
The XMOS XS3 Architecture

Publication Date: 2024/10/6
Document Number: XM-014007-PS v2.0.0

The XMOS XS3 Architecture

IN THIS DOCUMENT

1 Introduction . 2
2 Interconnect . 2
3 Concurrent Threads . 5
4 The XCORE Instruction Set . 6
5 Instruction Issue and Execution . 8
6 Instruction Set Notation and Definitions . 10
7 Data Access . 12
8 Expression Evaluation . 14
9 Branching, Jumping and Calling . 15
10 Resources and the Thread Scheduler . 16
11 Concurrency and Thread Synchronisation . 17
12 Communication . 19
13 Locks . 21
14 Timers . 21
15 Ports, Input and Output . 22
16 Memory model . 29
17 Events, Interrupts and Exceptions . 30
18 Initialisation and Debugging . 34
19 Specialised Instructions . 35
20 Floating point arithmetic . 37
21 Vector unit . 39
22 XCore XS3 Instructions . 46
23 XCore XS3 Instruction Format Specification . 301
24 XCore XS3 Exceptions . 325
25 XCore XS3 Lanes . 337

1 Introduction

xcore.ai products combine a number of XCORE processors, each with its own memory,
on a single chip. The programmable processors are general purpose in the sense that
they can execute languages such as C; they also have direct support for concurrent pro-
cessing (multi-threading), communication and input-output. A high-performance switch
supports communication between the processors, and inter-chip XLINKs are provided
so that systems can easily be constructed from multiple chips.

xcore.ai products are intended tomake it practical to use software to performmany func-
tions which would normally be done by hardware; an important example is interfacing
and input-output controllers.

xcore.ai products are based on the XS3 architecture. The XS3 architecture is a evolution
of the XS2 architecture. The main differences with the XS2 architecture are:

· Vector operations (Vector unit).

· Floating point operations (Floating point arithmetic).

· External memory (External memory and Software defined memory).

There are also extra instructions for counting leading sign bits, and defining shift opera-
tions with negative values..

2 Interconnect

The interconnect provides communication between all XCORES on the chip (or system if
there is more than one chip). In conjunction with simple programs, it can also be used to

2

The XMOS XS3 Architecture

support access to the memory on any XCORE from any other XCORE, and to allow any
XCORE to initiate programs on any other XCORE.

The interface between an XCORE and the interconnect is a group of XLINKs which carry
control tokens and data tokens. The data tokens are simply bytes of data; the control
tokens are as follows.

· Tokens 0-127 (Application tokens). These are intended for use by compilers or ap-
plications software to implement streamed, packetised and synchronised communi-
cations, to encode data-structures and to provide run-time type-checking of channel
communications.

· Tokens 128-191 (Special tokens) are architecturally defined and may be interpreted by
hardware or software. They are used to give standard encodings of common data
types and structures.

· Tokens 192-223 (Privileged tokens) are architecturally defined and may be interpreted
by hardware or privileged software. They are used to perform system functions in-
cluding hardware resource sharing, control, monitoring and debugging. An attempt to
transfer one of these tokens to or from unprivileged software will cause an exception.

· Tokens 224-255 (Hardware tokens) are only used by hardware; they control the phys-
ical operation of the link. An attempt to transfer one of these tokens using an output
instruction will cause an exception.

Four links connect eachXCOREdirectly to an on-chip switchwhich provides non-blocking
communication between the XCOREs. The switch also provides off-chip XLINKs allow-
ing multiple XS3, XS2, and XS1 chips to be combined in a system. The structure and
performance of the XLINK connections in a system can be varied to meet the needs of
applications.

The links between XCORES and switches and the XLINKs can be partitioned into inde-
pendent networks. This can be used, for example, to provide independent networks car-
rying long and short messages or to provide independent networks for control and data
messages.

Messages are routed to channel-ends on a specific processor through the XLINKs using
amessage header which contains the number of the destination chip, the number of the
destination processor and the number of a destination channel-endwithin the processor.
These can be encoded using either 24 bits (16 bits chip and processor address, 8 bits
channel address) or 8 bits (3 bits chip and processor address, 5 bits channel address).

Each switch has a configurable identifier and can also be configured to route messages
according to the first component of each message header. It compares this bit-by-bit
with its own switch identifier; if all bits match it then uses the second component to
route the message to the destination XCORE. If the bits do not match, then it uses the
number of the first non-matching bit to select an outgoing direction. The direction of
each XLINK is set when the switch is configured and it is possible for several XLINKs
to share the same direction thereby providing several independent routes between two
switches.

The header establishes a route through the interconnect and subsequent tokens will fol-
low the same route until one of two special control tokens is sent: these are end-of-
message (END) and pause (PAUSE).

3

The XMOS XS3 Architecture

2.1 XLINK Ports

The ports used for inter-chip XLINK communication use a transition-based non return-
to-zero signalling scheme. Bits are sent at a rate derived from the XS3 clock; this rate
can be programmed to meet applications requirements.

The XLINKs can be switched between a fast, wide mode and a slower, serial mode. Two
encoding schemes are used.

2.2 Serial XLINK

The serial XLINK uses two data wires in each direction. A transition on Wire 1 represents
a one bit and a transition on Wire 0 represents a zero bit. The first bit of a control token
is a one; the first bit of a data token is a zero; the next 8 bits are the token value. The two
signal wires are both at rest between tokens and the final bit of each token is chosen to
return the non-zero signal wire to the rest state; one of the signal wires must be non-zero
at this point as nine bits have been sent.

On the serial link, the END and PAUSE tokens are coded directly as application tokens 1
and 2.

The link also uses several hardware tokens. The credit tokens are transmitted by the
receiver to control the flow of data; each CREDITn token issues credit to the sender to
allow it to send n tokens. The HELLO token solicits initial credits, setting up a half-duplex
link. To bring up a link, both sides have to issue a HELLO, and both sides have to respond
to the HELLO with a CREDITn token.

token use

224 CREDIT8
225 CREDIT64
228 CREDIT16
230 HELLO

2.3 Fast XLINK

The fast XLINK uses 1-of-5 codes with five data wires in each direction; a symbol is trans-
mitted by changing the state of one of thewires. Each symbol has the followingmeaning:

symbol meaning

Wire 0 changes value 00
Wire 1 changes value 01
Wire 2 changes value 10
Wire 3 changes value 11
Wire 4 changes escape

A sequence of four symbols are used to encode each token. In the following e is an
escape and v is one of the values 00, 01, 10, 11.

4

The XMOS XS3 Architecture

symbol sequence use

v v v v 256 data tokens
e v v v 64 control tokens 192-255
v e v v 64 control tokens 128-191
v v e v 64 control tokens 64-127
v v v e 64 control tokens 0-63

There are some additional codes in which more than one symbol is an escape. These
are used to code certain control tokens.

symbol sequence use

e e v v END tokens
v v e e PAUSE tokens
e v v e NOP (return to zero) tokens
e 11 11 v NOP (return to zero) tokens
e 00 e 00 CREDIT8
e 01 e 01 CREDIT64
e 10 e 10 HELLO
e 11 e 11 CREDIT16

Because each token contains four symbols, at the end of each token there are always an
even number of signal wires in a non-zero state. To send an END or PAUSE, one of the
END or PAUSE tokens is chosen to leave at most two signal wires in a non-zero state;
this can be followed by a NOP token which is chosen to leave all of the signal wires in a
zero state.

The encoding of the credit and reset tokens has been chosen so that the state of the
signal wires after the token is the same as it was before the token.

3 Concurrent Threads

A single XCore enables a number of tasks to execute concurrently in threads. Each thread
executes a series of instructions that follow a conventional three register operandmodel.
Threads have access to resources that enable a thread to interact with other threads or
the outside world.

Each XCORE has hardware support for executing a number of concurrent threads. This
includes:

· a set of registers for each thread.

· a thread scheduler which dynamically selects which thread to execute.

· a set of synchronisers to synchronise thread execution.

· a set of channels used for communication with other threads.

· a set of ports used for input and output.

· a set of timers to control real-time execution.

5

The XMOS XS3 Architecture

· a set of clock generators to enable synchronisation of the input-outputwith an external
time domain.

· a set of hardware locks to enable low level locking

Instructions are provided to support initialisation, termination, starting, synchronising
and stopping threads; also there are instructions to provide input-output and inter-thread
communication.

The set of threads on each XCORE can be used:

· to implement input-output controllers executed concurrently with applications soft-
ware.

· to allow communications or input-output to progress together with processing.

· to allow latency hiding in the interconnect by allowing some threads to continue whilst
others are waiting for communication to or from remote XCOREs.

The instruction set includes instructions that enable the threads to communicate and
perform input and output. These:

· provide event-driven communications and input-output with waiting threads automat-
ically descheduled.

· support streamed, packetised or synchronised communication between threads any-
where in a system.

· enable the processor to idle with clocks disabled when all of its threads are waiting so
as to save power.

· allow the interconnect to be pipelined and input-output to be buffered.

4 The XCORE Instruction Set

The main features of the instruction set used by the XCORE processors are as follows.

· Short instructions are provided to allow efficient access to the stack and other data
regions allocated by compilers; these also provide efficient branching and subroutine
calling. The short instructions have been chosen on the basis of extensive evaluation
to meet the needs of modern compilers.

· The memory is byte addressed; however all accesses must be aligned on natural
boundaries so that, for example, the addresses used in 32-bit loads and stores must
have the two least significant bits zero. The memory is little endian.

· The processor supports a number of threads each of which has its own set of regis-
ters. Some registers are used for specific purposes such as accessing the stack, the
data region or large constants in a constant pool.

· Input and output instructions allow very fast communications between threads within
an XCORE and between XCOREs. They also support high speed, low-latency, input and
output. They are designed to support high-level concurrent programming techniques.

Most instructions are 16-bit. Many instructions use operands in the range 0 … 11 as this
allows sufficient three-address instructions to be encoded using 16 bit instructions. In-
struction prefixes are used to extend the range of immediate operands and to provide
more inter-register operations (and inter-register operations with more operands). The
prefixes are:

6

The XMOS XS3 Architecture

· PFIX which concatenates its 10-bit immediate with the immediate operand of the next
16-bit instruction.

· EOPR which concatenates its 11-bit operation set with the following instruction.

The prefixes are inserted automatically by compilers and assemblers.

The normal state of a thread is represented by 12 operand registers, 4 access registers
and 2 control registers.

The twelve operand registers r0 … r11 are used by instructions which perform arithmetic
and logical operations, access data structures, and call subroutines.

The access registers are:

register number use

cp 12 constant pool pointer
dp 13 data pointer
sp 14 stack pointer
lr 15 link register

The control registers are:

register number use

pc 16 program counter
sr 17 status register

Each thread has seven additional registers which have very specific uses:

register number use

spc 18 saved pc
ssr 19 saved status
et 20 exception type
ed 21 exception data
sed 22 saved exception data
kep 23 kernel entry pointer
ksp 24 kernel stack pointer

The status register sr contains the following information:

7

The XMOS XS3 Architecture

bit number use

eeble 0 event enable
ieble 1 interrupt enable
inenb 2 thread is enabling events
inint 3 thread is in interrupt mode
ink 4 thread is in kernel mode
reserved 5 do not use
waiting 6 thread waiting to execute current instruction
fast 7 thread enabled for fast input-output
di 8 thread is running in dual issue mode
kedi 9 thread switches to dual issue on kernel entry
hipri 10 thread is in high priority mode

5 Instruction Issue and Execution

The processor is implemented using a short pipeline to maximise responsiveness. It
is optimised to provide deterministic execution of multiple threads. There is no need
for forwarding between pipeline stages and no need for speculative instruction issue
and branch prediction. The memory is 128-bit wide, enabling sufficient instructions to
be fetched simultaneously to enable the processor to run at full speed using a unified
memory system. Long sequences of memory accesses require an occasional instruc-
tion fetch, consuming one extra thread cycle.

5.1 Scheduler Implementation

The threads in an XCORE are intended to be used to perform several simultaneous real-
time tasks such as input-output operations, so it is important that the performance of an
individual thread can be guaranteed. The schedulingmethod used allows any number of
threads to share a single unified memory system and input-output system whilst guar-
anteeing that with n threads able to execute, each will get at least 1/n processor cycles.
In fact, it is useful to think of a thread cycle as being n processor cycles.

From a software design standpoint, this means that the minimum performance of a
thread can be calculated by counting the number of concurrent threads at a specific
point in the program. In practice, performance will almost always be higher than this
because individual threads will sometimes be delayed waiting for input or output and
their unused processor cycles can be taken by other threads. Further, the time taken to
re-start a waiting thread is always at most one thread cycle. (Note that the use of priority
threads will cause a slightly different but still predictable performance pattern, see High
priority threads.)

The set of n threads can therefore be thought of as a set of virtual processors each with
clock rate at least 1/n of the clock rate of the processor itself. The only exception to this
is that if the number of threads is less than the pipeline depth p, the clock rate is at most
1/p.

Each thread has a 256-bit instruction buffer which is able to hold sixteen short instruc-
tions or eight long ones. Instructions are issued from the runnable threads in a round-
robin manner, ignoring threads which are not in use or are paused waiting for a synchro-
nisation or input-output operation.

The pipeline has a memory access stage which is available to all instructions. The rules
for performing an instruction fetch are as follows.

8

The XMOS XS3 Architecture

· Any instruction which requires data-access performs it during the memory access
stage.

· Branch instructions fetch their branch target instructions during the memory access
stage unless they also require a data access (in which case they will leave the instruc-
tion buffer empty).

· Conditional branches only ever fetch instructions around the target address.

· Any other instruction (such as ALU operations) uses the memory access stage to per-
form an instruction fetch. This is used to load the thread’s own instruction buffer
unless it is full.

· If the instruction buffer is empty when an instruction should be issued, a special fetch
no-op is issued; this will use its memory access stage to load the issuing thread’s
instruction buffer.

There are very few situations in which a fetch no-op is needed, and these can often be
avoided by simple instruction scheduling in compilers or assemblers. An obvious exam-
ple is to break long sequences of loads or stores by interspersing ALU operations.

Certain instructions cause threads to become non-runnable because, for example, an
input channel has no available data. When the data becomes available, the thread will
continue from the point where it paused.

To achieve this, each thread has an individual ready request signal. The thread identifier
is passed to the resource (port, channel, timer etc) and used by the resource to select
the correct ready request signal. The assertion of this will cause the thread to be re-
started, normally by re-entering it into the round-robin sequence and re-issuing the input
instruction. Inmost situations this latency is acceptable, although it results in a response
time which is longer than the virtual cycle time because of the time for the re-issued
instruction to pass through the pipeline.

To enable the virtual processor to perform one input or output per virtual cycle, a fast-
mode is provided. When a thread is in fast-mode, it is not de-scheduled when an instruc-
tion can not complete; instead the instruction is re-issued until it completes.

Events and interrupts are slightly different from normal input and output, because a vec-
tor must also be supplied and the target instruction fetched before execution can pro-
ceed. However, the same ready request system is used. The result will be to make the
thread runnable but with an empty instruction buffer.

A variation on the fetch no-op is the event no-op; this is used to access the resourcewhich
generated the event (or interrupt) using the thread identifier; the resource can then supply
the appropriate vector in time for it to be used for instruction fetch during the event no-op
memory access stage. This means that at most one virtual cycle is used to process the
vector, so there will be at most two virtual cycles before instruction issue following an
event or interrupt.

The XCORE scheduler therefore allows threads to be treated as virtual processors with
performance predicted by tools. There is no possibility that the performance can be
reduced below these predicted levels when virtual processors are combined.

5.2 Single and Dual Issue

An XS3 pipeline has two lanes: the memory lane can execute all memory instructions,
branches, and basic arithmetic, and the resource lane can execute all resource instruc-
tions and basic arithmetic. Each thread can chose to execute in dual issuemode, in which
case the processor will execute two 16-bit instructions or a single 32-bit instruction in a

9

The XMOS XS3 Architecture

single thread cycle. In dual issue mode, all instructions must be aligned: 32-bit instruc-
tions must be 32-bit aligned and pairs of 16-bit instructions must be aligned on a 32-bit
boundary. The program counter is always aligned to a 32-bit boundary and points to an
issue slot rather than to an individual instruction. The 16 bit value stored at addresses
4n+2 and 4n+3 encodes an instruction for the memory lane. The 16-bit value stored at at
addresses 4n+0 and 4n+1 encodes an instruction for the resource lane. Long instructions
are stored in a word at addresses 4n+0…4n+3.

Where two instructions are executed simultaneously, any destination operands should
be disjoint. If they are not disjoint, an exception will be raised.

When the resource lane stalls a thread, the other lane will be stalled also. This is normally
not observable, except when an interrupt or an exception is raised. On an interrupt or
exception, no registers will be overwritten, and the PC will point to the instruction to be
reexecuted.

If an instruction in one of the two lanes causes an exception, then this exception is
reported. If the other lane is executing an instruction then this second instruction is
aborted. If the instructions in both lanes cause an exception, then only one exception is
reported, and both instructions are aborted, but any memory store which is in progress
will complete. On an exception, the savedPC value is set to the instruction that caused
the exception.

A single bit in the status register, DI, enables dual-issue. If this bit is not set, then instruc-
tions flow through one lane at a time, and mis-aligned 32-bit instructions are allowed.
The dual-issue-bit is set and cleared on a per function basis. The bit is saved in the low-
est bit of LR when a function call is taken. It is restored on a RETSP instruction. The
dual-issue-bit is set on executing a DUALENTSP x instruction, and cleared on executing
an ENTSP x instruction. This enables functions to be dual or single issue.

5.3 High priority threads

Threads can be set to be high priority. If no high priority threads are runnable, then a low
priority thread will be scheduled if one is runnable. If high priority threads are runnable,
then they will be scheduled, but at least one low priority thread will be executed on every
iteration of the high priority queue. This means that all threads are always guaranteed
progress.

Threads start as low-priority and only threads that require a very short turn around time
or maximum throughput will be high priority.

6 Instruction Set Notation and Definitions

In the following description

10

The XMOS XS3 Architecture

Identifier Meaning

Bpw is the number of bytes in a word
bpw is the number of bits in a word
mem represents the memory
pc represents the program counter
sr represents the status register
sp represents the stack pointer
dp represents the data pointer
cp represents the constant pool pointer
lr represents the link register
r0 … r11 represent specific operand registers
x (a single small letter) represents one of r0 … r11
X (a single large letter) represents one of r0 … r11, sp, dp, cp, lr
u_s is a small unsigned source operand in the range 0 … 11
bitp is one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32 encoded as a u_s
u16 is a 16-bit source operand in the range 0 … 65535
u20 is a 20-bit source operand in the range 0 … 1048575
iw is the issue-width in bytes, 2 (for single issue) or 4 (for dual issue)

Note that when the program counter (pc) is used by an instruction, it is always pointing
to the next instruction. Instructions that access the location of the current instruction
use pc_old.

