Overview

xcore.ai devices have two internal phase locked loops (PLLs): the System PLL (some-
times known as the Core PLL or Primary PLL) and the Secondary PLL (sometimes known
as the Application PLL). Both PLLs have the same internal workings.

The System PLL is driven from a low frequency external clock and it’s output is used
to obtain a high frequency System Clock. A set of clock dividers are then used on the
system clock to derive the clocks for the xcore tiles, the switch and the reference clock.
The Secondary PLL can be used for application purposes, and is driven either from the
same external clock source, or from the System PLL.

The System PLL has fixed initial settings. They allow an 8-30MHz external clock to be
used and operate the xcore tiles at 133-500MHz respectively. Typically, however, the PLL
is reprogrammed on boot in order to set the PLL to the desired output frequency. The
XMOS tools can be used to reprogram the PLL automatically by specifying the applica-
tion’s static clock configuration in a configuration file called the XN file that allows the
designer to specify the components immediately around the xcore processor(s).

Note: Throughout this document it is assumed that a clock is supplied on the XIN pin.
Instead of supplying a clock directly on XIN, one can instead use a crystal on XIN/XOUT,
as specified in the datasheet.

1.1 PLL Constraints

There are a number of constraints on the frequencies of clocks at different points on
the xcore.ai devices. These constraints must be met for the initial boot sequence, and if
either PLL is reprogrammed, for the reprogrammed values too:

· The input clock on XIN must be between 8 and 30 MHz
If using a crystal, it is suggested that a 24 or 25MHz crystal is used as they are readily
available, and are supported by the USB PHY.

· VCO frequency must be between 360 and 1800 MHz.

· The output frequency must be less than 800 MHz

· The comparator frequency must be between 220 kHz and 1800 MHz

1

AN02022: xcore.ai Clock Frequency Control

Core PLL

Secondar y PLL

xCORE0 divider

Switch divider

xCORE1 dividerREF clk divider

Oscillator

output divider

output divider

8 0 0 MHz

2 4 MHz

7 0 0
MHz

7 0 0
MHz

7 0 0
MHz

X1D11

clock blocks
1 0 0 MHz

÷2

Fractional
N divider

control

xCORE1

Switch

xCORE0

XINXOUT

PSW ITCH_PLL_CLK_DIVIDER

SSW ITCH_SW ITCH_CLK_DIVIDER

PSW ITCH_PLL_CLK_DIVIDERSSW ITCH_REF_CLK_DIVIDER

SSW ITCH_PLL_CTL

SSW ITCH_SS_APP_PLL_CTL

SSW ITCH_SS_APP_PLL
_FRAC_N_DIVIDER

PS_XCORE_CTRL0

PS_XCORE_CTRL0

App clock divider
SSW ITCH_SS_APP_CLK_DIVIDER

Core 1
por t 1D

out

in

Input divider
÷ (R+1)

Multiplier

x (F+1)÷2

output divider
÷ (OD+1)

Comparator frequency

Input clock

VCO frequency

Output clock

PLL

Internal
workings

MIPI cfg divider ÷2

MIPI demux divider ÷2 2 0 0
MHz

1 0 0
MHz

MIPI Rx PHY

MIPI demux
SSW ITCH_MIPI_CLK_DIVIDER

SSW ITCH_MIPI_CGF_CLK_DIVIDER

USB PHY

LPDDR divider ÷2 1 0 0
MHz

LPDDR

Controller

X0D58

X0D57

SW ITCH_DDR_CLK_DIVIDER

Core 0

por t 32A out[9]

out[8]

Fig. 1: PLL and Clock Dividers

· The device has a maximum operating frequency, which is specified in the datasheet
for the device.

· The tile frequency should not be less than the reference frequency.

1.2 Fundamentals of the PLL

There are three dividers within the PLL. R divides the input clock down. The next divider,
F, divides the output of the voltage controlled oscillator (VCO) stage down to the same
frequency as the output of the R divider; hence F acts as a multiplier. R and F together
determine the ratio between the VCO frequency and the input frequency. The output
divider OD divides the VCO to form the output clock of the PLL.

· f vco = (F + 1)/2 x 1 / (R+1) x f in

· f out = f vco / (OD + 1)

Note that in this document we use F, R, and OD to mean the value that is stored in the
register that controls the PLL. As such the value 1 is added to each of F, R, and OD before
they are being used as a multiplier or divider. The divide value is the register value plus 1.