The operators used in this manual are:

11

The XMOS XS3 Architecture

Opera-
tor

Meaning

|| logical or
| bitwise or
&& logical and
& bitwise and
+, -, x , //,
%

arithmetic operations; full precision unsigned integer, unless specified as
signed

2^n integer power
l <- r assignment of r to l; if r has more bits than l, then the most significant bits

of r will be ignored
! logical not
~ bitwise not
@ bitwise xor
mem[x] An entity at memory address x
y[bit x] A single bit of y
y[bits
x..z]

A slice of y comprising x-z+1 bits; x >= z

x:y Concatenates x and y, ie, x « bpw | y
forall x
in y

for each value x in the set y

Some useful functions are

· zext(x, n) = x & (2^n - 1): zero extend

· sext(x, n) = -(2^(n-1) & x) | x: sign extend

6.1 Instruction Prefixes

If the most significant 10 bits of a u16 or u20 instruction operand are non-zero, a 16-bit
prefix (PFIX) preceding the instruction is used to encode them. The least significant bits
are encoded within the instruction itself.

A different kind of 16-bit prefix (EOPR) is used to encode instructions with more than
three operands, or to encode the less common instructions.

7 Data Access

7.1 Access to words

The data access instructions fall into several groups. One of these provides access via
the stack pointer.:
LDWSP D <- mem[sp + u16 x Bpw] load word from stack
STWSP mem[sp + u16 x Bpw] <- S store word to stack
LDAWSP D <- sp + u16 x Bpw load address of word in stack

Another is similar, but provides access via the data pointer.:
LDWDP D <- mem[dp + u16 x Bpw] load word from data
STWDP mem[dp + u16 x Bpw] <- S store word to data
LDAWDP D <- dp + u16 x Bpw load address of word in data

12

The XMOS XS3 Architecture

Access to constants and program addresses is provided by instructions which either
load values directly or load them from the constant pool.:
LDC D <- u16 load constant
LDWCP D <- mem[cp + u16 x Bpw] load word from constant pool
LDAWCP r11 <- cp + u16 x Bpw] load word address in constant pool
LDWCPL r11 <- mem[cp + u20 x Bpw] load word from constant pool long
LDAPF r11 <- pc + u20 x iw load address in program forward
LDAPB r11 <- pc - u20 x iw load address in program backward

Access to data structures is provided by instructions which use any of the operand reg-
isters as a base address, and combine this with a scaled offset. In the case of word
accesses, the operand may be a small constant or another operand register, and the
instructions are as follows:
LDWI d <- mem[b + u_s x Bpw] load word
STWI mem[b + u_s x Bpw] <- s store word
LDAWFI d <- b + u_s x Bpw load address of word forward
LDAWBI d <- b - u_s x Bpw load address of word backward

LDW d <- mem[b + i x Bpw] load word
STW mem[b + i x Bpw] <- s store word
LDAWF d <- b + i x Bpw load address of word forward
LDAWB d <- b - i x Bpw load address of word backward

7.2 Access to sub-words

In the case of access to 16-bit quantities, the base address is combined with a scaled
operand, which must be an operand register. The least significant bit of the resulting
address must be zero. The 16-bit item is loaded and sign extended into a word:
LD16S d <- sext(mem[b+i x 2],16) load 16-bit signed item
ST16 mem[b + i x 2] <- s store 16-bit item
LDA16F d <- b + i x 2 load address of 16-bit item forward
LDA16B d <- b - i x 2 load address of 16-bit item backward

In the case of access to 8-bit quantities, the base address is combined with an unscaled
operand, which must be an operand register. The 8-bit item is loaded and zero extended
into a word.:
LD8U d <- zext(mem[b + i], 8) load byte unsigned
ST8 mem[b + i] <- s store byte

Access to part words, including bit-fields, is provided by a small set of instructions which
are used in conjunction with the shift and bitwise operations described below. These
instructions provide for mask generation of any length up to 32 bits, sign extension and
zero-extension from any bit position, and clearing fields within words prior to insertion of
new values.:
MKMSK d <- 2^s - 1 make mask
MKMSKI d <- 2^bitp - 1 make mask immediate
SEXT d <- sext(d, s) sign extend
SEXTI d <- sext(d, bitp) sign extend immediate
ZEXT d <- zext(d, s) zero extend
ZEXTI d <- zext(d, bitp) zero extend immediate
ANDNOT d <- d && ~ s and not (clear field)

The SEXTI and ZEXTI instructions can also be used in conjunction with the LD16S and
LD8U instructions to load unsigned 16-bit and signed 8-bit values.

7.3 Access to double words

Pairs of words can be accessed in a single instruction. This requires the address to be
aligned on a two-word boundary; it must be a multiple of Bpw x 2. For store operations
two destination registers must be specified, for load operations two source registers
must be specified.:

13

The XMOS XS3 Architecture

LDDSP d <- mem[sp + u_s x Bpw x 2] load two words from stack
e <- mem[sp + u_s x Bpw x 2 + Bpw]

STDSP mem[sp + u_s x Bpw x 2] <- x store two words to stack
mem[sp + u_s x Bpw x 2 + Bpw] <- y

LDDI d <- mem[b + u_s x Bpw x 2] load two words
e <- mem[b + u_s x Bpw x 2 + Bpw]

STDI mem[b + u_s x Bpw x 2] <- x store two words
mem[b + u_s x Bpw x 2 + Bpw] <- y

LDD d <- mem[b + i x Bpw x 2] load two words
e <- mem[b + i x Bpw x 2 + Bpw]

STD mem[b + i x Bpw x 2] <- x store two words
mem[b + i x Bpw x 2 + Bpw] <- y

Note that the stack pointer must be double word aligned if double loads and double
stores are used. The LDDSP and STDSP instructions can be used for saving context
efficiently.

8 Expression Evaluation
ADDI d <- l + u_s add immediate
ADD d <- l + r add
SUBI d <- l - u_s subtract immediate
SUB d <- l - r subtract
NEG d <- - s negate

EQI d <- l = u_s equal immediate
EQ d <- l = r equal
LSU d <- l < r less than unsigned
LSS d <- l <_sgn r less than signed

AND d <- l & r and
OR d <- l | r or
XOR d <- l @ r exclusive or
XOR4 d <- l @ r @ s @ t exclusive or
NOT d <- ~ s not

SHLI d <- l << bitp logical shift left immediate
SHL d <- l << r logical shift left
SHRI d <- l >> bitp logical shift right immediate
SHR d <- l >> r logical shift right
ASHRI d <- l >>_sgn bitp arithmetic shift right immediate
ASHR d <- l >>_sgn r arithmetic shift right

MUL d <- l x r multiply
DIVU d <- l // r divide unsigned
DIVS d <- l //_sgn r divide signed
REMU d <- l % r remainder unsigned
REMS d <- l %_sgn r remainder signed

NOP no operation

The shift instructions SHL, SHR, and ASHR interpret their third operand (the shift dis-
tance) as a signed number, and accept negative operands. When presented with a neg-
ative shift-value:

· SHR will perform a shift left with the negative value.

· ASHR will perform a shift left with the negative value.

· SHL will perform an arithmetic shift right with the negative value.

Note that for positive shifts, these instructions are backwards compatible with the XS2
architecture.
BITREV d : for x in bpw d[bit ix] = s[bit bpw-ix-1] bit reverse
BYTEREV d : for ix in bpw/8 d[byte ix] = s[byte Bpw-ix-1] byte reverse
CLZ d <- 32, if s = 0 count leading zeros

lowest x : s[bpw-1-x] = 1, otherwise

CLS d <- 32, if s = 0 count leading signbits
32, if s = -1
lowest x : s[bpw-1-x] != s[bpw-1], otherwise

ZIP w = 2^s zip double word
z = d[bpw-1..bpw-w-1]:

e[bpw-1..bpw-w-1]:
d[bpw-w-1..bpw-2 x w-1]:
e[bpw-w-1..bpw-2 x w-1]: ... :
d[w-1..0]:
e[w-1..0]:

(continues on next page)

14

The XMOS XS3 Architecture

(continued from previous page)
d <- z[2 bpw-1..bpw]
e <- z[bpw-1..0]

UNZIP w = 2^s unzip double word
z = d:e
d <- z[2 x bpw-1..2 x bpw-w-1]:

z[2 x bpw-2w-1..2 x bpw-3w-1]:...:
z[2w-1..w]

e <- z[2 x bpw-w-1..2 x bpw-2w-1]:
z[2 x bpw-3w-1..2 x bpw-4w-1]:...:
z[w-1..0]

9 Branching, Jumping and Calling

The branch instructions include conditional and unconditional relative branches. A
branch using the address in a register is provided; a relative branch which adds a scaled
register operand to the program counter is provided to support jump tables:
BRFT if c then pc <- pc + u16 x iw branch relative forward true
BRFF if !c then pc <- pc + u16 x iw branch relative forward false
BRBT if c then pc <- pc - u16 x iw branch relative backward true
BRBF if !c then pc <- pc - u16 x iw branch relative backward false

BRFU pc <- pc + u16 x iw branch relative forward unconditional
BRBU pc <- pc - u16 x iw branch relative backward unconditional
BRU pc <- pc + s x iw branch relative unconditional via reg

BAU pc <- s branch absolute unconditional via reg

In some cases, the calling instructions described below can be used to optimise
branches; as they overwrite the link register they are not suitable for use in leaf proce-
dures which do not save the link register.

The procedure calling instructions include relative calls, calls via the constant pool, in-
dexed calls via a dedicated register (r11) and calls via a register. Most calls within a single
program module can be encoded in a single instruction; inter-module calling requires at
most two instructions.:
BLRF lr <- pc || sr[bit di]; branch and link relative forward

pc <- pc + u20 x iw
BLRB lr <- pc || sr[bit di]; branch and link relative backward

pc <- pc - u20 x iw

BLACP lr <- pc || sr[bit di]; branch and link absolute via CP
pc <- mem[cp + u20 x Bpw]

BLAT lr <- pc || sr[bit di]; branch and link absolute via table
pc <- mem[r11 + u16 x Bpw]

BLA lr <- pc || sr[bit di] branch and link absolute via register
pc <- s

Notice that control transfers which do not affect the link (required for tail calls to proce-
dures) can be performed using one of the LDWCP, LDWCPL, LDAPF or LDAPB instruc-
tions followed by BAU r11.

Calling may require modification of the stack. Typically, the stack is extended on proce-
dure entry and contracted on exit. The instructions to support this are shown below:
EXTSP sp <- sp - u16 x Bpw extend stack
EXTDP dp <- dp - u16 x Bpw extend data

ENTSP if u16 > 0 then SI entry and extend stack
mem[sp] <- lr;
sp <- sp - u16 x Bpw

sr[bit di]<- false

DUALENTSP if u16 > 0 then DI entry and extend stack
mem[sp] <- lr;
sp <- sp - u16 x Bpw

sr[bit di]<- true

RETSP if u16 > 0 then contract stack
sp <- sp + u16 x Bpw; and return
lr <- mem[sp];

sr[bit di] <- lr & 1
pc <- lr & ~ 1

15

The XMOS XS3 Architecture

Functions can be made that can be entered in either single or dual issue:

· A single issue function must start with either a 32-bit aligned, long ENTSP instruction,
or a short 32-bit aligned instruction that is paired with a dual-issuable instruction. This
enables the function to be called from both single and dual issue contexts.

· A DUALENTSP instruction must either be a long instruction that is 32-bit aligned, or
it must be a short DUALENTSP that is stored in the third and fourth byte of the word,
together with an instruction that can be executed in the resource lane.

A short DUALENTSP executed in single issue stored in the lower 16-bits of a word will
raise an exception in the following instruction, since the PC will be misaligned.

Notice that the stack and data area can be contracted using the LDAWSP and LDAWDP
instructions.

In some situations, it is necessary to change to a new stack pointer, data pointer or pool
pointer on entry to a procedure. Saving or restoring any of the existing pointers can
be done using normal STWS, STWD, LDWS or LDWD instructions; loading them from
another register can be optimised using the following instructions.:
SETSP sp <- s set stack pointer
SETDP dp <- s set data pointer
SETCP cp <- s set pool pointer

10 Resources and the Thread Scheduler

Each XCORE manages a number of different types of resource. These include threads,
synchronisers, channel ends, timers and locks. For each type of resource a set of avail-
able items is maintained. The names of these sets are used to identify the type of re-
source to be allocated by the GETR (get resource) instruction. When the resource is no
longer needed, it can be released for subsequent use by a FREER (free resource) instruc-
tion.:
GETR r <- first res in setof(us): !inuse(res) get resource

inuse(r) <- true

FREER inuse(r) <- false free resource

In the above setof(r) returns the set corresponding to the source operand of r. The
resources are:

resource name set use

THREAD threads concurrent execution
SYNC synchronisers thread synchronisation
CHANEND channel ends thread communication
TIMER timers timing
LOCK locks mutual exclusion

Some resources have associated control modes which are set using the SETC instruc-
tion.:
SETC control(r) <- u16 set resource control

Many of the mode settings are defined only for a specific kind of resource and are de-
scribed in the appropriate section; the ones which are used for several different kinds of
resource are:

16

The XMOS XS3 Architecture

mode effect

OFF resource off
ON resource on
START resource active
STOP resource inactive
EVENT resource will cause events
INTERRUPT resource will raise interrupts

Execution of instructions from each thread is managed by the thread scheduler. This
maintains a set of runnable threads, run, fromwhich it takes instructions in turn. When
a thread is unable to continue, it is paused by removing it from the run set. The reason
for this may be any of the following.

· Its registers are being initialised prior to it being able to run.

· It is waiting to synchronise with another thread before continuing.

· It is waiting to synchronise with another thread and terminate (a join).

· It has attempted an input from a channel which has no data available, or a port which
is not ready, or a timer which has not reached a specified time.

· It has attempted an output to a channel or a port which has no room for the data.

· It has executed an instruction causing it to wait for one of a number of events or in-
terrupts which may be generated when channels, ports or timers become ready for
input.

The thread scheduler manages the threads, thread synchronisation and timing (using
the synchronisers and timers). It is directly coupled to resources such as the ports and
channels so as to minimise the delay when a thread becomes runnable as a result of a
communication or input-output.

11 Concurrency and Thread Synchronisation

A thread can initiate execution on one or more newly allocated threads, and can subse-
quently synchronise with them to exchange data or to ensure that all threads have com-
pleted before continuing. Thread synchronisation is performed using hardware synchro-
nisers, and threads using a synchroniser will move between running states and paused
states. When a thread is first created, its status register is initialised as follows:
sr[bit eeble] <- 0
sr[bit ieble] <- 0
sr[bit inenb] <- 0
sr[bit inint] <- 0
sr[bit hipri] <- 0
sr[bit fast] <- 0
sr[bit kedi] <- 0
sr[bit waiting] <- 1 the thread is paused
sr[bit di] <- 0

The access registers of the newly created thread can be initialised using the following
instructions.:
TINITPC pc(t) <- s set thread pc
TINITSP sp(t) <- s set thread stack
TINITDP dp(t) <- s set thread data
TINITCP cp(t) <- s set thread pool
TINITLR lr(t) <- s set thread link

17

The XMOS XS3 Architecture

These instructions can only be used when the thread is paused. The TINITLR instruction
is intended primarily to support debugging. On thread initialisation, the PC must be ini-
tialised. DP, SP, and CP will retain their value on freeing and allocating threads, so they
may not have to be reinitialised.

Data can be transferred between the operand registers of two threads using TSETR and
TSETMR instructions, which can be used even when the destination thread is running.:
TSETR d(t) <- s set thread operand register
TSETMR d(mstr(tid)) <- s set master thread operand register

To start a synchronised slave thread a master must first acquire a synchroniser. This is
done using a GETR SYNC instruction. If there is a synchroniser available its resource ID
is returned, otherwise the invalid resource ID is returned. The GETST instruction is then
used to get a synchronised thread. It is passed the synchroniser ID and if there is a free
thread it will be allocated, attached to the synchroniser and its ID returned, otherwise the
invalid resource ID is returned.

Themaster thread can repeat this process to create a group of threads which will all syn-
chronise together. To start the slave threads the master executes an MSYNC instruction
using the synchroniser ID.:
GETST d <- first res in setof(threads): !inuse(res) get synchronised thread

inuse(d) <- true
spaused <- spaused union {d};
slaves(s) <- slaves(s) union {d}
mstr(s) <- tid

MSYNC if (slaves(s) setminus spaused = {}) master synchronise
then

spaused <- spaused setminus slaves(s)
else

mpaused <- mpaused union {tid};
msyn(s) <- true

Thegroupof threads can synchronise at any point by the slaves executing theSSYNCand
the master the MSYNC. Once all the threads have synchronised they are unpaused and
continue executing from the next instruction. The processor maintains a set of paused
master threads mpaused and a set of paused slave threads spaused from which it de-
rives the set of runnable threads run
run = {thread in threads : inuse(thread)} setminus (spaused union mpaused)

Each synchroniser also maintains a record msyn(s) of whether its master has reached a
synchronisation point.:
SSYNC if (slaves(syn(tid)) setminus spaused = {tid}) && msyn(syn(tid)) slave

then synchronise
if mjoin(syn(tid))
then

for t in slaves(syn(tid)) : inuse(t) <- false;
mjoin(syn(tid)) <- false

else
spaused <- spaused setminus slaves(syn(tid));

mpaused <- mpaused setminus {mstr(syn(tid))};
msyn(syn(tid)) <- false

else
spaused <- spaused union {tid}

To terminate all of the slaves and allow the master to continue the master executes an
MJOIN instruction instead of an MSYNC. When this happens, the slave threads are all
freed and the master continues.:
MJOIN if (slaves(s) = spaused) master join

then
for t in slaves(s) : inuse(t) <- false;
mjoin(syn(tid)) <- false

else
mpaused <- mpaused union {tid};
mjoin(s) <- true;
msyn(s) <- true

18

The XMOS XS3 Architecture

A master thread can also create threads which can terminate themselves. This is done
by the master executing a GETR THREAD instruction. This instruction returns either a
thread ID if there is a free thread or the invalid resource ID. The unsynchronised thread
can be initialised in the same way as a synchronised thread using the TINITPC, TINITSP,
TINITDP, TINITCP, TINITLR and TSETR instructions.