R must be in the range 0..63 (enabling a divider of between 1 and 64 inclusive), OD must
be in the range 0..7 (enabling a divider of between 1 and 8 inclusive), and F must be in
the range 0..8191 (enabling a divider of between 1 and 8192 inclusive)

2

AN02022: xcore.ai Clock Frequency Control

2 Static configuration of the PLLs through the XN File

For the vast majority of applications, the tools can be used to set up the PLLs. The
application’s input oscillator frequency, system frequency, reference frequency and sec-
ondary frequency can be specified in the XN file as shown in table below . When the
application code is written to a flash device with XFLASH, the code to reprogram the PLL
to the desired system and reference frequencies will be added automatically into the
boot sequence. When run with XRUN or XGDB the PLL is automatically reprogrammed
via JTAG.

Attribute Default Description

Oscillator none Input frequency on the XIN pin. If this attribute is
specified, the system frequency and the reference
frequency are programmed using their specified
(or default) values. If this attribute is not speci-
fied, the boot configuration for the system and ref-
erence frequencies are used for the application.

SystemFrequency 500 Mhz The desired system frequency. The Oscillator at-
tribute must be specified if this attribute is speci-
fied.

ReferenceFre-
quency

100 Mhz The desired reference frequency. The Oscillator
attribute must be specified if this attribute is spec-
ified.

SecondaryFre-
quency

none If present, will cause Secondary PLL to be config-
ured by the tools. It will not configure the frac-
tional divider. The tools will choose the closest
frequency possible without using the fractional di-
vider. The Oscillator attribute must be specified if
this attribute is specified.

The frequency control attributes should be added to the XML-element <Node>within the
XN file. Frequencies should be specified with their unit of MHz, kHz or Hz, (for example
500MHz, 24576kHz or 6745800Hz). If the frequency control attributes are not specified
in the XN file, then the XTC tools will not modify the frequency control registers.
If the target frequency specified in the XN file for the system, reference or secondary
frequency cannot be met exactly for the application’s input frequency, a frequency close
to the target frequencywill be selected by the XTC tools and awarningwill be Issued. The
XFLASH tool always issues thewarningwhen it occurs, as does XGDB. XRUN only issues
the warning if it has been run with the --verbose switch. XGDB issues the warning
when the connect command is issued.
An Example XN file using frequency control attributes is listed below:
<?xml version="1.0" encoding="UTF-8"?>
<Network xmlns="http://www.xmos.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xmos.com http://www.xmos.com">

<Type>Board</Type>
<Name>xcore.ai Explorer Kit</Name>

<Declarations>
<Declaration>tileref tile[2]</Declaration>

</Declarations>

<Packages>
<Package id="0" Type="XS3-UnA-1024-FB265">
<Nodes>
<Node Id="0" InPackageId="0" Type="XS3-L16A-1024"

SystemFrequency="500MHz"
ReferenceFrequency="100MHz"
Oscillator="20Mhz">

<Tile Number="0" Reference="tile[0]"/>

(continues on next page)

3

AN02022: xcore.ai Clock Frequency Control

(continued from previous page)
<Tile Number="1" Reference="tile[1]"/>

</Node>
</Nodes>

</Package>
</Packages>
<JTAGChain>
<JTAGDevice NodeId="0"/>

</JTAGChain>
</Network>

2.1 Configuration of LPDDR clock frequency

If an LPDDRmemory is used, then its clock frequency can be configured by adding a Fre-
quency attribute to the ExtMem external memory specification. The tools automatically
decide how to set the LPDDR divider and its mux to achieve the desired frequency:

· If neither the System PLL (nor the Secondary PLL if supplied) can be used to perfectly
achieve the desired ExtMem Frequency, a warning and advice message will be raised
and an approximate frequency will be used.

· If the ExtMem Frequency can be perfectly achieved from either the SystemPLL or the
SecondaryPLL, the SystemPLLwill be chosen. This decision “frees up” the Secondary-
PLL for application, rather than system usage.

See the application note on adding external memory, AN02021: Using external memory
on xcore.ai, for details.