The unsynchronised thread is then started by themaster executing a TSTART instruction
specifying the thread ID. Once the thread has completed its task it can terminate itself
with the FREET instruction.:
TSTART spaused <- spaused setminus {tid} start thread
FREET inuse(tid) <- false; free thread

The identifier of an executing thread can be accessed by the GETID instruction.:
GETID t <- tid get thread identifier

12 Communication

Communication between threads is performed using channels, which provide full-duplex
data transfer between channel ends, whether the ends are both in the same XCORE, in
different XCORES on the same chip or in XCORES on different chips. Channels carry
messages constructed from data and control tokens between the two channel ends.
The control tokens are used to encode communication protocols. Althoughmost control
tokens are available for software use, a number are reserved for encoding the protocol
used by the interconnect hardware, and can not be sent and received using instructions.

A channel end can be used to generate events and interrupts when data becomes avail-
able as described below. This allows a thread to monitor several channels, ports or
timers, only servicing those that are ready.

To communicate between two threads, two channel ends need to be allocated, one for
each thread. This is done using the GETR c , CHANEND instruction. Each channel end
has a destination register which holds the identifier of the destination channel end; this is
initialised with the SETD instruction. It is also possible to use the identifier of a channel
end to determine its destination channel end.:
SETD r(dest) <- s set destination
GETD d <- r(dest) get destination

The identifier of the channel end c1 is used to initialise the channel end for thread c2 ,
and vice versa. Each thread can then use the identifier of its own channel end to transfer
data and messages using output and input instructions.

The interconnect can be partitioned into several independent networks. This makes it
possible, for example, to allocate channels carrying short control messages to one net-
work whilst allocating channels carrying long data messages to another. There are in-
structions to allocate a channel to a network and to determine which network a channel
is using.:
SETN c(net) <- s set network
GETN d <- c(net) get network

In the following, c <: s represents an output of s to channel c and c :> d represents
an input from channel c into d.:
OUTT c <: dtoken(s) output token
OUTCT c <: ctoken(s) output control token
OUTCTI c <: ctoken(us) output control token immediate

INT if hasctoken(c) input token
then trap

(continues on next page)

19

The XMOS XS3 Architecture

(continued from previous page)
else c :> d

INCT if hasctoken(c) input control token
then c :> d
else trap

CHKCT if hasctoken(c)&&(s=token(c)) check control token
then skiptoken(c)
else trap

CHKCTI if hasctoken(c)&&(s=token(c)) check control token immediate
then skiptoken(c)
else trap

OUT c <: s output data word
IN if containsctoken(c) input token

then trap
else c :> d

TESTCT d <- hasctoken(c) test for control token
TESTWCT d <- containsctoken(c) test word for control token

The channel connection is established when the first output is executed. If the destina-
tion channel end is on another XCORE, this will cause the destination identifier to be sent
through the interconnect, establishing a route for the subsequent data and control to-
kens. The connection is terminated when an END control token is sent. If a subsequent
output is executed using the same channel end, the destination identifier will be used
again to establish a new route which will again persist until another END control token is
sent.

A destination channel end can be shared by any number of outputting threads; they are
served in a round-robin manner. Once a connection has been established it will persist
until an END is received; any other thread attempting to establish a connection will be
queued. In the case of a shared channel end, the outputting thread will usually transmit
the identifier of its channel end so that the inputting thread can use it to reply.

The OUT and IN instructions are used to transmit words of data through the channel; to
transmit bytes of data the OUTT and INT instructions are used. Control tokens are sent
using OUTCT or OUTCTI and received using INCT. To support efficient runtime checks
that the type, length or structure of output data matches that expected by the inputer,
CHKCT and CHKCTI instructions are provided. The CHKCT instruction inputs and dis-
cards a token provided that the input token matches its operand; otherwise it traps. The
normal IN and INT instructions trap if they encounter a control token. To input a control
token INCT is used; this traps if it encounters a data token.

The END control token is one of the 12 tokens which can be sent using OUTCTI and
checked using CHKCTI. By following each message output with an OUTCTI c, END and
each input with a CHKCTI c, END it is possible to check that the size of the message
is the same as the size of the message expected by the inputting thread. To perform
synchronised communication, the output message should be followed with (OUTCTI c,
END; CHKCTI c, END) and the input with (CHKCTI c, END; OUTCTI c, END).

Another control token is PAUSE. Like END, this causes the route through the interconnect
to be disconnected. However the PAUSE token is not delivered to the receiving thread.
It is used by the outputting thread to break up long messages or streams, allowing the
interconnect to be shared efficiently. The remaining control tokens are used for runtime
checking and for signalling the type of message being received; they have no effect on
the interconnect. Note that in addition to END and PAUSE, ten of these can be efficiently
handled using OUTCTI and CHKCTI.

A control token takes up a single byte of storage in the channel. On the receiving end the
software can test whether the next token is a control token using the TESTCT instruction,
whichwaits until at least one token is available. It is also possible to test whether the next
word contains a control token using the TESTWCT instruction. This waits until a whole
word of data tokens has been received (in which case it returns 0) or until a control token

20

The XMOS XS3 Architecture

has been received (in which case it returns the byte position after the position of the byte
containing the control token).

Channel ends have a buffer able to hold sufficient tokens to allow at least one word to be
buffered. If an output instruction is executed when the channel is too full to take the data
then the thread which executed the instruction is paused. It is restarted when there is
enough room in the channel for the instruction to successfully complete. Likewise, when
an input instruction is executed and there is not enough data available then the thread is
paused and will be restarted when enough data becomes available.

Note that when sending long messages to a shared channel, the sender should send a
short request and then wait for a reply before proceeding as this will minimise intercon-
nect congestion caused by delays in accepting the message.

When a channel end c is no longer required, it can be freed using a FREER c instruc-
tion. Otherwise it can be used for another message.

It is sometimes necessary to determine the identifier of the destination channel end $c2$
stored in channel end $c1$. For example, this enables a thread to transmit the identifier of
a destination channel end it has been using to a thread on another processor. This can be
done using the GETD instruction. It is also useful to be able to determine quickly whether
a destination channel end $c2$ stored in channel end $c1$ is on the same processor as
$c1$; this makes it possible to optimise communication of large data structures where
the two communicating threads are executed by the same processor.:
TESTLCL d <- islocal(c) test destination local

13 Locks

Mutual exclusion between a number of threads can be performed using locks. A lock is
allocated using a GETR l, LOCK instruction. The lock is initially free. It can be claimed
using an IN instruction and freed using an OUT instruction.

When a thread executes an IN on a lock which is already claimed, it is paused and placed
in a queue waiting for the lock. Whenever a lock is freed by an OUT instruction and the
lock’s queue is not empty, the next thread in the queue is unpaused; it will then succeed
in claiming the lock.

When inputting from a lock, the IN instruction always returns the lock identifier, so the
same register can be used as both source and destination operand. When outputting to
a lock, the data operand of the OUT instruction is ignored.

When the lock is no longer needed, it can be freed using a FREER l instruction.

14 Timers

Each XCORE executes instructions at a speed determined by its own clock input. In addi-
tion, it provides a reference clock output which ticks at a standard frequency of 100MHz.
A set of programmable timers is provided and all of these can be used by threads to
provide timed program execution relative to the reference clock.

14.1 Using timers

The processor has a set of timers that can be used to wait for a time. The current time
can be input from any timer, or it can be obtained by using GETTIME:
GETTIME d <- current time get current time

21

The XMOS XS3 Architecture

Each timer can be used by a thread to read its current time or towait until a specified time.
A timer is allocated using the GETR t, TIMER instruction. It can be configured using
the SETC instruction; the only two modes which can be set are UNCOND and AFTER.

mode effect

UNCOND timer always ready; inputs complete immediately
AFTER timer ready when its current time is after its DATA value

In unconditional mode, an IN instruction reads the current value of the timer. In AFTER
mode, the IN instruction waits until the value of its current time is after (later than) the
value in its DATA register. The value can be set using a SETD instruction. Timers can
also be used to generate events as described below.

A set of programmable clocks is also provided and each can be used to produce a clock
output to control the action of one or more ports and their associated port timers. The
ports are connected to a clock using the SETCLK instruction.:
SETCLK clock(d) <- s set clock source

Each port p which is to be clocked from a clock c can be connected to it by executing a
SETCLK p, c instruction.

Each clock can use a one bit port as its clock source. A clock c which is to use a port
p as its clock source can be connected to it by executing a SETCLK p, c instruction.
Alternatively, a clockmay use the reference clock as its clock source (by SETCLK p, REF).
In either case the clock can be configured to divide the frequency using an 8-bit divider.
When this is set to 0, the clock passes directly to the output. The falling edge of the clock
is used to perform the division. Hence a setting of 1 will result in an output from the clock
which changes each falling edge of the input, halving the input frequency f ; and a setting
of n will produce an output frequency of f/2n. The division factor is set using the SETD
instruction. The lowest eight bits of the operand are used and the rest ignored.

To ensure that the timers in the ports which are attached to the same clock all record the
same time, the clock should be started using a SETC c, START instruction after the ports
have all been attached to the clock. All of the clocks are initially stopped and a clock can
be stopped by a SETC c, STOP instruction.

The data output on the pins of an output port changes state synchronously with the port
clock. If several output ports are driven from the same clock, they will appear to operate
as a single output port, provided that the processor is able to supply new data to all of
them during each clock cycle. Similarly, the data input by an input port from the port pins
is sampled synchronously with the port clock. If several input ports are driven from the
same clock they will appear to operate as a single input port provided that the processor
is able to take the data from all of them during each clock cycle.

The use of clocked ports therefore decouples the internal timing of input and output
program execution from the operation of synchronous input and output interfaces.

15 Ports, Input and Output

Ports are interfaces to physical pins. A port can be used for input or output. It can use the
reference clock as its port clock or it can use one of the programmable clocks. Trans-
fers to and from the pins can be synchronised with the execution of input and output
instructions, or the port can be configured to buffer the transfers and to convert auto-
matically between serial and parallel form. Ports can also be timed to provide precise

22

The XMOS XS3 Architecture

timing of values appearing on output pins or taken from input pins. When inputting, a
condition can be used to delay the input until the data in the port meets the condition.
When the condition is met the captured data is time stamped with the time at which it
was captured.

The port clock input is initially the reference clock. It can be changed using the SETCLK
instruction with a clock ID as the clock operand. This port clock drives the port timer and
can also be used to determine when data is taken from or presented to the pins.

A port can be used to generate events and interrupts when input data becomes available
as described below. This allows a thread to monitor several ports, channels or timers,
only servicing those that are ready.

15.1 Input and Output

Each port has a transfer register. The input and output instructions used for channels,
IN and OUT, can also be used to transfer data to and from a port transfer register. The IN
instruction zero-extends the contents of a port transfer register and transfers the result
to an operand register. The OUT instruction transfers the least significant bits from an
operand register to a port transfer register.

Two further instructions, INSHR and OUTSHR, optimise the transfer of data. The INSHR
instruction shifts the contents of its destination register right, filling the left-most bitswith
the data transferred from the port. TheOUTSHR instruction transfers the least significant
bits of data from its source register to the port and shifts the contents of the source
register right.:
OUTSHR p <: s[0..trwidth(p)]; output to port

s <- s >> trwidth(p) and shift

INSHR s <- s >> trwidth(p); shift and
p :> s[(bpw-trwidth(p))..bpw-1] input from port

The transfer register is accessed by the processor; it is also accessed by the port when
data is moved to or from the pins. When the processor writes data into the transfer reg-
ister it fills the transfer register; when the processor takes data from the transfer register
it empties the transfer register.

15.2 Port Configuration

A port is initially OFF with its pins in a high impedance state. Before it is used, it must
be configured to determine the way it interacts with its pins, and set ON, which also has
the effect of starting the port. The port can subsequently be stopped and started using
SETC p, STOP and SETC p, START; between these the port configuration can be
changed.

The port configuration is done using the SETC instruction which is used to define sev-
eral independent settings of the port. Each of these has a default mode and need only
be configured if a different mode is needed. The effect of the SETC mode settings is
described below. The bold entry in each setting is the default mode.

23

The XMOS XS3 Architecture

mode effect

NOREADY no ready signals are used
HAND-
SHAKEN

both ready input and ready output signals are used

STROBED one ready signal is used (output on master, input on slave)
SYNCHRO-
NISED

processor synchronises with pins

BUFFERED port buffers data between pins and processor
SLAVE port acts as a slave
MASTER port acts as a master
NOSDELAY input sample not delayed
SDELAY input sample delayed half a clock period
DATAPORT port acts as normal
CLOCK-
PORT

the port outputs its source clock

READY-
PORT

the port outputs a ready signal

DRIVE pins are driven both high and low
PULL-
DOWN

pins have a weak pull-down on input, on output pins are driven high
only, high impedance otherwise

PULLUP pins have a weak pull-up on input, on output pins are driven low only,
high impedance otherwise

KEEP pins keep their value on input
NOINVERT data is not inverted
INVERT data is inverted

The DRIVE, PULLDOWN and PULLUPmodes determine the way the pins are driven when
outputting, and the way they are pulled when inputting. The CLOCKPORT, READYPORT
and INVERT settings can only be used with 1-bit ports.

Initially, the port is ready for input. Subsequently, it may change to output data when an
output instruction is executed; after outputting it may change back to inputting when an
input instruction is executed.

It is sometimes useful to read the data on the pins when the port is outputting; this can
be done using the PEEK instruction:
PEEK d <- pins(p) read port pins

15.3 Configuring Ready and Clock Signals

A port can be configured to use ready input and ready output signals.

A port’s ready input signal is input by an associated one-bit port. This association is
made using the SETRDY instruction.:
SETRDY ready(p) <- s set source of port ready input

A port’s ready output signal is output by another associated one-bit port. A one-bit port r
which is to be used as a ready output must first be configured in READYPORT mode by

24

The XMOS XS3 Architecture

SETC r, READYPORT. This ready port r can then be associated with a port p by SETRDY
r, p.

A one-bit port can be used to output a clock signal by setting it into CLOCKPORT mode;
its clock source is set using the SETCLK instruction.

When a 1-bit port is configured to be in CLOCKPORT or READYPORT mode, the drive
mode and invert mode are configurable as normal.

15.4 NOREADY mode

If the port is in NOREADYmode, no ready signals are used and data ismoved to and from
the pins either asynchronously (at times determined by the execution of input and output
instructions) or synchronously with the port clock, irrespective of whether the port is in
MASTER or SLAVE mode.

At most one input or output is performed per cycle of the port clock.

15.5 HANDSHAKEN mode

In HANDSHAKENmode, ready signals are used to control when data is moved to or from
a port’s pins.

A port in MASTER HANDSHAKEN mode initiates an output cycle by moving data to the
pins and asserting the ready output (request); it then waits for the ready input (reply) to
be asserted. It initiates an input cycle by asserting the ready output (request) andwaiting
for the ready input (reply) to be asserted along with the data; it then takes the data.

A port in SLAVE HANDSHAKEN mode waits for the ready input (request) to be asserted.
It performs an input cycle by taking the data and asserting the ready output (reply); it
performs an output cycle by moving data to the pins and asserting the ready output
(reply).

The ready signals accompany the data in each cycle of the port clock. The falling edge
of the port clock initiates the set up of data or a change of port direction; the port timer
also advances on this edge. On output, the data and the ready output will be valid on the
rising edge of the port clock. On input, data and the ready input will be sampled on the
rising edge of the port clock unless the port is configured as SDELAY, in which case they
are sampled on the falling edge.

15.6 STROBED mode

In STROBEDmode only one ready signal is used and the port can be inMASTER or SLAVE
mode. A MASTER port asserts its ready output and the slave has to keep up; a SLAVE
port has to keep up with the ready input.

Note that a port in NOREADYmode behaves in the sameway as a port in STROBEDmode
which is always ready.

15.7 The Port Timer

A port has a timer which can be used to cause the transfer of data to or from the pins to
take place at a specified time. The time at which the transfer is to be performed is set
using the SETPT (set port time) instruction. Timed ports are often used together with
time-stamping as this allows precise control of response times.:

25

The XMOS XS3 Architecture

SETPT porttime(p) <- s set port time
CLRPT clearporttime(p) clear port time
GETTS d <- timestamp(p) get port timestamp

The CLRPT instruction can be used to cancel a timed transfer.

The timestamp which is set when a port becomes ready for input can be read using the
GETTS instruction.

15.8 Conditions

A port has an associated condition which can be used to prevent the processor from
taking input from the port when the condition is not met. The conditions are set using
the SETC instruction. The value used for comparison in some of the conditions is held
in the port data register, which can be set using the SETD instruction.

mode port ready condition

NONE no condition
EQ value on pins equal to port data register value
NEQ value on pins not equal to port data register value

The simplest condition is NONE. The other conditions all involve comparing the value
from the pins with the value in the port data register.

When the condition is met a timestamp is set and the port becomes ready for input.

When a port is used to generate an event, the data which satisfied the condition is held in
the transfer register and the timestamp is set. The value returned by a subsequent input
on the port is guaranteed tomeet the condition and to correspond to the timestamp even
if the value on the port has changed.

15.9 Synchronised Transfers

A port in SYNCHRONISED mode ensures that the signalling operation of the port pins is
synchronised with the processor instruction execution.

When a SETPT instruction is used, themovement of data between the pins and the trans-
fer register takes place when the current value of the port timer matches the time speci-
fied with the SETPT instruction.

If the port is used for output and the transfer register is full, the SETPT instruction will
pause until the transfer register is empty. This ensures that the port time is not changed
until the pending output has completed.

If a condition other than NONE is used the port will only be ready for input when the data
in the transfer register matches the condition. If an input instruction is executed and
the specified condition is not met, the thread executing the input will be paused until the
condition is met; the thread then resumes and completes the input. The value of the port
timer corresponding to the data in the transfer register when a port condition is met is
recorded in the port timestamp register. The timestamp register is read at any time using
the GETTS instruction.

26

The XMOS XS3 Architecture

15.10 Buffered Transfers

A port in BUFFERED mode buffers the transfer of data between the processor and the
pins through the use of a shift register, which is situated between the transfer register
and the pins. A buffered port can be used to convert between parallel and serial form
using its shift register. The number of bits in the transfer register and the shift register
determines the width of the transfers (the transfer width) between the processor and the
port; this is amultiple of the port width (the number of pins) and can be set by the SETTW
instruction.:
SETTW width(p) <- s set port transfer width

For a 32-bit word-length, the transfer width is normally 32, 8, 4 or 1 bit.

Note that in contrast to a synchronised transfer, where the transfer width and the port
width are equal, the transfer width of a buffered transfer can differ from the port width.

On input, the shift register is full when n values have been taken from the p pins, where
n x p is the transfer width; it will then be emptied to the transfer register ready for an
input instruction. On output the shift register is filled from the transfer register and will
be empty when n values have beenmoved to the p pins, where n x p is the transfer width.

The port operates as follows:

· HANDSHAKEN: A handshaken transfer only shifts data from the pins to the shift reg-
ister on input when the shift register is not full; on output it only shifts data from the
shift register to the pins when the shift register is not empty. On input, the shift regis-
ter will become full if the processor does not input data to empty the transfer register;
when the processor inputs the data, the transfer register is filled from the shift register
and the shift register will start to be re-filled from the pins. On output, the shift register
will become empty if the processor does fill the transfer register; when the processor
outputs data to fill the transfer register, the shift register will be filled from the transfer
register and the shift register will then start to be emptied to the pins.

· STROBED SLAVE Input: Data is shifted into the shift register from the pins whenever
the ready input is asserted. Provided that the transfer register is empty, when the shift
register is full the transfer register is filled from the shift register. When the proces-
sor executes an input instruction to take data from the transfer register, the transfer
register is emptied.
If the processor does not take the data from the transfer register by the time the shift
register is next full, data will continue to be shifted into the shift register and only the
most recent values will be kept; as soon as an input instruction empties the transfer
register the transfer register will be filled from the shift register.

· STROBED SLAVE Output: Data is shifted out to the pins whenever the ready input is
asserted. Provided that the transfer register is full, when the shift register is empty, it
is filled from the transfer register. When the processor executes an output instruction
it fills the transfer register.
If the processor has not filled the transfer register by the time the shift register is next
empty, the data is held on the pins. As soon as the processor executes and output
instruction it fills the transfer register; the shift register is then filled from the transfer
register and the it will start to be emptied to the pins.

· STROBED MASTER: The transfer operates in the same way as a handshaken transfer
in which the ready input is always asserted.

27

The XMOS XS3 Architecture

The SETPT instruction can be used to delay the movement of data between the shift
register and the transfer register until the current value of the port timer matches the
time specified.

Note that this can be used to provide synchronisation with a stream of data in a
BUFFERED port in NOREADY mode, because exactly one item will be shifted to or from
the pins in each clock cycle.

If the port is outputting and the transfer register is full the SETPT instruction will pause
until it is empty. This ensures that the port time is not changed until the pending output
has completed.

The port condition can be used to locate the first item of data on the pins that matches
a condition. If the condition is different from NONE, data will be held in the shift register
until the data meets the condition; the data is then moved to the transfer register, the
timestamp is set and the port changes the condition to NONE so that data can continue
to fill the shift register in the normal way. Only the top port-width bits of the shift register
are used for comparison when the condition is checked.

15.11 Partial Transfers

Buffered transfers permit data of less than the transfer width to be moved between the
shift register and the transfer register. The length of the items in a buffered transfer can
be set by a SETPSC instruction, which sets the port shift register count. On input, this will
cause the shift register contents to be moved to the transfer register when the specified
amount of data has been shifted in; on output it will cause only the specified amount of
data to be shifted out before the shift register is ready to be re-loaded. This is useful for
handling the first and last items in a long transfer.:
SETPSC shiftcount(p) <- s set port shift register count

A buffered input can be terminated by executing an ENDIN instruction which returns the
number of items buffered in the port (whichwill include the shift register and transfer reg-
ister contents) and also sets the port shift register count to the amount of data remaining
in the shift register, enabling a following input to complete.:
ENDIN d <- buffercount(p) end input

To optimise the transfer of part-words two further instructions are provided:
OUTPW shiftcount(p) <- q; output part word

p <: s
OUTPWI shiftcount(p) <- bitp; output part word

p <: s
INPW shiftcount(p) <- bitp; input part word

p :> d

These encode their immediate operand in the same way as the shift instructions.

15.12 Changing Direction

A SYNCHRONISED port can change from input to output, or from output to input. The
direction changes at the start of the next setup period. For a transfer initiated by a SETPT
instruction, the direction will be input unless an output is executed before the time spec-
ified by the SETPT instruction.

A BUFFERED port can change direction only after it has completed a transfer. This is
done by stopping and re-starting the port using SETC p, STOP and SETC p, START
instructions.

28

The XMOS XS3 Architecture

16 Memory model

The XS3 architecture supports three forms of memory:

1. Internal memory that is normally used to store code and data. Accesses to this mem-
ory incur no latency. In addition to an internal RAM there may be an internal ROM for
booting and debugging

2. An optional software programmable memory. Accesses to this memory may incur a
delay.

3. An optional external memory. Accesses to this memory may incur a delay.

The address space is a single linear address space that is mapped onto the abovemem-
ories. The precise locations of each of the three types ofmemory are implementation de-
pendent, and may be settable from software. More details are in the product datasheet.
An example memory map may be as follows:

· Internal ROM: 0xfff0 0000 … 0xfff0 07ff

· Software defined memory: 0x4000 0000 … 0x7fff ffff

· External RAM: 0x1000 0000 … 0x1fff ffff

· Internal RAM: 0x0008 0000 … 0x000f ffff

16.1 Internal memory

The internal RAM location can be set using the SETPS instruction. The implementation
may require the start address to be aligned with, for example, the size of the memory.

Internal RAM is the primary location where code and data are stored, and programs typ-
ically are stored in the lower locations of memory, the stacks in the higher locations of
RAM, and the data and any heap in between.

The internal ROM is used for booting and debugging. It has a fixed location and fixed
entry points for the boot-rom and debug-rom. These entry points are implementation
dependent.

16.2 External memory

The external memory is an optional interface that can be used to connect large memo-
ries. The details on how the memory are connected physically, and how it is enabled are
implementation dependent and documented in the product datasheet. When enabled,
load/store operations and instruction fetches to that address range will be served from
external memory.

The external memory is served through a small cache. This cache is guaranteed to have
room for at least 2 x bpv bits. The memory cannot be shared between processors, and
care should be taken thatmemory performancewill bemuch lower than internalmemory,
especially when multiple threads use external memory simultaneously.

Three instructions manage the cache:
FLUSH Flush all cache lines

All memory is updated with the cache contents
INVALIDATE Invalidate all cache lines
PREFETCH Starts a fetch of address r11

29

The XMOS XS3 Architecture

16.3 Software defined memory

Software defined memory is an optional part of the address range that can be used to
emulate other forms of memory, for example, it can be used to execute-from-flash, or to
map data from a remote tile. Software defined memory uses the same small cache that
serves the external memory.

The software defined memory has to be enabled by enabling the SWMEM resource.
When enabled, load/store operations and instruction fetches to that address range will
be served from the software defined memory.

Accesses to the software defined memory are served by the cache. If the cache con-
tains the requested data, then it be provided to the thread without any delay. Otherwise,
the thread will be paused, and the Software Defined Memory (SWMEM) resource will
become ready. Any thread can be waiting to take an event or interrupt on the SWMEM
resource, and fill the cache. The filling thread must input the missing memory address
from the SWMEM resource, locate the data belonging to this address, and refill the cache
by writing the data to the address. When the refill is complete, the SWMEM resource is
restarted to signal that the paused thread can safely continue:
LDC r0, SWMEM // The SWMEM resource ID
IN r0, r1 // Input the address on which the program missed
... // Locate the data belonging to that address
STW // Store the data (this may be multiple stores)
SETC r0, START // Start the SWMEM resource ID.

17 Events, Interrupts and Exceptions

Events and interrupts allow timers, ports and channel ends to automatically transfer con-
trol to a pre-defined event handler. The resources generate events by default and must
be reconfigured using a SETC instruction in order to generate interrupts. The ability of a
thread to accept events or interrupts is controlled by information held in the thread sta-
tus register (sr), andmay be explicitly controlled using SETSR and CLRSR instructions
with appropriate operands.:
SETSR sr <- sr || u16 set thread state
CLRSR sr <- sr && ~ u16 clear thread state
GETSR r11 <- sr && u16 get thread state

The operand of these instructions should be one (or more) of:
EEBLE enable events
IEBLE enable interrupts
INENB determine if thread is enabling events
ININT determine if thread is in interrupt mode
HIPRI set thread to high priority mode
FAST set thread to fast mode
KEDI set thread to switch to dual issue on kernel entry

17.1 Events

A thread normally enables one or more events and then waits for one of them to occur.
Hence, on an event all the thread’s state is valid, allowing the thread to respond rapidly to
the event. The thread can perform input and output operations using the port, channel
or timer which gave rise to an event whilst leaving some or all of the event information
unchanged. This allows the thread to complete handling an event and immediately wait
for another similar event.

Timers, ports and channel ends all support events, the only difference being the ready
conditions used to trigger the event. The program location of the event handler must be
set prior to enabling the event using the SETV instruction. The SETEV instruction can
be used to set an environment for the event handler; this will often be a stack address
containing data used by the handler. Timers and ports have conditions which determine

30

The XMOS XS3 Architecture

when they will generate an event; these are set using the SETC and SETD instructions.
Channel ends are considered ready as soon as they contain enough data.

Event generation by a specific port, timer or channel can be enabled using an event en-
able unconditional (EEU) instruction and disabled using an event disable unconditional
(EDU) instruction. The event enable true (EET) instruction enables the event if its con-
dition operand is true and disables it otherwise; conversely the event enable false (EEF)
instruction enables the event if its condition operand is false, and disables it otherwise.
These instructions are used to optimise the implementation of guarded inputs.:
SETV vector(r) <- s set event vector
SETEV envector(r) <- s set event environment vector

SETD data(r) <- s set resource data
GETD d <- data(r) get resource data
SETC cond(r) <- s set event condition

EET enb(r) <- c; thread(r) <- tid event enable true
EEF enb(r) <- ! c; thread(r) <- tid event enable false
EDU enb(r) <- false; thread(r) <- tid event disable
EEU enb(r) <- true; thread(r) <- tid event enable

Having enabled events on one or more resources, a thread can use a WAITEU, WAITET
or WAITEF instruction to wait for at least one event. The WAITEU instruction waits un-
conditionally; the WAITET instruction waits only if its condition operand is true, and the
WAITEF waits only if its condition operand is false.:
WAITET if c then eeble(tid) <- true event wait if true
WAITEF if !c then eeble(tid) <- true event wait if false
WAITEU eeble(tid) <- true event wait

This may result in an event taking place immediately with control being transferred to
the event handler specified by the corresponding event vector with events disabled by
clearing the thread’s $eeble$ flag. Alternatively the thread may be paused until an event
takes place with the $eeble$ flag enabled; in this case the $eeble$ flag will be cleared
when the event takes place, and the thread resumes execution.:
event ed <- ev(res);

pc <- v(res);
sr[inenb] <- false;
sr[eeble] <- false;
sr[waiting] <- false

Note that the environment vector is transferred to the event data register, from where
it can be accessed by the GETED instruction. This allows it to be used to access data
associated with the event, or simply to enable several events to share the same event
vector.

To optimise the responsiveness of a thread to high priority resources the SETSR EEBLE
instruction can be used to enable events before starting to enable the ports, channels
and timers. This may cause an event to be handled immediately, or as soon as it is en-
abled. An enabling sequence of this kind can be followed either by a WAITEU instruction
to wait for one of the events, or it can simply be followed by a CLRSR EEBLE to continue
execution when no event takes place. The WAITET and WAITEF instructions can also
be used in conjunction with a CLRSR EEBLE to conditionally wait or continue depend-
ing on a guarding condition. The WAITET and WAITEF instructions can also be used to
optimise the common case of repeatedly handling events from multiple sources until a
terminating condition occurs.

All of the eventswhich have been enabled by a thread can be disabled using a single CLRE
instruction. This disables event generation in all of the ports, channels or timers which
have had events enabled by the thread. The CLRE instruction also clears the thread’s
eeble flag.:

31

The XMOS XS3 Architecture

CLRE eeble(tid) <- false; disable all events
inenb(tid) <- false; for thread
forall res

if (thread(res) == tid && event(res))
then enb(res) <- false

Where enabling sequences include calls to input subroutines, the SETSR INENB instruc-
tion can be used to record that the processor is in an enabling sequence; the subroutine
body can useGETSR INENB to branch to its enabling code (instead of its normal inputting
code). INENB is cleared whenever an event occurs, or by the CLRE instruction.

17.2 Interrupts

In contrast to events, interrupts can occur at any point during program execution, and so
the current pc and sr (and potentially also some or all of the other registers)must be
saved prior to execution of the interrupt handler. Interrupts are taken between instruc-
tions, which means that in an interrupt handler the previous instruction will have been
completed, and the next instruction is yet to be executed on return from the interrupt.
This is done using the spc and ssr registers. Any interrupt and exception causes
the pc and sr registers to be saved into spc and ssr, and the status register to
be modified to indicate that the processor is running in kernel mode:
kernelentry

ssr <- sr;
sed <- ed;
sr[bit di] <- sr[bit kedi];
sr[bit eeble] <- false;
sr[bit ieble] <- false;

On an interrupt generated by resource r the following occurs automatically:
interrupt

spc <- pc
kernelentry ; kernelentry is defined above
ed <- ev(res)
pc <- v(res);
sr[bit inint] <- true;
sr[bit waiting] <- false;

On kernel entry the DI bit is saved in the ssr register, whereupon DI is set according to
the KEDI (dual-issue-in-kernel) bit in the status register. This enables exception handlers
to be written in either SI or DI code as required. When in kernel mode, the kernel can
switch between SI and DI mode as usual using DUALENTSP/ENTSP. On return from the
kernel call, KRET, the DI bit is restored from ssr.

When the handler has completed, execution of the interrupted thread can be performed
by a KRET instruction, this restores the DI bit from spc:
KRET pc <- spc && ~ 1; return from interrupt

sr <- ssr
ed <- sed

17.3 Exceptions

Exceptions which occur when an error is detected during instruction execution are
treated in the same way as interrupts except that they transfer control to a location de-
fined relative to the thread’s kernel entry point kep register:
except spc <- pc_old; any exception

kernelentry ;
pc <- kep;
et <- exceptiontype;
ed <- exceptiondata;

32

The XMOS XS3 Architecture

kernelentry is defined in Interrupts The exception handler resides on the address
stored in kep. The handler can run in dual or single issue mode, depending on the kedi
bit in the status register. Exception types are listed below:

Exception et Meaning

ET_LINK_ERROR 1 Incorrect use of channel
ET_ILLEGAL_PC 2 Unaligned program counter
ET_ILLEGAL_INSTRUCTION 3 Illegal opcode
ET_ILLEGAL_RESOURCE 4 Illegal use of resource
ET_LOAD_STORE 5 Unaligned memory access
ET_ILLEGAL_PS 6 Undefined PS register
ET_ARITHMETIC 7 Arithmetic error
ET_ECALL 8 Assertion failed
ET_RESOURCE_DEP 9 Illegal resource use
ET_KCALL 15 KCALL executed

When in dual issue mode, an exception in one lane will abort any instruction in the other
lane. If two instructionswould both cause an exception, then only one exception is taken.
The et register will hold the data as specified above, but the lane in which the exception
occurred is encoded in bit 4 of et. If the thread is in dual-issuemode, and two instructions
were issued, and the exception occurred in the resource lane, then this bit is set to 1. In
all other cases bit 4 of et will be set to 0.

A program can force an exception as a result of a software detected error condition using
ECALLT, ECALLF, or ELATE:
ECALLT if e then error on true

except(ET_ECALL,e)

ECALLF if !e then error on true
except(ET_ECALL,e)

ELATE if s after t(current) then error if late
except(ET_ECALL,s)

except is defined on Exceptions. These have the same effect as hardware detected
exceptions, transferring control to the same location and indicating that an error has
occurred in the exception type (et) register. If in dual issue mode, any instruction in
the other lane will be aborted on taking an exception.

A program can explicitly cause entry to a handler using one of the kernel call instructions.
These have a similar effect to exceptions, except that they transfer control to a location
defined relative to the thread’s kep register:
KCALLI kernelentry ;

spc <- pc
et <- ET_KCALL;
ed <- u6;
pc <- kep + 64;

KCALL kernelentry ;
spc <- pc
et <- ET_KCALL;
ed <- s;
pc <- kep + 64;

In dual issue mode KCALL will complete as normal; it is safe to dual-issue a KCALL in-
struction with any other instruction. If the instruction in the other lane causes an excep-
tion, the thread will continue with the exception and abort the KCALL.

The spc, ssr, et and sed registers can be saved and restored directly to the stack.:

33

The XMOS XS3 Architecture

LDSPC spc <- mem[sp + 1 x Bpw] load exception pc
STSPC mem[sp + 1 x Bpw] <- spc store exception pc
LDSSR ssr <- mem[sp + 2 x Bpw] load exception sr
STSSR mem[sp + 2 x Bpw] <- ssr store exception sr
LDSED sed <- mem[sp + 3 x Bpw] load exception data
STSED mem[sp + 3 x Bpw] <- sed store exception data
STET mem[sp + 4 x Bpw] <- et store exception type

In addition, the et and ed registers can be transferred directly to a register.:
GETET r11 <- et get exception type
GETED r11 <- ed get exception data

A handler can use the KENTSP instruction to save the current stack pointer into word 0
of the thread’s kernel stack (using the kernel stack pointer ksp) and change stack pointer
to point at the base of the thread’s kernel stack. KRESTSP can then be used to restore
the stack pointer on exit from the handler.:
KENTSP n mem[ksp] <- sp; switch to kernel stack

sp <- ksp - n x Bpw
KRESTSP n ksp <- sp + n x Bpw; switch from kernel stack

sp <- mem[ksp]

The kep can be initialised using the SETKEP instruction; the ksp can be read using the
GETKSP instructions.:
SETKEP kep <- r11 set kernel entry point
GETKSP r11 <- ksp get kernel stack pointer

The kernel stack pointer is initialised by the boot-ROM to point to a safe location near the
last location of RAM - the last few locations are used by the JTAG debugging interface.
ksp can be modified by using a sequence of SETSP followed by KRESTSP.