3 Configuring the system PLL of xcore.ai manually

The initial System PLL settings used after reset are:

· R = 0, no input divider

· F = 99, multiply by (99+1)/2 = 50

· OD = 2, output division by (2+1) = 3

This results in amultiplier of 50/3 = 16.667. Theminimumclock frequency allowed on the
XIN pin is 8MHz, whichmultiplies up to a 133MHz clock. Themaximum clock frequency
allowed on XIN is 30 MHz, which multiplies up to a system clock of 500 MHz. This is a
safe frequency for booting, typically the application program would override the settings
and run the device at, for example, 600 or 800 Mhz.

If a different PLL configuration is required, and the developer wants to configure the PLL
manually, then the new settings should be written to the PLL_CTRL register. (Please note
that the rest of this subsection can be ignored if specifying the clock through an XN
file.) The PLL_CTRL register has two bits that control how the new values are applied:
an nreset bit and an nlock bit, at bit numbers XS1_SS_PLL_CTL_NRESET_SHIFT (31) and
XS1_SS_PLL_CTL_NLOCK_SHIFT (30). Both bits are active low:

· By default, with both bits low, the chip will perform a soft reset with the new PLL val-
ues and the same boot code will execute again. It is important, therefore, that the boot
code should read the value of the PLL_CTRL register and compare it to the reconfig-
ured value. If there is a difference, then this is the first time the boot code has executed
and the new PLL settings should be written to PLL_CTRL, causing a reset. The second
time the boot code executes, the value read back from the PLL_CTRL register will be
the reconfigured value and the boot process can continue without setting the PLL.

· If the nreset bit is set high and the nlock bit is set low, then the PLL clock will be sus-
pended whilst the PLL adapts to the new settings. During this time, the chip will not
have a clock, and it will be inactive for a short period of time (500 input clocks; typically
a few microseconds).

· If both nreset and nlock bits are high, then the PLL will adapt whilst the chip is running.
This means that the clock will be imprecise for a short period of time.

4

http://www.xmos.com/file/an02021
http://www.xmos.com/file/an02021

AN02022: xcore.ai Clock Frequency Control

The last mode shall only be used if a small change is made to F; any change of more
than 5% requires at least one of the nlock or nreset bits to be cleared.
The easiest way to reprogram the PLL is to specify the application’s frequency require-
ments in the XN file and use the XMOS XTC tools to reprogram the PLL, as previously
discussed.

3.1 Frequency Control Registers for the System Frequency

To access the frequency control registers on the SSwitch and PSwitch, packets of data
must be constructed and communicated to the switches through a channel end.
Global PLL settings are controlled through theNode Configuration Registers. FromC, use
the write_sswitch_reg() and read_sswitch_reg() functions defined in xs1.h header file.
The fields that can be set in the Node Configuration Registers that control the clocks
are shown in the tables below. Node control register 6, XS1_SSWITCH_PLL_CTL_NUM,
controls the system PLL settings:

Field Bits Reset Description

NRESET 31 0 Do not reset on write
NLOCK 30 0 Do not wait for PLL to be locked
JTAG 29 0 Boot from JTAG - keep this bit low
BYPASS 28 0 Bypass output clock from input clock
OD 25:23 2 PLL output divider stage = OD+1
F 20:8 99 Multiplier stage of the PLL = (F+1)/2
R 5:0 0 PLL input divider stage = R+1

Node control register 7, XS1_SSWITCH_CLK_DIVIDER_NUM, controls the divider for the
xCONNECT switch:

Field Bits Reset Description

SSDIV 15:0 0 System switch clock divider = SSDIV+1.
The reset value produces 500MHz for a
500MHz system clock

Node control register 8, XS1_SSWITCH_REF_CLK_DIVIDER_NUM, controls the divider for
the reference clock:

Field Bits Reset Description

REFDIV 15:0 4 Reference clock divider = REFDIV+1.
The reset value produces 100MHz for a
500MHz system clock

Warning: Writing to the PLL_CTRL register (0x6) may reset the xCORE tile. To reset
a multi-tile device, make sure that tile 0 is reset last after any other tiles.

Settings on an individual tile basis are controlled through Tile Configuration Registers.
From C use the write_pswitch_reg() and read_pswitch_reg() functions defined in xs1.h.
The field that can be set to control the clock in the Tile Configuration Registers is shown

5

AN02022: xcore.ai Clock Frequency Control

in the table below. Tile control regiser 6,XS1_PSWITCH_PLL_CLK_DIVIDER_NUM, controls
the divider for the tile:

Field Bits Reset Description

XCDIV 15:0 0 xcore.ai clock divider = XCDIV+1. The
reset value produces 500MHz for a
500MHz system clock

Setting the tile clock divider does not take effect until the tile itself allows the divider to
be used, which is achieved by calling:
setps(XS1_PS_XCORE_CTRL0, 0x10)

The following sections show examples of setting the PLL to different values.

3.2 24MHz oscillator

For the initial boot, the system clock will be 400MHz with an 80 MHz reference clock.
To get the xCORE to 500MHz the following are required: R = 0, F = 124, OD = 2. Write
0x01007C00 to SSCTRL, PLL_CTRL (0x6) register to bring the PLL output up to, for exam-
ple, 500MHz, with code similar to the following:

// This code should be called early on in main once
#define PLL_VAL_24MHz 0x01007C00
unsigned oldValue;
read_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM, &oldValue);
if (oldValue != PLL_VAL_24MHz) {

write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM, PLL_VAL_24MHz);
}

3.3 12MHz oscillator

For the initial boot, the system clock will be 200MHz, with a 40MHz reference clock. The
following are required: R = 0, F = 249, OD = 2. Write 0x0100F700 to SSCTRL, PLL_CTRL
(0x6) register to bring the PLL output up to 400MHz, with code similar to the following:

// This code should be called early on in main once
#define PLL_VAL_12MHz 0x0100F700
unsigned oldValue;
read_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM, &oldValue);
if (oldValue != PLL_VAL_12MHz) {

write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM, PLL_VAL_12MHz);
}

3.4 Fast Reference Clock

There may be situations where you want to increase the reference clock. The highest
reference clock supported is half the system clock frequency. You can achieve this by
setting REFDIV to 1 using the following code:

write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_REF_CLK_DIVIDER_NUM, 0x01);

This will adjust all timers and clock-blocks (clocked from the reference clock) to run at
half the system frequency. For example, if your system frequency is 600 MHz, then
timers and ports will now run on a 300MHz clock that can be divided down to 150MHz,
75MHz and so on.

3.5 Slow switch clock

For applications where only a single xcore.ai tile is used, the SSwitch is only used for
configuration purposes. Once the system is configured, the SSwitch clock can be sub-

6

AN02022: xcore.ai Clock Frequency Control

stantially reduced to save on dynamic power. 1MHz is a good option for a low power
SSwitch clock because the SSwitch power is dominated by the static power at this fre-
quency.

To reduce the SSwitch clock to 1MHz with a system clock of 500MHz, set SSDIV to 499
using the following code:

write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_CLK_DIVIDER_NUM, 499);

3.6 xcore Tile Clock 200MHz

If your application does not need to run the xcore tile at full speed towork, dynamic power
can be saved by running the tile at a slower rate and activating the local divider.

For example, if you wish to run a tile at 250MHz from a system frequency of 500MHz,
set XCDIV to 1 and enable the local divider by writing 0x10 to XCORE_CTRL0:

write_pswitch_reg(get_local_tile_id(), XS1_PSWITCH_PLL_CLK_DIVIDER_NUM, 1);
setps(XS1_PS_XCORE_CTRL0,0x10);

Note that without the SETPS the divider value will be ignored.

3.7 Low power configurations

For low power configurations, the PLLs need to be switched to a very low frequency. In
order to keep a system clock running, the system PLL must first be set into a bypass
mode, feeding the XIN clock directly into the system clock. After that, the System PLL
can be set to have a very low F value and it will enter a low power mode. The code to
perform this is shown in two functions below:
unsigned pllCtrlVal;

void pll_bypass_on(void) {
#define PLL_VAL_BYPASS 0xE0000000
setps(XS1_PS_XCORE_CTRL0,0x10);
read_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM, &pllCtrlVal);
write_pswitch_reg(get_local_tile_id(), XS1_PSWITCH_PLL_CLK_DIVIDER_NUM, 5);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM,

pllCtrlVal | PLL_VAL_BYPASS);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM,

(pllCtrlVal& ~0xFFF)| PLL_VAL_BYPASS);
}

void pll_bypass_off(void) {
write_pswitch_reg(get_local_tile_id(), XS1_PSWITCH_PLL_CLK_DIVIDER_NUM, 0);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM,

pllCtrlVal | PLL_VAL_BYPASS);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_PLL_CTL_NUM,

pllCtrlVal | 0xC0000000);
}

This will reduce the power consumption on the PLL_AVDD pin to a negligible value, and
the dominant power will be leakage and any dynamic power used. This mode enables
the device to comply with USB suspend.