18 Initialisation and Debugging

The state of the processor includes additional registers to those used for the threads.

register use

dspc debug save pc
dssr debug save sr
dssp debug save sp
dtype debug cause
dtid thread identifier used to access thread state
dtreg register identifier used to access thread state
DEBUG flag that indicates that processor is in debug mode

All of the processor state can be accessed using the GETPS and SETPS instructions:
GETPS d <- state[s] get processor state
SETPS state[d] <- s set processor state

To access the state of a thread, first SETPS is used to set dtid and dtreg to the thread
identifier and register number within the thread state. The contents of the register can
then be accessed by:
DGETREG d <- dtreg(dtid) get thread register

The debugging state is entered by executing a DCALL instruction, by an instruction that
triggers a watchpoint or a breakpoint, or by an external asynchronous DEBUG event (for

34

The XMOS XS3 Architecture

example caused by asserting a DEBUG pin). During debug, thread 0 executes the de-
bug handler, all other threads are frozen. The debugging state is exited on DRET, which
causes thread 0 to resume at its saved PC, and all other threads to start where they were
stopped. Entry to a debug handler operates in a manner similar manner to an interrupt:
debugentry dspc <- pc(t0);

dssr <- sr(t0);
pc(t0) <- debugentrypoint
sr(t0)[bit inint] <- true
sr(t0)[bit di] <- false;
sr(t0)[bit eeble] <- false;
sr(t0)[bit ieble] <- false
sr(t0)[bit waiting] <- false
DEBUG <- 1

On an external, asynchronous, DEBUG event, the processor will always enter the debug
state as follows:
DEBUG event debugentry

dtype <- debugcause

The DCALL instruction has the same effect:
DCALL debugentry

dtype <- dcallcause debug call (breakpoint)

DRET pc(t0) <- dspc; return from debug
sr(t0) <- dssr;
DEBUG <- 0

DENTSP dssp <- sp; debug save stack pointer
sp <- ramend

DRESTSP sp <- dssp debug restore stack pointer

On entering debug mode the DI bit is saved in the dspc register, and it is cleared. Debug
mode is always entered in single issue mode, but the debugger can switch to dual-issue
mode if required using DUALENTSP. On return from the debugger, DI is restored from the
dspc

Watchpoints and instruction breakpoints are supported by means of SETPS and GETPS
instructions. An instruction breakpoint is an address that triggers a DCALL on a PC being
equal to the value in the instruction break point. A data watchpoint is a pair of addresses
l and h, and a condition that triggers a DCALL on stores and or loads to specificmemory
addresses. If the condition is set toINRANGE, then a debug is triggered if a thread access
address x where l <= x <= h. If the condition is set to NOTINRANGE, then a debug is
triggered if a thread access address x where x <= l || x >= h.

· When the processor is not in debug-mode, none of the debug information is writable,
except for the DEBUG registers that brings the processor into debug mode.

· When the processor is not in debug-mode, none of the debug values canbe read except
the PC and SR values, in order to support profiling.

19 Specialised Instructions

19.1 Long arithmetic

The long arithmetic instructions support signed and unsigned arithmetic on multi-word
values. The long subtract instruction (LSUB) enables conversion between long signed
and long unsigned values by subtracting from long 0. The long multiply and long divide
operate on unsigned values.

The long add instruction is intended for adding multi-word values. It has a carry-in
operand and a carry-out operand. Similarly, the long subtract instruction is intended for
subtracting multi-word values and has a borrow-in operand and a borrow-out operand.:

35

The XMOS XS3 Architecture

LADD d <- l + r + c[bit 0]; add with carry
e <- carry(l + r + c[bit 0])

LSUB d <- l - r - b[bit 0]; subtract with borrow
e <- borrow(l - r - b[bit 0])

The long multiply instruction multiplies two of its source operands, and adds two more
source operands to the result, leaving the unsigned double length result in its two des-
tination operands. The result can always be represented within two words because the
largest value that can be produced is (B-1) x (B-1) + (B-1) +(B-1) = B^2 -
1 where B = 2^bpw. The two carry-in operands allow the component results of multi-
length multiplications to be formed directly without the need for extra addition steps.:
LMUL d <- ((l x r) + s + t)[bits 2 x bpw-1..bpw] long multiply

e <- ((l x r) + s + t)[bits bpw-1..0]

The long division instruction (LDIV) is very similar to the short unsigned division instruc-
tion, except that it returns the remainder as well as the result; it also allows the remainder
from a previous step of a multi-length division to be loaded as the high part of the divi-
dend.:
LDIV d <- (l:m) // r long divide unsigned

e <- (l:m) mod r

An ET_ARITHMETIC exception is raised if the result cannot be represented as a single
word value; this occurs when l <= r. Note that this instruction operates correctly if the
most significant bit of the divisor is 1 and the initial high part of the dividend is non-zero.
A (fairly) simple algorithm can be used to deal with a double length divisor. One method
is to normalise the divisor and divide first by the top 32 bits; this produces a very close
approximation to the result which can then be corrected.

The long extract and insert instructions perform long shift and mask operations. LEX-
TRACT extracts a selection of bits from two words at a given offset; a sequence of LEX-
TRACT instructions can be used to implement a rotate, long shift, and misaligned loads.
An LSATS followed by an LEXTRACT can be used to extract a word from the result of
a MACCS (see the next subsection). LINSERT performs the inverse operation of LEX-
TRACT and inserts a bit pattern into a double word.:
LEXTRACT d <- (l:r)[bit bitp+x-1..x] extract word
LINSERT m = ((1 << bitp) - 1) << s insert word

d:e <- ((d:e) & ~ m) | ((x << s) & m)

LEXTRACT assumes that x is a signed value. Where bitp+x exceeds the double word
length, the top most bit l will be replicated (ie, this is assumed to be a signed value).
Where x is negative, zero bits are used.

19.2 Long Integer multiply accumulate

Themultiply-accumulate instructions perform a double length accumulation of products
of single length operands:
MACCU s <- ((l x r) + (s:t))[bits 2 x bpw-1..bpw]; long multiply

t <- ((l x r) + t)[bits bpw-1..0] acc unsigned

MACCS s <- ((l x r) + (s:t))[bits 2 x bpw-1..bpw]; long multiply
t <- ((l x r) + t)[bits bpw-1..0] acc signed

LSATS if s:t > 2^(l+bpw)-1 Saturate signed
then s:t <- 2^(l+bpw) - 1;
elif s:t < -2^(l+bpw)
then s:t <- -2^(l+bpw);

LSATSI if s:t > 2^(bitp+bpw)-1 Saturate signed immediate
then s:t <- 2^(bitp+bpw) - 1;
elsif s:t < -2^(bitp+bpw)
then s:t <- -2^(bitp+bpw);

36

The XMOS XS3 Architecture

The MACCU instruction multiplies two unsigned source operands to produce a double
length result which it adds to its unsigned double length accumulator operand held in two
other operands. Similarly, the MACCS instructionmultiplies two signed source operands
to produce a double length result which it adds to its signed double length accumulator
operand held in two other operands. The LSATS instruction saturates a number that is
outside the range -2^(l+bpw)..2^(l+bpw)-1.

19.3 Cyclic redundancy check

Cyclic redundancy check is performed using:
CRC32 for step = 0 for bpw word cyclic

if (r[bit 0] = 1) redundancy check
then r <- (s[bit step] : r[bits (bpw-1) ... 1]) @ p
else r <- (s[bit step] : r[bits (bpw-1) ... 1])

CRC8 for step = 0 for 8 8 step cyclic
if (r[bit 0] = 1) redundancy check
then r <- (s[bit step] : r[bits 31 ... 1]) @ p
else r <- (s[bit step] : r[bits 31 ... 1]);

d <- s >> 8

CRCN if n > 32 then cnt = 32 n step cyclic
else cnt = n redundancy check
for step = 0 for cnt

if (r[bit 0] = 1)
then r <- (s[bit step] : r[bits 31 ... 1]) @ p
else r <- (s[bit step] : r[bits 31 ... 1]);

The CRC8 instruction operates on the least significant 8 bits of its data operand, ignoring
themost significant 24 bits. It is useful when operating on a sequence of bytes, especially
where these are not word-aligned in memory. The CRCN instruction operates on the
least significant bytes of its data operand; the fourth operand of CRCN, t, determines
the number of bytes to fold into the CRC. If t > 32 then 32 bits are be processed. This
enables CRCN to be passed a bit count in a loop, and overrun in an unrolled loop.

The CRC32_INC instruction performs a CRC32 and a simultaneous increment on the
second parameter:
CRC32_INC for step = 0 for bpw word cyclic redundancy check

if (r[bit 0] = 1) and increment register
then r <- (s[bit step] : r[bits (bpw-1) ... 1]) @ p
else r <- (s[bit step] : r[bits (bpw-1) ... 1])

a <- a + bitp

20 Floating point arithmetic

Floating point instructions support four arithmetic instruction (FMACC, FMUL, FADD, and
FSUB) and a number of logical instructions that support efficient implementation of other
floating point operations. The instructions below operate on IEEE 754 floating point num-
bers that are represented in bpw bits (ie, single precision for bpw=32):
FMACC d <- l + (r * s) Floating-point MACC
FMUL d <- l * r Floating-point multiply
FADD d <- l+r Floating-point addition
FSUB d <- l-r Floating-point subtraction
FSPEC d <- 0, if IsANumber(s) && s > 0 Test on special values

d <- 1, if s = +0.0
d <- 2, if s = infinity
d <- 3, if IsSignallingNAN(s)
d <- 4, if IsANumber(s) && s < 0
d <- 5, if s = -0.0
d <- 6, if s = -infinity
d <- 7, if IsQuietNAN(s)

FENAN f isNaN(s) then exception on NaN
except(ET_ARITHMETIC,s)

FMANT d <- mantissa(s) Extract normalised mantissa
FSEXP d <- exponent(s) Extract unbiased exponent and sign

e <- sign(s)
FMAKE d <- (-1)^s * 2^e * x:y Build a FP number
FGT d <- x > y True if x greater than y
FLT d <- x < y True if x less than y
FEQ d <- x = y True if x equal to y
FUN d <- unordered(x, y) True if x and y are unordered

37

The XMOS XS3 Architecture

All instructions use the roundTiesToEven rounding direction as defined in IEEE 754: num-
bers are rounded to the nearest value, and if both values are equally near, the represen-
tation that ends in a zero bit is chosen. The FMACC instruction performs a multiply-
accumulate rounding the result only after the addition. The FMUL instruction calculates
the product of two numbers, FADD calculates the sum, and FSUB calculates the differ-
ence.

Not a number values are propagated through these operations with the Quiet bit set. If
two or more input operands are not-a-number, then the first operand (from left to right)
that is NaN is propagated through. Instructions that generate not-a-number will fill the
least significant 22 bits of the NaN value with the least significant 22 bits of the address
of the next instruction (the same value that is used for calculating the offset of a branch),
and a zero sign bit, and the signalling bit set.

The FSPEC instruction can be used to efficiently deal with special floating point num-
bers (such as zero or NaN), prior to using FMANT and FSEXP to dissect a floating point
number. The FSEXP and FMANT instructions raise a ET_ARITHMETIC trap if the input
operand is not a number or infinite. For normal floating point numbers, the FMANT and
FSEXP instruction will return the mantissa with the implicit one bit set, and FSEXP will
return the exponentwith the bias subtracted. For subnormal floating point numbers (non-
zero), the FMANT and FSEXP instruction will normalise the mantissa by shifting it left by
k bits, so that the mantissa has its implicit one bit set, and FSEXP will subtract k in
addition to the bias. FMANT will produce a zero mantissa if the input is +0.0 or -0.0.

The FMAKE instruction is provided to reassemble a floating point number. It has five
operands: an output register and four input operands. The output register will on com-
pletion contain a floating point value. The first input register contains the sign bit in bit
0; the other bits are ignored. The second operand contains the exponent, it is a (typically
small) signed value; FMAKE will add the bias term to this value prior to building a floating
point value. The third and fourth input operands represent a double length unsignedman-
tissa. The FMAKE instruction is exactly the opposite of FSEXP/FMANT, except that an
extra word of significant bits may be passed in, enabling large mantissas to be rounded.
Infinity is produced if the result does not fit

Supposewe have a floating point value f representedwith a sign s, exponent e andman-
tissa m. As per the IEEE standard, the exponent is stored with a bias term added, and the
mantissa is stored without its leading ‘1’-bit. FSEXP will return s and e, and FMANT will
return m including the implicit leading ‘1’-bit. Conversely, passing s, e, and m into FMAKE
will reconstruct f. Subnormal floating point numbers (that in accordance with the stan-
dard have a minimal exponent and no implicit leading ‘1’ bit) are normalised by FSEX-
P/FMANT, by reducing the exponent to below its nominal minimum value, and shifting
the mantissa up to create the leading ‘1’ bit in the correct place. Conversely, FMAKE will
normalise its input mantissa values. Ie, the bit associated with the implicit leading one
has a value of 1.0, but if extra higher order bits are present, or the first ‘1’ bit is lower,
then the mantissa will be shifted (and rounded), and the exponent adjusted accordingly.
The IEEE representation of infinite is created if the number cannot be represented by the
limited range of the exponent. Underflow will cause 0 to be created.

The IEEE standard specifies a set of 20 relational operators. In hardware, these are recre-
ated bymeans of five operations: four comparison instructions (FGT, FLT, FEQ, FUN) and
an Exception on Not A Number instruction (FENAN).

The comparison instructions never raise an exception, and calculate the value of the
predicate as per the IEEE standard: true yields 1 in the destination operand, false yields
0. If an exception is required, FENAN can be used.

38

The XMOS XS3 Architecture

21 Vector unit

The vector unit contains three vector registers (vC, vD, and vR) and a subsidiary register
for maintaining the headroom and status (vCTRL). The vector registers are bpv (bits per
vector) bits wide. Inside it are epv elements, each bpe bits wide; these depend on the
data type being used, and they are defined as epv = bpv / bpe. The vector unit is
controlled by instructions that execute in the memory lane. Many of the instructions are
encoded in short form and execute in the memory lane, enabling dual issue to perform
pointer management using the scalar registers r0..r11 in the resource lane.

Vector instructions go through the following stages:

1. Load values from the vector registers,

2. Perform a optional vector load or vector store operation,

3. Perform a point wise multiplication,

4. Perform pointwise or reducing additions,

5. Store the answer in the vector registers

Eachof these steps is optional, ie, not all vector instructions performa load frommemory.
The most intensive operation computes an inner product of a vector in memory and
a vector in a register. The vector unit is optimised for fast convolution (FIR), complex
multiplication, and headroom computation. The bpv parameter is an implementation
defined parameter; a typical value is 256. The three registers of the vector unit are not
general purpose registers as they appear as implicit operands in almost all instructions.
In general vC is used to store some kernel or coefficients; vD is used to store data; and
vR is used to hold output, prior to storing the output.

21.1 Control

The vCTRL register controls the width and type of the vector elements and also stores
the available headroom. It contains 12 bist as follows:

Name Bits Constant Val Meaning

Mag-
ni-
tude

5..0 Maximum number of significant
bits

Shift 7..6 VEC_SH0 VEC_SHL
VEC_SHR

0 1
2

Do not shift on VLADSB and VFT*
Shift left on VLADSB and VFT*
Shift right on VLADSB and VFT*

Type 11..8 VSETCTRL_TYPE_INT32
VSETCTRL_TYPE_INT16
VSETCTRL_TYPE_INT8

0 1
2

Signed 32-bit integer Signed 16-bit
integers Signed 8-bit integers

· The magnitude field contains the highest number of significant bits that has been
stored using any of the VSTR, VSTD, or VSTC operations. Typically, the magnitude
field is initialised to 0, and on each store operation it is updated to reflect the number
of significant bits that has been stored. The number of significant bits is defined as
the number of bits that are not equal to the sign bit.

· The type field defines the number of bits, number of elements, and data type of the
operations. Three values are defined on the XS3 architecture for signed 32-bit opera-

39

The XMOS XS3 Architecture

tions (the default), signed 16-bit operations, and signed 8-bit operations. Signed 1-bit
arithmetic is supported by a special instruction.

· The shift field is used to maintain optimal headroom in an FFT computation, and it
enables an optional implicit shift left or right by one bit. The default is not to shift the
data.

The vCTRL register can be read using VGETC and set using VSETC. The register is set
to change the type or shift values, or to clear themagnitude. The register is typically read
to inspect the magnitude field. Both operations use use r11 as the implicit source and
destination operand:
VSETC vCTRL <- r11[11:0] Set vector control
VGETC r11 <- vCTRL Get vector control

In the description of the operations below, we will use [x] to denote that we use element
x of the vector register. Wherever elements are used, theywill bebpe bitswide (as set per
the VSETC instruction), and unless specified otherwise, the operation will iterate over all
0..bpv/bpe-1 elements of the vector register. Empty brackets [] are used to indicate
that an operation is mapped over the whole vector. In the descriptions we also use a
temporary vector t that is not holding any state across instructions; the only state held
is in the registers specified earlier.

21.2 Vector Memory operations

These instructions load a vector from memory, and store a vector to memory, without
performing any mathematical operation. The three vector registers vC, vD, and vR can
all be load from memory and stored to memory. Loading and storing from memory has
to be word-aligned.:
VLDC vC <- mem[s] Load vC from memory
VLDD vD <- mem[s] Load vD from memory
VLDR vR <- mem[r11] Load vR from memory
VSTC mem[r11..r11+bpv-1] <- vC Store vC to memory

vCTRL[5:0] <- max(vCTRL[5:0], csb(vC[]))
VSTD mem[s..s+bpv-1] <- vD Store vD to memory

vCTRL[5:0] <- max(vCTRL[5:0], csb(vD[]))
VSTR mem[s..s+bpv-1] <- vR Store vR to memory

vCTRL[5:0] <- max(vCTRL[5:0], csb(vR[]))
VSTRPV mem[k] <- vR[k], forall k in t Store part of vR to memory

t is a bytemask
DVST mem[s] <- register x thread t Store any vector (debug)
DVLD register x thread t <- mem[s] Load any vector (debug)

The operations that store a whole vector update the magnitude field of the vCTRL reg-
ister. They count the number of significant bits in each element of the vector and store
the maximum in the magnitude field. In order to calculate the magnitude of a very long
vector, one should first clear the headroom register using VSETC, then perform all oper-
ations, storing the result, and finally reading the headroom register using VGETC.

DVST and DVLD are used in DEBUG-mode only. DVST stores a specific vector register of
a specific thread in memory. The parameters are three source registers: the first source
register carries the address, the second the thread number, and the final register carries
the register to store: 0 for vC, 1 for vD, 2 for vR, and 16 for vCTRL. DVLD loads a vector
register frommemory, and uses the same three register parameters. These instructions
can only be used in DEBUG mode, an exception is raised otherwise.

21.3 Vector Arithmetic

Arithmetic operations facilitate both complex and ordinary arithmetic. For complex num-
bers, pairs of real and imaginary values are stored in subsequent elements of a vector,
so a vector that contains epv elements can hold epv/2 complex values. For normal
arithmetic, the values are stored in bpe bits, for complex arithmetic the real and imagi-

40

The XMOS XS3 Architecture

nary part have bpe bits each. All operations saturate; in the case of complex arithmetic
saturation is individual on each component, and saturation will result in a rotation and
magnitude reduction.

The detailed semantics of each operation depends on the type. XS3 defines the following
types: VSETCTRL_TYPE_INT32, VSETCTRL_TYPE_INT16, VSETCTRL_TYPE_INT8. Mul-
tiplications and additions are performed at double precision (2 x bpe bits). The bits
that are kept depend on the operation.

· For additive operations (VLADD, VLSUB, VLADSB) the bottom bpe bits are saturated
to a number in the range [-2^(bpe-1)+1..2^(bpe-1)-1].

· For multiplicative operations (VLMUL, VCMR, VCMI, VCMCR, VCMCI), bits [2 x
bpe-3..bpe-2] are saturated.

· For multiply accumulate operations on 32-bit values, the same bits [2 x bpe-3..
bpe-2] are saturated

· For MACC operations on smaller values, a full precision 32-bit result is kept.

For a multiplication this works on the assumption that bit bpe-2 has a magnitude of
1.0 on one of the input operands; and the result has the same magnitude as the other
input operand. When both operands use bit bpe-2 as magnitude 1, then all numbers
in the unit square can be multiplied with each other without saturation, which enables
block-floating-point complex vector arithmetic to be implemented efficiently.

For example, for VSETCTRL_TYPE_INT32, the bit pattern 0x4000 0000 represents 1.0,
and the largest value that can be represented is very close to 2.0. All operations perform
saturation to deal with the special cases (1+j)^2 which will have an answer saturated
to 1.9999999991j In the text below we use the functions msat“()“ and ssat“()“ to to
define the precise operation, and rnd“()“ to denote rounding:
ssat(x) = -2^(bpe-1)+1, if x <= -2^(bpe-1)+1

2^(bpe-1)-1, if x >= 2^(bpe-1)-1
x, otherwise

msat(x) = ssat((x + 2^bpe-3) >> (bpe-2))
rnd(x) = floor(x + 0.5)

The VLADD, VLSUB, and VLMUL operations perform element-wise addition, subtraction,
and multiplication on the data type as set with VSETC. The operations are explained
graphically in Fig. 1 and Fig. 2:
VLADD vR[i] <- ssat(t[i] + vR[i]) Vector load and add

where t = mem[s]
for all i in 0..epv-1

VLSUB vR[i] <- ssat(t[i] - vR[i]) Vector load and add
where t = mem[s]
for all i in 0..epv-1

VLMUL vR[i] <- msat(t[i] * vR[i]) Vector load and multiply
where t = mem[s]
for all i in 0..epv-1

vR

mem[Rx]

... vR

...

...

epv times

VLADD

bpe

bpe

bpe+1

bpe

sat

bpe

bpe

bpe

bpe+1

bpe

sat

bpe

vR

mem[Rx]

... vR

...

...

epv times

VLSUB

bpe

bpe

bpe+1

bpe

sat

bpe

bpe

bpe

bpe+1

bpe

sat

bpe

- -

Fig. 1: Vector load and add/subtract operations

For complex arithmetic, the ISA supports a family of operations that implements
complex multiplications (VCMR and VCMI) and multiplications with conjugate values
(VCMCR and VCMCI). For adding and subtracting numbers, the VLADD and VLSUB oper-

41

The XMOS XS3 Architecture

...

...

vR

mem[Rx]

... vR

epv times

VLMUL

bpe

bpe

2 x bpe

bpe+2

rnd

bpe

sat

bpe

bpe

bpe

2 x bpe

bpe+2

rnd

bpe

sat

bpe

Fig. 2: Vector load and multiply operation

ations can be used. The complex multiplies are useful for Fourier transforms, complex
FIRs and for performing a element wise complex vector multiplication. The operations
are explained graphically in Fig. 3 and Fig. 4:
VCMR vR[2 i] <- msat(t) Complex Multiply Real

where t = rnd(vC[2 i] * vD[2 i]) - rnd(vC[2 i + 1] * vD[2 i + 1])
for all i in 0..epv/2-1

VCMI vR[2 i + 1] <- msat(t) Complex Multiply Imaginary
where t = rnd(vC[2 i + 1] * vD[2 i])+ rnd(vC[2 i] * vD[2 i + 1])
for all i in 0..epv/2-1

VCMCR vR[2 i] <- msat(t) Complex Multiply Conjugate Real
where rnd(t = vC[2 i] * vD[2 i]) + rnd(vC[2 i + 1] * vD[2 i + 1])
for all i in 0..epv/2-1

VCMCI vR[2 i + 1] <- msat(t) Complex Multiply Conjugate Imaginary
where t=rnd(vC[2 i + 1] * vD[2 i]) - rnd(vC[2 i] * vD[2 i + 1])
for all i in 0..epv/2-1

vD

Vc

vR...

VCMR

vD

Vc

vR...

VCMI

...

...

epv/2 times

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

...

...

epv/2 times

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

Fig. 3: Vector complex multiply operations

vD

Vc

vR...

VCMCR

vD

Vc

vR...

VCMCI

...

...

epv/2 times

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

...

...

epv/2 times

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

bpe

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

2 x bpe

bpe+2

rnd

sat

bpe

2 x bpe

bpe+3

bpe+2

rnd

Fig. 4: Vector complex multiply conjugate operations

The pair of VCMR/VCMI instructions executed one after the other will calculate epv/
2 complex products of the form vD x vC. A pair of VCMCR/VCMCI instructions will
calculate epv/2 complex conjugate products of the form vD x conjugate(vC).

For implementing FFTs efficiently, an operation is provided that can simultaneously add
and subtract values (VLADSB), and a set of instructions that compute Fourier transforms
on a small vector. Note that all arithmetic operators below denote complex arithmetic:

42

The XMOS XS3 Architecture

VLADSB t = mem[s] Load, add, and subtract
vD[i] <- ssat((t[i] - vR[i]) * x)
vR[i] <- ssat((t[i] + vR[i]) * x)
for all i in 0..epv/2-1

VFTFF vD <- ssat(fft_dif(vD[i]) * x) DIF FFT Forwards
VFTFB vD <- ssat(fft_dif^-1(vD[i]) * x) DIF FFT Backwards
VFTTF vR <- ssat(fft_dit(vR[i]) * x) DIT FFT Forwards
VFTTB vR <- ssat(fft_dit^-1(vR[i]) * x) DIT FFT Backwards

where
x = 2, if VEC_SHL

1, if VEC_SH0
1/2, if VEC_SHR

vD

... vD

...

VFTTF/VFTTB (decimate in time)

bpe

bpe+1

bpe

sat

bpe

bpe+1bpe+1bpe+1

bpe+2bpe+2bpe+2bpe+2bpe+2bpe+2bpe+2bpe+2

bpe

sat

bpe

vR

... vR

...

VFTFF/VFTTFB (decimate in frequency)

bpe

bpe

bpe

sat

bpe+1bpe+1bpe+1bpe+1bpe+1bpe+1bpe+1bpe+1

bpe+2bpe+2bpe+2bpe+2

bpe

bpe+1bpe+1bpe+1bpe+1

bpe+2bpe+2bpe+2bpe+2

<> <>shl/shr shl/shr <> shl/shr
blue

red

green

negated on all
negated on VFT_F
negated on VFT_B

0wpv-1 0wpv-1

...

...

bpe

<> shl/shr

sat

Fig. 5: Vector Fourier transforms

The VLADSB operation performs the butterfly part of the FFT computation. The VFT in-
structions calculate a Fourier transforms on the vector without bit-reversing. The four
versions of this instruction calculate forwards and backwards (inverse) Fourier trans-
forms that are decimate in time or in frequency. All have an optional shift component
that can add or remove one bit of headroom based on the amount of headroom that
was available after the previous round. This allows FFT implementations to dynamically
maintain optimal headroom.

21.4 Multiply accumulate

Two convolution operations enable element-wise convolutions of vectors (VLMACC), or
complete inner products (VLMACCR, forMACC and Reduce). Both operate on a vector of
bpv data elements, each of which bpe bits wide. All convolutions maintain the accumu-
lated result in a pair of registers with extended precision. vR store the least significant
bits as normal and vD stores headroom. Depending on the precision data storage is as
follows:

· VEC_INT_8 and VEC_INT_16: Both vD and vR hold a 16-bit part of the accumulator, for
a total of 32 bits. All multiply accumulate operations are full precision integer arith-
metic with saturation.

· VEC_INT_32: vR holds a 32-bit part of the accumulator, vD holds 8 bits of headroom.
Arithmetic is performed by shifting the multiplied number down by 30 (bpe-2) bits as
is the case with VLMUL. The unused 24 bits of vD replicate the sign bit.

The double result in vD and vR can be reduced to a normal vector using VLSAT, or they
can be accumulated to a single number using VADDDR. The operations are explained
graphically in Fig. 6 and Fig. 7:
VCLRDR vD <- 0 Clear D and R

vR <- 0

VLMACC t = mem[s] outer product of vC and mem[s]
for all i in 0..epv-1
x = (t[i] * vC[i])[2 bpe-1 : bpe - 2]
s = vD[i]:vR[i] + x, vD stores 8 bits only
p = min(max(s, -2^bpe+vac-1+1), 2^bpe+vac-1-1)
vR[i] <- p[bpe-1..0]
vD[i] <- p[2 bpe-1..bpe]

VLMACCR t = mem[s] inner product of vC and mem[s]
bpe16 = max(bpe,16)
sR = vR[bpv - bpe16 - 1 .. 0]
sD = vD[bpv - bpe16 - 1 .. 0]
o = vD[bpv-1..bpv - bpe16]:vR[bpv-1..bpv - bpe16]
s = o + sum(t[i] * vC[i], for i in range(bpv/bpe))
p = min(max(s, -2^bpe16+vac-1+1), 2^bpe16+vac-1-1)

(continues on next page)

43

The XMOS XS3 Architecture

(continued from previous page)
vR <- sR : p[bpe16-1..0]
vD <- sD : p[2 bpe16-1..bpe16]

VLMACCR1 t = mem[s] inner product of vC and mem[s]
bpe16 = max(bpe,16)
sR = vR[bpv - bpe16 - 1 .. 0]
sD = vD[bpv - bpe16 - 1 .. 0]
o = vD[bpv-1..bpv - bpe16]:vR[bpv-1..bpv - bpe16]
s = o + sum(i=0..bpv-1: (1-2 * t[i]) * (1-2 * vC[i]))/2
p = min(max(s, -2^bpe16+vac-1+1), 2^bpe16+vac-1-1)
vR <- sR : p[bpe16-1..0]
vD <- sD : p[2 bpe16-1..bpe16]

VLSAT t = mem[s] Saturate double answer into 16/32 bits
bpe16 = max(bpe,16)
forall i in 0..bpv/bpe16-1
vR[i] <- sat(vD[i]:vR[i] >> t[i])
vD <- 0

VADDDR sD = vD[bpv - bpe - 1 .. 0] Add double and reduce
s = sum(vD[16*i+15..16*i]:vR[16*i+15..16*i], for i in range(bpv/16))
p = min(max(s, -2^31+1), 2^31-1)
vR[bpv - 1 .. 16] <- 0
vD[bpv - 1 .. 16] <- 0
vR[15 .. 0] <- p[bpe-1..0]
vD[15 .. 0] <- p[2 bpe-1..bpe]

...

...

vC

mem[Rx]

... vD

... vR

...

...

vD

vR

bpe

bpe

2 x bpe

bpe+2

rnd

bpe bpe

bpe

bpe

sext bpe+2

bpe

bpe

bpe+1 bpe

bpe

bpe

2 x bpe

bpe+2

rnd

bpe bpe

bpe

bpe

sext bpe+2

bpe

bpe

bpe+1 bpe

epv times

epv times

...

...

vC

mem[Rx]

... vD

... vR

...

...

vD

vR

bpe

bpe

2 x bpe

bpe+2

rnd

bpe16

bpe16

sext bpe+2

bpe16

bpe16

bpe16+1bpe16

epv times

bpe

bpe

2 x bpe

bpe+2

rnd

sext bpe+2

sum over epv terms

...

VLMACC VLMACCR

bpe16bpe16

sat

bpe16bpe16

sat

bpe bpe

sat

bpe bpe

sextsext

vac bpe16

sext

vac bpevac bpe

bpe16=max(bpe,16)

Fig. 6: Vector load and multiply accumulate operations

mem[Rx]

... vD

... vR

...

...

vD

vR

epv times

VLSAT

00

...

bpe16

bpe16

bpe16

bpe16

bpe16

bpe16

bpe16

bpe16

bpe16 = max(bpe, 16)
rnd

sat

bpe16bpe16

bpe16

bpe16

bpe16

rnd

sat

bpe16bpe16

bpe16

bpe16

bpe16

Fig. 7: Vector load and saturate operation

Both VLMACC and VLMACCR instructions are designed to be chained. When a FIR has
to be computed that is longer than the vector length, a sequence of VLMACC instruc-
tions can be issued on the data, whilst loading the coefficients in between; at the end,
a VADDDR is needed to sum all the results together (for 8- and 16-bits), or a VLSAT fol-
lowed by a VLMACC.Whenmany FIRs need to be computed on identical data (say, whilst
multiplying twomatrices), the data can be loaded once, and a sequence of up to epv VL-
MACCR operations can be issued to compute up to epv intermediate operations, this
can be repeated on subsequent rows of the matrix. The VLMACCR instruction can be

44

The XMOS XS3 Architecture

... vR

... vR

bpe

1

epv times

...

...

vC

mem[Rx]

... vD

... vR

...

...

vD

vR

1

1

1

bpe

bpe

bpe

bpe

bpe+1 bpe

bpv times

1

1

1

sum over bpv terms

...

VDEPTH1 VLMACCR1

bpe bpe

0 11

bpe bpe

sat

xorxor

log(bpv)

bpe/2

0

-
... vR

... vR

bpe

8

VDEPTH8

0

rndrnd

88

... vR

vR

32

16

16 times

VDEPTH16

0

16

rndrnd

1616

+
+

sat

16

16

sat

epv times 8

sat

8

sat

sext

vac bpe

16

88

Fig. 8: Bitwise Vector load, multiply, and accumulate

issued for computing a series of up to epv inner products in parallel, requiring a load of
the coefficients in between.

TheVLMACCR1 instruction is very similar to theVLMACCR instruction, except it assumes
that each vector contains bpv elements each with a value of +1 (encoded as 0) or -1
(encoded as 1). Otherwise, it is the normal multiply accumulate instruction. This will
yield a value formatted in the currently selected data format. For example, if the control
register is set to VSETCTRL_TYPE_INT8, then up to 32768 values can be accumulated
before an overflow can occur; at which time the value will be saturated. The VDEPTH*
instructions (see below) can be used to convert the value of bpe bits to any bit-depth,
for example 1-bit.

The VSIGN instruction extracts the sign of all the vector elements. The VPOS instruction
replaces all negative values with 0. The VLASHR operation performs an arithmetic shift
right on each element of the vector. It can be used to normalise a vector:
VSIGN vR[] <- vR[] < 0 ? -2^bpe-2 : 2^bpe-2 Compute signs of vector
VPOS vR[] <- max(0, vR[]) Vector positive
VDEPTH1 t[bpv-1..epv] = 0 Binarises a vector

for i in 0..epv-1
if vR[i] < 0: t[i] = 1
else: t[i] = 0

vR <- t
VDEPTH8 t[bpv-1..epv * 8] = 0 Converts a vector depth to 8

for i in 0..epv-1
t[i x 8 + 8-1..i x 8] = rnd(vR[i] >> (bpe - 8))

vR <- t
VDEPTH16 t[bpv-1..epv * 16] = 0 Reduces a vector depth to 16

for i in 0..epv-1
t[i x 16 + 16-1..i * 16] = rnd(vR[i] >> (bpe - 16))

vR <- t
VLASHR p = mem[s] Vector arithmetic shift right mem[s] by t

vR[] <- p >> t, if t in 0..bpe-1
vR[] <- p[bpe-1]..p[bpe-1], if t in bpe..
vR[] <- ssat(p << t), if t in -bpe+1..-1
vR[] <- ssat(p << bpe), if t in ..-bpe

VEQDR r10 <- vD = vR Equality test on vD and vR
VEQCR r10 <- vC = vR Equality test on vC and vR

45

The XMOS XS3 Architecture

22 XCore XS3 Instructions

This section presents the instructions in alphabetical order. For each instruction we
present a short textual description, followed by the assembly syntax, its meaning in a
more formal notation, its encoding(s) and potential exceptions that can be raised by this
exception.

The processor operates on words - registers are one-word wide, data can be transferred
to ports and channels in words, andmost memory operations operate on words. A word
is bpw bits long, or Bpw bytes long.

In the description we use the following notation to describe operands and constants:

b
denotes a bit-pattern - one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, and 32; these are
encoded using numbers 0…11.

c
register used as a conditional.

d,e
register used as a destination.

r
register used as a resource identifier.

s
register used as a source.

t
register used as a thread identifier.

us
a small unsigned constant in the range 0...11

ux
an unsigned constant in the range 0...(2^x-1)

v,w,x,y
registers used for two or more sources.

All mathematical operators are assumed to work on Integers (Z) and, unless otherwise
stated, bit patterns found in registers are interpreted unsigned. Signed numbers are rep-
resented using two’s complement, and if an operand is interpreted as a signed number,
this is denoted by a keyword signed. In addition to the standard numerical operators
we assume the following bitwise operators:

|
Bitwise or.

&
Bitwise and.

@
Bitwise xor.

~
Bitwise complement.

46

The XMOS XS3 Architecture

Square brackets are used for two purposes. When preceded with the word mem square
brackets address a memory location. Otherwise, they indicate that one or more bits are
sliced out of a bit pattern. Bits can be spliced together using a : operator. The bit pattern
x:y is a pattern where x are the higher order bits and y are the lower order bits.

The notationmem[x] representsword-based access tomemory, and the addressxmust
beword-aligned (that is, the addressmust be amultiple of Bpw). Instructions that read or
write data to memory that is not a word in size (such as a byte or a 16-bit value) explicitly
specify which bits in memory are accessed.

The instruction encoding specifies the opcode bits of the encoding - the way that the
operands are encoded is specified by the corresponding page in the chapter on instruc-
tion formats (if you access this document electronically there should be a hyperlink).
Each operand in the instruction chapter maps positionally on an operand in the format
chapter.