More details on low-power operation are in the application note on power estimation,
AN02023: xcore.ai Power Consumption Estimation.

4 Configuring the Secondary PLL

The Secondary PLL (or Application PLL) is a PLL with an optional software controlled
fractional divider. The clock output can be divided down to as low as 171 Hz. It can be
used for generating clocks inside the device, or to create an application clock out of the
device. The Secondary PLL allows for one extra frequency to be created. Hence, the
secondary PLL can be used for any one of the examples below.

When the secondary PLL is enabled, and the divider is enabled, the output is routed to pin
X1D11 and port 1D on core 1 as is shown in the figure below. This makes the secondary
PLL visible on a pin on the outside, and on tile 1 on port 1D. When enabled, tile 1 can input

7

http://www.xmos.com/file/an02023

AN02022: xcore.ai Clock Frequency Control

the clock on port 1D. If the clock is required on other tiles, then the clock should be routed
to one-bit ports on those tiles externally.

xCore Tile 1
X1D11 PORT_1D

Secondary PLL
disabled

xCore Tile 1
X1D11 PORT_1D

Secondary PLL
used for app

xCore device xCore device

Fig. 2: Using the secondary PLL as an application clock.

The setup of the Secondary PLL is almost identical to the setup of the primary PLL. The
main differences are:
· The output divider always has an extra divide by 2 included, to guarantee a 50/50 duty

cycle.
· The Secondary PLL must be enabled before it can be configured.
· The Secondary PLL has an an optional software controlled fractional divider.
The XTC tools can set up the Secondary PLL as discussed before, but the fractional
control has to be enabled manually.

4.1 Setting up the Secondary PLL manually

The secondary PLL is set-up in a similar manner to the System PLL, using register 15
rather than register 6. The differences are:
· The secondary PLL must be enabled by clearing bit 27 before writing to the F and R

parts of the Secondary PLL.
· The nreset bit has no meaning, but similar to setting up the System PLL, if the fre-

quency is changed a large amount, the output should not be used until the PLL has
locked.

The output frequency of the Secondary PLL is the input frequency divided by (R+1) and
(OD+1) and multiplied by (F+1)/2. OD, F and R must be chosen so that R is less than 64,
F is less than 8192, and OD is less than 8. Also, the VCO frequency should be between
360 and 1800 MHz.
A flag allows the user to choose between two input frequencies: choices are either us-
ing the clock input to the device as the input to the secondary PLL, or the output of the
primary PLL. This enables a large slew of frequencies to be created.
For example, R and OD can be set to 4 (dividing by 25), and F set to 60 (multiply by 61/2)
by writing the following code:

#define PLL_VAL 0x02003C04
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, 0); // Enable
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, PLL_VAL);

With a 24 MHz clock, this will give a 24/25*61 = 29.28 MHz output clock.

4.2 Using the fractional divider

The Secondary PLL has an optional fractional divider, register SS-
WITCH_APP_PLL_FRAC_N_DIVIDER. When enabled, the fractional divider will count
a period of divided input clocks, and over part of this period it will cause the secondary
PLL to use a divider F+1 rather than F.
The period p and fraction f are set through the control register for the fractional divider,
and will result in an output frequency that is multiplied by (F+1+f/p)/2 rather than (F+1)/2.
f must be less than p at all times.

8

AN02022: xcore.ai Clock Frequency Control

For example, supposing a crystal of 20 MHz, and the desired output frequency of 24.576
MHz. A multiplier of 768 (3 * 2^8), and a divider of 625 is required. A division by 625
cannot be achieved given the limitations of the PLL.

Instead, a division of 25 can be created, and amultiply by 30.72. That is, set bothR andOD
to 4, as (4+1)*(4+1) = 25, and then setting F as follows: (F+1+f/p)/2 = 30.72, hence F+1+f/p
= 61.44, hence F=60, f=44 and p=100. Although thiswill work, this can be improved further
as large values of p lead to a lot of jitter. The common factor of four can be divided out
in both p and f, and use f=11, p=25.