47

The XMOS XS3 Architecture

22.1 ADD: Integer unsigned add

Adds two unsigned integers together. There is no check for overflow. Where it occurs,
overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

ADD d,x,y

Operation:

d <- (x + y) % 2^bpw

Encoding:

3r: Three register
0 0 0 1 0 (M or R)

48

The XMOS XS3 Architecture

22.2 ADDI: Integer unsigned add immediate

Adds two unsigned integers together. There is no check for overflow. Where it occurs,
overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

ADDI d,x,u_s

Operation:

d <- (x + us) % 2^bpw

Encoding:

2rus: Two register with immediate
1 0 0 1 0 (M or R)

49

The XMOS XS3 Architecture

22.3 AND: Bitwise and

Produces the bitwise AND of two words.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

AND d,x,y

Operation:

d <- x & y

Encoding:

3r: Three register
0 0 1 1 1 (M or R)

50

The XMOS XS3 Architecture

22.4 ANDNOT: And not

ANDNOT clears bits in a word. Given the bits set a bit pattern (s), ANDNOT clears the
equivalent bits in the destination operand (d). ANDNOT is a two operand instruction
where the first operand acts as both source and destination.

ANDNOT can be used to efficiently operate on bit patterns that span a non-integral num-
ber of bytes.

See MKMSK for how to build masks efficiently.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

ANDNOT d,s

Operation:

d <-s & ~ s

Encoding:

2r: Two register
0 0 1 0 1 0 (M or R)

51

The XMOS XS3 Architecture

22.5 ASHR: Arithmetic shift right

Right shifts a signed integer and performs sign extension. The shift distance (y) is an
unsigned integer. If the shift distance is larger than the size of a word, the result will only
be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note that
ASHR is not the same as a DIVS by 2^{y} because ASHR rounds towardsminus infinity,
whereas DIVS rounds towards zero.

ASHR will perform an shift left with a negative value.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

ASHR d,x,y

Operation:

d <- x[bpw-1]: ... :x[bpw-1]:x[bpw-1...y], if 0 < y < bpw
x, if y = 0
x[bpw-1]: ... :x[bpw-1], if y >= bpw

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

52

The XMOS XS3 Architecture

22.6 ASHRI: Arithmetic shift right immediate

Right shifts a signed integer and performs sign extension. The shift distance (bitp) is
an unsigned integer. If the shift distance is larger than the size of a word, the result will
only be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note that
ASHR is not the same as a DIVS by 2^{bitp} because ASHR rounds towards minus
infinity, whereas DIVS rounds towards zero.

ASHR will perform an shift left with a negative value.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

ASHRI d,x,bitp

Operation:

d <- x[bpw-1]: ... :x[bpw-1]:x[bpw-1...bitp], if 0 < bitp < bpw
x, if bitp = 0
x[bpw-1]: ... :x[bpw-1], if bitp >= bpw

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

53

The XMOS XS3 Architecture

22.7 BAU: Branch absolute unconditional register

Branches to the address given in a general purpose register. The register value must be
even, and should point to a valid memory location.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

BAU s

Operation:

pc <- s

Encoding:

1r: Register
0 0 1 0 0 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_ILLEGAL_PC
The address specified was not 16-bit aligned or did not point to a mem-
ory location.

54

The XMOS XS3 Architecture

22.8 BITREV: Bit reverse

Reverses the bits in a word; the most significant bit of the source operand will be pro-
duced in the least significant bit of the destination operand, the value of the least signifi-
cant bit of the source operand will be produced in the most significant bit of the destina-
tion operand.

This instruction can be used in conjunction with BYTEREV in order to translate between
different ordering conventions such as big-endian and little-endian.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

BITREV d,s

Operation:

d[bpw-1...0] <- s[0] : s[1] : s[2] : ... : s[bpw-1]

Encoding:

2r: Two register
0 0 0 1 0 0 (M or R)

55

The XMOS XS3 Architecture

22.9 BLA: Branch and link absolute via register

This instruction implements a procedure call to an absolute address. The program
counter is saved in the link-register lr and the program counter is set to the given ad-
dress. This address must be even and point to a valid memory address, otherwise an
exception is raised. On execution of BLA, the processor will read the target instruction
so that the invoked procedure will start without delay.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

BLA s

Operation:

lr <- pc
pc <- s

Encoding:

1r: Register
0 0 1 0 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_ILLEGAL_PC
The address specified was not 16-bit aligned or did not point to a mem-
ory location.

56

The XMOS XS3 Architecture

22.10 BLACP: Branch and link absolute via constant pool

This instruction implements a call to a procedure via the constant pool lookup table. The
program counter is saved in the link-register (lr). The program counter is loaded from
the constant pool table. The constant pool register (cp) is used as the base address
for the table. An offset (u10) specifies which word in the table to use. Because the
instruction requires access to memory, the execution of the target instruction may be
delayed by one instruction in order to fetch the target instruction.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

BLACP u10

Operation:

lr <- pc
pc <- mem[cp + u10 * Bpw]

Encoding:

u10: 10-bit immediate
1 1 1 0 0 0 (M)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 1 0 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
Loaded value was not 16-bit aligned or did not point to a memory loca-
tion (trapped during next cycle).

ET_LOAD_STORE
Registercp points to an unaligned address, or the indexed address does
not point to a valid memory address.

57

The XMOS XS3 Architecture

22.11 BLAT: Branch and link absolute via table

This instruction implements a call to a procedure via a lookup table. The programcounter
is saved in the link-register (lr). The program counter is loaded from the lookup table.
The lookup table base address is taken from r11. An offset (u_{16}) specifies which
word in the table to use. Because the instruction requires access to memory, the exe-
cution of the target instruction may be delayed by one instruction in order to fetch the
target instruction.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BLAT u_{16}

Operation:

lr <- pc
pc <- mem[r11 + u16 * Bpw]

Encoding:

u6: 6-bit immediate
0 1 1 1 0 0 1 1 0 1 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 0 1 1 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
Loaded value was not 16-bit aligned or did not point to a memory loca-
tion (trapped during the next cycle).

ET_LOAD_STORE
Register r11 points to an unaligned address, or the indexed address
does not point to a valid memory address.

58

The XMOS XS3 Architecture

22.12 BLRB: Branch and link relative backwards

This instruction performs a call to a procedure: the address of the next instruction is
saved in the link-register (lr) An unsigned offset is subtracted from the programcounter.
This implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call. The counterpart forward call is called BLRF.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

BLRB u10

Operation:

lr <- pc
pc <- pc - u10 * iw

Encoding:

u10: 10-bit immediate
1 1 0 1 0 1 (M)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 0 1 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

59

The XMOS XS3 Architecture

22.13 BLRF: Branch and link relative forwards

This instruction performs a call to a procedure: the address of the next instruction is
saved in the link-register (lr) An unsigned offset is added to the program counter. This
implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call. The counterpart backward call is called BLRB.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

BLRF u10

Operation:

lr <- pc
pc <- pc + u10 * iw

Encoding:

u10: 10-bit immediate
1 1 0 1 0 0 (M)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 0 1 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

60

The XMOS XS3 Architecture

22.14 BRBF: Branch relative backwards false

This instruction implements a conditional relative jump backwards. A condition (c) is
tested whether it represents 0 (false) and if this is the case an offset (u_{16}) is sub-
tracted from the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards
or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1
c, Operand register, one of r0… r11

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRBF c,u_{16}

Operation:

if c = 0:
pc <- pc - u16 * iw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 1 1 1 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

61

The XMOS XS3 Architecture

22.15 BRBT: Branch relative backwards true

This instruction implements a conditional relative jump backwards. A condition (c) is
tested whether it is not 0 (true) and if this is the case an offset (u_{16}) is subtracted
from the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards
or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1
c, Operand register, one of r0… r11

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRBT c,u_{16}

Operation:

if c != 0:
pc < pc - u16 * iw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 1 0 1 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

62

The XMOS XS3 Architecture

22.16 BRBU: Branch relative backwards unconditional

This instruction implements a relative jump backwards. The operand specifies the offset
that should be subtracted from the program counter.

The counterpart forward relative jump is BRFU.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRBU u_{16}

Operation:

pc <- pc - u16 * iw

Encoding:

u6: 6-bit immediate
0 1 1 1 0 1 1 1 0 0 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 1 1 1 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

63

The XMOS XS3 Architecture

22.17 BRFF: Branch relative forward false

This instruction implements a conditional relative jump forwards. A condition (c) is
tested whether it represents 0 (false) and if this is the case an offset (u_{16}) is added
to the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards
or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1
c, Operand register, one of r0… r11

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRFF c,u_{16}

Operation:

if c == 0:
pc <- pc + u16 * iw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 1 1 0 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

64

The XMOS XS3 Architecture

22.18 BRFT: Branch relative forward true

This instruction implements a conditional relative jump forwards. A condition (c) is
tested whether it is not 0 (true) and if this is the case an offset (u_{16}) is added to
the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards
or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1
c, Operand register, one of r0… r11

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRFT c,u_{16}

Operation:

if c != 0:
pc <- pc + u16 * iw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 1 0 0 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

65

The XMOS XS3 Architecture

22.19 BRFU: Branch relative forward unconditional

This instruction implements a relative jump forwards. The operand specifies the offset
that should be added to the program counter.

The counterpart backward relative jump is BRBU.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

BRFU u_{16}

Operation:

pc <- pc + u16 * iw

Encoding:

u6: 6-bit immediate
0 1 1 1 0 0 1 1 0 0 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 0 1 1 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

66

The XMOS XS3 Architecture

22.20 BRU: Branch relative unconditional register

This instruction implements a jump using a signed offset stored in a register. Because
instructions are aligned on 16-bit boundaries, the offset in the register is multiplied by 2.
Negative values cause backwards jumps.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

BRU s

Operation:

pc <- pc + s_{signed} * iw

Encoding:

1r: Register
0 0 1 0 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_ILLEGAL_PC
The new PC is not pointing to a valid memory location.

67

The XMOS XS3 Architecture

22.21 BYTEREV: Byte reverse

This instruction reverses the bytes of a word.

Togetherwith theBITREV instruction this can be used to resolve requirements of different
ordering conventions such as little-endian and big-endian.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

BYTEREV d,s

Operation:

d[bpw-1...0] <- s[7...0] : s[15...8] : ... : s[bpw-1:bpw-8]

Encoding:

2r: Two register
0 0 0 0 0 0 (M or R)

68

The XMOS XS3 Architecture

22.22 CHKCT: Test for control token

If the next token on a channel is the specified control token, then this token is discarded
from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together withOUTCT in order to implement robust protocols
on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT tests for a
control token without trapping, and does not discard the control token.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

CHKCT r,s

Operation:

if hasctoken(r) && s == token(r):
skiptoken(r)

else:
raise exception

Encoding:

2r: Two register
1 1 0 0 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r contains a data token.

ET_ILLEGAL_RESOURCE
r contains a control token different to s.

69

The XMOS XS3 Architecture

22.23 CHKCTI: Test for control token immediate

If the next token on a channel is the specified control token, then this token is discarded
from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together withOUTCT in order to implement robust protocols
on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT tests for a
control token without trapping, and does not discard the control token.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
us, An integer in the range 0…11

Mnemonic and operands:

CHKCTI r,u_s

Operation:

if hasctoken(r) && us == token(r):
skiptoken(r)

else:
raise exception

Encoding:

rus: Register with immediate
1 1 0 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r contains a data token.

ET_ILLEGAL_RESOURCE
r contains a control token different to u_s.

70

The XMOS XS3 Architecture

22.24 CLRE: Clear all events

Clears the thread’s Event-Enable and In-Enabling flags, and disables all individual events
for the thread. Any resource (port, channel, timer) that was enabled for this thread will
be disabled.

The instruction has no operands.

Mnemonic and operands:

CLRE

Operation:

sr[eeble] <- 0
sr[inenb] <- 0
forall res:
if thread(res) == tid && event(res):
enb(res) <- 0

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 (R)

71

The XMOS XS3 Architecture

22.25 CLRPT: Clear the port time

Clears the timer that is used to determine when the next output on a port will happen.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

CLRPT r

Operation:

clearporttime(r)

Encoding:

1r: Register
1 0 0 0 0 1 1 1 1 1 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use.

72

The XMOS XS3 Architecture

22.26 CLS: Count leading sign bits

Counts the number of leading sign bits in s If the s is zero, then bpw is produced. The
instruction can never produce 0 as there is always at least one sign-bit. This instruction
can be used to efficiently compute the headroom of signed integers.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

CLS d,s

Operation:

d <- bpw, if s == 0
bpw - 1 - floor(log2 s), if s[bpw-1] == 0
bpw - 1 - floor(log2 ~s), if s[bpw-1] == 1

Encoding:

2r: Two register
0 0 1 0 0 0 (M or R)

73

The XMOS XS3 Architecture

22.27 CLRSR: Clear bits SR

Clear bits in the thread’s status register (sr). The mask supplied specifies which bits
should be cleared. CLRSR can only be used to clear the EEBLE, IEBLE, INENB, ININT and
INK bits.

SETSR is used to set bits in the status register. The value of these bits are documented
on the SETSR page

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

CLRSR u_{16}

Operation:

sr <-sr & ~ u16

Encoding:

u6: 6-bit immediate
0 1 1 1 1 0 1 1 0 0 (R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 0 1 1 0 0

The latter is prefixed for long immediates.

74

The XMOS XS3 Architecture

22.28 CLZ: Count leading zeros

Counts the number of leading zero bits in its operand. If the operand is zero, then bpw is
produced. If the operand starts with a ‘1’ bit (ie, a negative signed integer, or a large un-
signed integer), then 0 is produced. This instruction can be used to efficiently normalise
integers.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

CLZ d,s

Operation:

d <- bpw, if s == 0
bpw - 1 - floor(log2 s), if s[bpw-1] == 0
0, if s[bpw-1] = 1

Encoding:

2r: Two register
0 0 0 0 1 0 (M or R)

75

The XMOS XS3 Architecture

22.29 CRC8: 8-step CRC

Incorporates the CRC over 8-bits of a 32-bit word into a Cyclic Redundancy Checksum.
The instruction has four operands. Similar to CRC the first operand is used both as a
source to read the initial value of the checksum and a destination to leave the updated
checksum, and there are operands to specify the the polynomial (p) to use when com-
puting the CRC, and the data (e) to compute the CRC over. Since on completion of the
instruction the part of the data that has not yet been incorporated into the CRC, the most
significant 24-bits of the data are stored in a second destination register (x). This en-
ables repeated execution of CRC8 over a part-word. Executing Bpw CRC8 instructions in
a row is identical to executing a single CRC instruction.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
x, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
p, Operand register, one of r0… r11

Mnemonic and operands:

CRC8 d,x,e,p

Operation:

for step in range(8):
if r[0] == 1:
r <- (d[step] : r[bpw-1 ... 1]) @ p

else
r <- (d[step] : r[bpw-1 ... 1])

d[bpw-1...0] <- 0:0:0:0:0:0:0:0:e[bpw-1:8]

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0

76

The XMOS XS3 Architecture

22.30 CRC: Word CRC

Incorporates a word into a Cyclic Redundancy Checksum. The instruction has three
operands. The first operand (d) is used both as a source to read the initial value of the
checksum and a destination to leave the updated checksum. The other operands are the
data to compute the CRC over (x) and the polynomial to use when computing the CRC
(p).

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
p, Operand register, one of r0… r11

Mnemonic and operands:

CRC d,x,p

Operation:

for step in range(bpw):
if r[0] == 1:
r <- (d[step] : r[bpw-1 ... 1]) @ p

else
r <- (d[step] : r[bpw-1 ... 1])

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

77

The XMOS XS3 Architecture

22.31 CRC32_INC: Word CRC with address increment

Incorporates a word into a Cyclic Redundancy Checksum. The instruction has three
operands. The first operand (d) is used both as a source to read the initial value of the
checksum and a destination to leave the updated checksum. The other operands are the
data to compute the CRC over (x) and the polynomial to use when computing the CRC
(p).

Simultaneously, the instruction increments a register with the specified value.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
a, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
p, Operand register, one of r0… r11

op5
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

CRC32_INC d,a,x,p,bitp

Operation:

for step in range(bpw):
if r[0] == 1:
r <- (d[step] : r[bpw-1 ... 1]) @ p

else
r <- (d[step] : r[bpw-1 ... 1])

a <- a + bitp

Encoding:

l4rus: Four registers with immediate long
1 1 1 1 1 (M and R)
0 0 1 0 1 x x x x x . 1

78

The XMOS XS3 Architecture

22.32 CRCN: Variable step CRC

Incorporates the CRC over N-bits of a 32-bit word into a Cyclic Redundancy Checksum.
The instruction has four operands. Similar to CRC the first operand is used both as a
source to read the initial value of the checksum and a destination to leave the updated
checksum, and there are operands to specify the the polynomial (p) to use when com-
puting the CRC, the data (d) to compute the CRC over, and the number of bits (n).

The CRCN instruction is provided to complete the checksum over messages that have
a number of bytes that is not a multiple of Bpw, or for messages where the start is not
aligned.

The instruction has four operands:

op1
x, Operand register, one of r0… r11

op4
d, Operand register, one of r0… r11

op2
p, Operand register, one of r0… r11

op3
n, Operand register, one of r0… r11

Mnemonic and operands:

CRCN x,d,p,n

Operation:

for step in range(if n < bpw then n else bpw):
if r[0] == 1:
r <- (d[step] : r[bpw-1 ... 1]) @ p

else
r <- (d[step] : r[bpw-1 ... 1])

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 0 1 1 1 1 1 1 1 1

79

The XMOS XS3 Architecture

22.33 DCALL: Call a debug interrupt

Switches to debugmode, saving the current program counter and stack pointer of thread
0 in debug registers. Thread 0 is deemed to have taken an interrupt and is therefore
removed from themulticycle unit and lock resources, and all of its resources are informed
such that it is removed from any resources it was inputting/outputting/eventing on.

DRET returns from a debug interrupt. DENTSP and DRESTSP instructions are used to
switch to and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DCALL

Operation:

dspc <- pc(t0)
dssr <- sr(t0)
pc(t0) <- debugentry
dtype <- dcallcause
sr(t0)[inint] <- 1
sr(t0)[ink] <- 1
sr(t0)[eeble] <- 0
sr(t0)[ieble] <- 0
sr(t0)[inenb] <- 0
sr(t0)[waiting] <- 0
in_debug <- 1

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 (M or R)

80

The XMOS XS3 Architecture

22.34 DENTSP: Save and modify stack pointer for debug

Causes thread 0 to use the Debug SP rather than the SP in debug mode. Saves the SP in
debug saved stack pointer (DSSP), and loads the SP with the top word location in RAM.