This is written to the registers with the following code:
#define PLL_VAL_2 0x02003C04
#define PLL_FRACT_VAL_2 0x80000B19
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, 0); // Enable
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, PLL_VAL_2);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_FRAC_N_DIVIDER_NUM, PLL_FRACT_VAL_2);

Fractional control will create jitter - the smaller the value of p, the less jitter there will be.
Another solution with the same constraints would be: to divide by 20, and multiply by
38.4. That is, (F+1+f/p)/2 = 38.4, hence F+1+f/p = 76.8, hence F=75, f=4 and p=5:

#define PLL_VAL_1 0x02004B03
#define PLL_FRACT_VAL_1 0x80000405
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, 0); // Enable
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_CTL_NUM, PLL_VAL_1);
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_PLL_FRAC_N_DIVIDER_NUM, PLL_FRACT_VAL_1);

4.3 Keeping jitter low

In order to keep jitter low:

· Keep reference(input) divider as low as possible (to keep comprator frequency as high
as possible)

· Keep feedback divider as low as possible.

· Keep VCO freq as high as possible.

· If you use the fractional-divider, keep p as low as possible.

4.4 Using the Secondary PLL for a PHY

One use of the Secondary PLL is to create a clock for one of the integrated PHYs or
controllers in the device. Both the MIPI PHY and the LPDDR controller can be clocked
from the Secondary PLL. This enables the external memory interface to be run at a high
speed (eg, 166 MHz), whilst running the core at a lower speed (say, 150 MHz).

To use the Secondary PLL as an LPDDR clock with a divide of 4 use the following code:
#define DDR_CLK_VAL 0x80000001
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_DDR_CLK_DIVIDER_NUM, DDR_CLK_VAL);

To use the Secondary PLL as a MIPI clock with a divide of 2 use the following code:
#define MIPI_CLK_VAL 0x80000000
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_MIPI_CLK_DIVIDER_NUM, MIPI_CLK_VAL);

If the secondary PLL is used to generate a specific clock for one of these PHYs, the other
PHY (if used) will need to be clocked using the core clock.

4.5 Using the Secondary PLL as an Application Clock

One use of the Secondary PLL is to create a clock for an external device, for example an
audio CODEC or a microphone. To use the Secondary PLL as an application clock with
a divide of 4 use the following code:

9

AN02022: xcore.ai Clock Frequency Control

#define APP_CLK_VAL 0x80000003
write_sswitch_reg(get_local_tile_id(), XS1_SSWITCH_SS_APP_CLK_DIVIDER_NUM, APP_CLK_VAL);

Note: Setting the top bit selects the application clock to be derived from the Secondary
PLL (otherwise the primary PLL will be divided), and that clearing bit 16 will enable the
application clock divider, and also change the function of pin X1D11.

Normally pin X1D11 is connected to port 1D on core 1, but when the application clock
divider is configured as shown above, the application clock will be driven on this pin, and
on port 1D of tile 1. By connecting port 1D on tile 1 to a clock block on tile 1, that clock
block can be used as a clock source for other ports, and that clock is also available to
external devices.

5 Further reading

· The XS3 architecture manual

· XU316-1024-QF60A datasheet

· XU316-1024-QF60B datasheet

· XU316-1024-TQ128 datasheet

· XU316-1024-FB265 datasheet

· xcore.ai Power Consumption Estimation

· lib_sw_pll: A software library that, using the xcore.ai Application PLL, provides a PLL
that will generate a clock that is phase-locked to an input clock.

10

https://www.xmos.com/?s=XM-014007-PS
https://www.xmos.com/?s=XM-014034-PC
https://www.xmos.com/?s=XM-014429-PC
https://www.xmos.com/?s=XM-014532-PC
https://www.xmos.com/?s=XM-014035-PC
http://www.xmos.com/file/an02023
https://www.xmos.com/file/lib_sw_pll

AN02022: xcore.ai Clock Frequency Control

6 Document history

6.1 AN02003 Changelog

1.1.0

· ADDED: Clarification of Secondary PLL differences

· ADDED: Missing constraints regarding PLL configuration

· ADDED: Clarification on F, R, OD values vs register values

· ADDED: Further emphasis on valid range for on F, R, OD values

· ADDED: Section with guidance on keeping PLL output jitter low

· CHANGED: Various minor documentation improvements

· FIXED: PLL adaption period corrected from 50 to 500 input clocks

· FIXED: Updated diagram in Fig 1 to represent a valid configuration

1.0.0

· Initial public release

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

11

	PLL and Clock Divider Overview
	Static configuration of the PLLs through the XN File
	Configuring the system PLL of xcore.ai manually
	Configuring the Secondary PLL
	Further reading
	Document history