DRESTSP is used to use the restore the original SP from the DSSP.

The instruction has no operands.

Mnemonic and operands:

DENTSP

Operation:

dssp <- sp
sp <- ramend

Encoding:

l0r: No operands
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 (M and R)
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

81

The XMOS XS3 Architecture

22.35 DGETREG: Debug read of another thread’s register

The contents of any thread’s register can then be accessed for debugging purpose. To
access the state of a thread, first used SETPS to set dtid and dtreg to the thread
identifier and register number within the thread state.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

DGETREG s

Operation:

s <- register(dtid, dtreg)

Encoding:

1r: Register
0 0 1 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

82

The XMOS XS3 Architecture

22.36 DIVS: Signed division

Produces the result of dividing two signed words, rounding the result towards zero. For
example 5 // 3 is 1, -5 // 3 is -1, -5 // -3 is 1, and 5 // -3 is -1.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

DIVS d,x,y

Operation:

d <- x // y # signed

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ARITHMETIC
Division by 0.

ET_ARITHMETIC
Division of -2^{bpw-1} by -1

83

The XMOS XS3 Architecture

22.37 DIVU: Unsigned divide

Computes an unsigned integer division, rounding the answer down to 0. For example
5// 3 is 1.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

DIVU d,x,y

Operation:

d <- x // y

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ARITHMETIC
Division by 0.

84

The XMOS XS3 Architecture

22.38 DRESTSP: Restore non debug stack pointer

Causes thread 0 to use the original SP rather than the debug SP. Restores the SP from
the debug saved stack pointer (DSSP)

DENTSP is used to use the save the original SP to the DSSP.

The instruction has no operands.

Mnemonic and operands:

DRESTSP

Operation:

sp <- dssp

Encoding:

l0r: No operands
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

85

The XMOS XS3 Architecture

22.39 DRET: Return from debug interrupt

Exits debugmode, restoring thread 0’s program counter and stack pointer from the start
of the debug interrupt.

DCALL calls a debug interrupt. DENTSP and DRESTSP instructions are used to switch to
and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DRET

Operation:

pc(t0) <- dspc
sr(t0) <- dssr

Encoding:

l0r: No operands
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

ET_ILLEGAL_PC
The return address is invalid.

86

The XMOS XS3 Architecture

22.40 DUALENTSP: Adjust stack and save link register

Stores the link register on the stack then adjusts the stack pointer creating enough space
for the procedure call that has just been entered.

See RETSP for the operation that restores the link-register.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

DUALENTSP u_{16}

Operation:

if u16 > 0:
mem[sp] <- lr
sp <- sp - u16 * Bpw

sr[di]<- 1

Encoding:

u6: 6-bit immediate
0 1 1 1 1 1 1 1 1 0 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 1 1 1 1 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address is unaligned, or does not point to a valid memory
address.

87

The XMOS XS3 Architecture

22.41 DVLD: Debug Loads vector

Loads a vector of any thread from memory: r must be 0, 1, or 2 (for C, D, and O), and t
must be a thread number.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

DVLD d,t,r

Operation:

for k in range(bpv // 8):
if r == 0:
vC(t)[k* 8+7..k* 8] <- mem[d + k]

if r == 1:
vD(t)[k* 8+7..k* 8] <- mem[d + k]

if r == 2:
vR(t)[k* 8+7..k* 8] <- mem[d + k]

if r == 16
vSR(t) <- mem[d]

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

ET_LOAD_STORE
d is not word aligned, or a complete vector cannot be loaded from this
address.

88

The XMOS XS3 Architecture

22.42 DVST: Debug Store vector

Stores a vector from any thread in memory: r must be 0, 1, or 2 (for C, D, and O), and t
must be a thread number.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

DVST d,t,r

Operation:

for k in range(bpv // 8):
if r = 0:
mem[d + k] <- vC(t)[k* 8+7..k* 8]

if r = 1:
mem[d + k] <- vD(t)[k* 8+7..k* 8]

if r = 2:
mem[d + k] <- vR(t)[k* 8+7..k* 8]

if r = 16:
mem[d] <- vSR(t)

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION
not in debug mode.

ET_LOAD_STORE
d is not word aligned, or a complete vector cannot be stored at this ad-
dress.

89

The XMOS XS3 Architecture

22.43 ECALLF: Throw exception if zero

This instruction checks whether the operand is 0 (false) and raises an exception if it is
the case. It can be used to implement assertions, and to implement array bound checks
together with the LSU instruction.

The instruction has one operand:

op1
c, Operand register, one of r0… r11

Mnemonic and operands:

ECALLF c

Operation:

if c == 0:
raise exception

Encoding:

1r: Register
0 1 0 0 1 1 1 1 1 1 1 0 (M or R)

Conditions that raise an exception:

ET_ECALL
c = 0.

90

The XMOS XS3 Architecture

22.44 ECALLT: Throw exception if non-zero

This instruction checks whether a condition is not 0, and raises an exception if it is the
case. It can be used to implement assertions.

The instruction has one operand:

op1
c, Operand register, one of r0… r11

Mnemonic and operands:

ECALLT c

Operation:

if c != 0:
raise exception

Encoding:

1r: Register
0 1 0 0 1 1 1 1 1 1 1 1 (M or R)

Conditions that raise an exception:

ET_ECALL
c != 0.

91

The XMOS XS3 Architecture

22.45 EDU: Unconditionally disable event

Clears the event enabled status of a resource, disabling events and interrupts from that
resource.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

EDU r

Operation:

enb(r) <- 0
thread(r) <- tid

Encoding:

1r: Register
0 0 0 0 0 1 1 1 1 1 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a legal resource, or the resource is not in use.

92

The XMOS XS3 Architecture

22.46 EEF: Enables events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false), events
and interrupts are enabled, if the condition is not 0, events and interrupts are disabled.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

EEF d,r

Operation:

enb(r) <- d = 0
thread(r) <- tid

Encoding:

2r: Two register
0 0 1 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a legal resource, or the resource is not in use.

93

The XMOS XS3 Architecture

22.47 EET: Enable events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false), events
and interrupts are disabled, if the condition is not 0, events and interrupts are enabled.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

EET d,r

Operation:

enb(r) <- d != 0
thread(r) <- tid

Encoding:

2r: Two register
0 0 1 0 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a legal resource, or the resource is not in use.

94

The XMOS XS3 Architecture

22.48 EEU: Unconditionally enable event

Sets the event enabled status of a resource, enabling events and interrupts from that
resource.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

EEU r

Operation:

enb(r) <- 1
thread(r) <- tid

Encoding:

1r: Register
0 0 0 0 0 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
op2 is not referring to a legal resource, or the resource is not in use.

95

The XMOS XS3 Architecture

22.49 ELATE: Throw exception if too late

This instruction checks whether the operand is in the past, and raises an exception if it
is the case. It can be used to implement timing assertions.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

ELATE s

Operation:

if !(s after current_time):
raise exception

Encoding:

1r: Register
1 0 0 0 1 1 1 1 1 1 1 1 (M or R)

Conditions that raise an exception:

ET_ECALL
s is in the past.

96

The XMOS XS3 Architecture

22.50 ENDIN: End a current input

Allows any remaining input bits to be read of a port, and produces an integer stating how
much data is left. The produced integer is the number of bits of data remaining; ie, This
assumes that the port is buffering and shifting data.

The port-shift-count is set to the number of bits present, so an ENDIN instruction can be
followed directly by an IN instruction without having to perform a SETPSC.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

ENDIN d,r

Operation:

d <- buffercount(r)

Encoding:

2r: Two register
1 0 0 1 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a legal resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r is referring to a port which is not in BUFFERS mode.

ET_ILLEGAL_RESOURCE
r is referring to a port which is not in INPUT mode.

97

The XMOS XS3 Architecture

22.51 ENTSP: Adjust stack and save link register

Stores the link register on the stack then adjusts the stack pointer creating enough space
for the procedure call that has just been entered.

See RETSP for the operation that restores the link-register.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

ENTSP u_{16}

Operation:

if u16 > 0:
mem[sp] <- lr
sp <- sp - u16 * Bpw

sr[di]<- 0

Encoding:

u6: 6-bit immediate
0 1 1 1 0 1 1 1 0 1 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 1 1 1 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address is unaligned, or does not point to a valid memory
address.

98

The XMOS XS3 Architecture

22.52 EQ: Equal

Performs a test on whether two words are equal. If the two operands are equal, 1 is
produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1
c, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

EQ c,x,y

Operation:

c <- 1, if x == y
0, if x != y

Encoding:

3r: Three register
0 0 1 1 0 (M or R)

99

The XMOS XS3 Architecture

22.53 EQI: Equal immediate

Performs a test on whether two words are equal. If the two operands are equal, 1 is
produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1
c, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

EQI c,x,u_s

Operation:

c <- 1, if x == us
0, if x != us

Encoding:

2rus: Two register with immediate
1 0 1 1 0 (M or R)

100

The XMOS XS3 Architecture

22.54 EXTDP: Extend data

Extends the data area by moving the data pointer to a lower address

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

EXTDP u_{16}

Operation:

dp<- dp - u16 * Bpw

Encoding:

u6: 6-bit immediate
0 1 1 1 0 0 1 1 1 0 (M or R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 0 1 1 1 0

The latter is prefixed for long immediates.

101

The XMOS XS3 Architecture

22.55 EXTSP: Extend stack

Extends the stack by moving the stack pointer to a lower address.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

EXTSP u_{16}

Operation:

sp<- sp - u16 * Bpw

Encoding:

u6: 6-bit immediate
0 1 1 1 0 1 1 1 1 0 (M or R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 1 1 1 1 0

The latter is prefixed for long immediates.

102

The XMOS XS3 Architecture

22.56 FADD: Floating point addition

Adds two floating point numbers. The result is rounded according to the IEEE 754
roundTiesToEven mode.

If NaN is presented as x, then this value with bit 22 set will be passed on as the result
into d. If x is a number, and y is NaN, then the value of y with bit 22 set will be used as
the result for d. Otherwise, if the operation results in not a number, then it will set bits
22..30, and fill bits 0..21 with the bottom 23 bits of the next PC.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

FADD d,x,y

Operation:

d <- x + y # Float

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0

103

The XMOS XS3 Architecture

22.57 FENAN: Exception if Not-a-number

Traps if the floating point value is not a number

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

FENAN s

Operation:

nop

Encoding:

1r: Register
1 0 1 1 0 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
s is not-a-number.

104

The XMOS XS3 Architecture

22.58 FEQ: Floating point comparison

Compares two floating point numbers according to IEEE 754 and returns 1 if the two
input operands are equal, and 0 otherwise

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
l, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

FEQ d,l,r

Operation:

d <- l = r

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0

105

The XMOS XS3 Architecture

22.59 FGT: Floating point comparison

Compares two floating point numbers according to IEEE 754 and returns 1 if d is greater
than l, and 0 otherwise

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
l, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

FGT d,l,r

Operation:

d <- l > r

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0

106

The XMOS XS3 Architecture

22.60 FLT: Floating point comparison

Compares two floating point numbers according to IEEE 754 and returns 1 if d is less
than l, and 0 otherwise

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
l, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

FLT d,l,r

Operation:

d <- l < r

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1

107

The XMOS XS3 Architecture

22.61 FLUSH: Flushes the entire contents of the cache

The instruction has no operands.

Mnemonic and operands:

FLUSH

Operation:

nop

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 (M)

108

The XMOS XS3 Architecture

22.62 FMACC: Floating point fused Multiply Accumulate

Computes the product of the last two operands, added in full precision to the first
operand. The final number is rounded according to the IEEE 754 roundTiesToEvenmode.

If NaN is presented as x, then this value with bit 22 set will be passed on as the result
into d. Otherwise, if y is NaN, then the value of ywith bit 22 set will be used as the result
for d. Otherwise, if z is NaN, then the value of z with bit 22 set will be used as the result
for d. Otherwise, if the operation results in not a number, then it will set bits 22..30, and
fill bits 0..21 with the bottom 23 bits of the next PC.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
z, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

FMACC d,z,x,y

Operation:

z <- d + x * y # Float

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0

109

The XMOS XS3 Architecture

22.63 FMAKE: Build a floating point number

Creates a floating point number given a sign, exponent and double length mantissa. The
number produced wil have a value closest to (-1)^(s &1) * (m_h:m_l) * 2^-23
* 2^e. The 2^-23 value is specific for single precision floating point, for bpw=32.

If m_h and m_l are zero, then zero with the appropriate sign is produced in d.

Otherwise, forbpw=32, the exponent is calculated ase - 127 + 40 - clz(m_h:m_l).
That is, assuming thatm_h is zero, andm_l contains amantissawith an implicit one bit in
location 23, then the exponent is set to e-127, otherwise themagnitude of themantissa
is used to adjust the exponent. An exponent of less than 1 indicates that a subnormal
number has to be created, an exponent larger than 254 indicates that inifinity has to be
generated.

Once the exponent is calculated, the mantissa is shifted so that bit 23 of m_l is one. The
sign-bit (bit 0 of s), exponent (as computed above), and the bottom half of the mantissa
(m_l, shifted with bits of m_h as appropriate) are now used to form a floating point num-
ber. Whilst making a floating point number, the lower bits of the mantissa are used for
rounding, which may cause an adjustment to the exponent, which may cause infinity.

Observe that a sequence FSEXP, FMANT, FMAKE is a no-op if the input is an actual float-
ing point number.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
s, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
m_h, Operand register, one of r0… r11

op5
m_l, Operand register, one of r0… r11

Mnemonic and operands:

FMAKE d,s,e,m_h,m_l

Operation:

d <- (-1)^(s&1) * (m_h:m_l) * 2^-23 * 2^e # Float
Assuming bpw=32

Encoding:

l5r: Five register long
1 1 1 1 1 (M and R)
0 0 0 1 0 0

110

The XMOS XS3 Architecture

22.64 FMANT: Extract mantissa

Extracts the mantissa from a single precision floating point number, assuming it is rep-
resented according to IEEE 754. If the number represents plus or minus 0, then zero is
produced. Otherwise, if the number is normal then themantissa is produced including its
implicit one bit in the bit value associated with 1.0. Finally, if the number is subnormal,
then the mantissa is shifted up so that the first ‘1’ bit appears in the bit value associated
with 1.0

This instruction will trap if the operand is not-a-number or infinite. Use FSPEC to check
on special cases prior to using FMANT.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

Mnemonic and operands:

FMANT d,x

Operation:

d <- x[22...0] << (23-k), if x[30:23] == 0
x[22...0] + 0x800000, if x[30:23] != 0
k is the highest k < 23 such that x[k]==1

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0

Conditions that raise an exception:

ET_ARITHMETIC
x is infinite or not-a-number.

111

The XMOS XS3 Architecture

22.65 FMUL: Floating point multiply

Multiplies two floating point numbers. The result is rounded according to the IEEE 754
roundTiesToEven mode.

If NaN is presented as x, then this value with bit 22 set will be passed on as the result
into d. If x is a number, and y is NaN, then the value of y with bit 22 set will be used as
the result for d. Otherwise, if the operation results in not a number, then it will set bits
22..30, and fill bits 0..21 with the bottom 23 bits of the next PC.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

FMUL d,x,y

Operation:

d <- x * y # Float

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1

112

The XMOS XS3 Architecture

22.66 FREER: Free a resource

Frees a resource so that it can be reused. Only resources that have been previously
allocated with GETR can be freed; in particular, ports and clock-blocks cannot be freed
since they are not allocated.

FREER pauses when freeing a channel end that has outstanding transmit data.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

FREER r

Operation:

inuse(r) <- 0

Encoding:

1r: Register
0 0 0 1 0 1 1 1 1 1 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a legal resource

ET_ILLEGAL_RESOURCE
r is referring to a resource that cannot be freed

ET_ILLEGAL_RESOURCE
r is referring to a running thread

ET_ILLEGAL_RESOURCE
r is referring to a channel end on which no terminating CT_END token
has been input and/or output, or which has data pending for input, or
which has a thread waiting for input or output.

113

The XMOS XS3 Architecture

22.67 FREET: Free unsynchronised thread

Stops the thread that executes this instruction, and frees it. This must not be used by
synchronised threads, which should terminate by using a combination of an SSYNC on
the slave and an MJOIN on the master.

The instruction has no operands.

Mnemonic and operands:

FREET

Operation:

sr[inuse] <- 0

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 (R)

114

The XMOS XS3 Architecture

22.68 FSEXP: Extract sign and exponent

Extracts the sign and exponent from a floating point number: s becomes the sign, e
becomes the exponent. If x equals zero, then e is set to 0, and s is set to the sign of
the zero. If the number represents a subnormal number, then the exponent is adjusted
to match the normalised mantissa that FMANT will produce.

This instruction will trap if the operand is not-a-number or infinite. Use FSPEC to check
on special cases prior to using FEXP.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
x, Operand register, one of r0… r11

Mnemonic and operands:

FSEXP s,e,x

Operation:

s <- 1, if x < 0
0, if x >= 0

e <- e[30...23] - 127, if x != 0
0, if x == 0
-127-(23-k), if e[30...23] = 0
k is the highest k < 23 such that x[k]==1

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_ARITHMETIC
x is infinite or not-a-number.

115

The XMOS XS3 Architecture

22.69 FSPEC: Identify floating point type

Identifies whether the floating point number is special or not. This instruction followed
by a BRU and a jump table can quickly deal with all special cases, such as square-root of
-1, divisions by zero or the sine of NaN.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

Mnemonic and operands:

FSPEC d,x

Operation:

d <- 0, if x > 0
1, if x == +0.0
2, if x == infinite
3, if IsSignallingNaN(s)
4, if x < 0
5, if x == -0.0
6, if x == -infinite
7, if IsQuietNaN(x)

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1

116

The XMOS XS3 Architecture

22.70 FSUB: Floating point subtraction

Subtracts two floating point numbers. The result is rounded according to the IEEE 754
roundTiesToEven mode.

If NaN is presented as x, then this value with bit 22 set will be passed on as the result
into d. If x is a number, and y is NaN, then the value of y with bit 22 set will be used as
the result for d. Otherwise, if the operation results in not a number, then it will set bits
22..30, and fill bits 0..21 with the bottom 23 bits of the next PC.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

FSUB d,x,y

Operation:

d <- x - y # Float

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1

117

The XMOS XS3 Architecture

22.71 FUN: Floating point comparison

Compares two floating point numbers according to IEEE 754 and returns 1 if the two
input operands are unordered, and 0 otherwise

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
l, Operand register, one of r0… r11

op3
r, Operand register, one of r0… r11

Mnemonic and operands:

FUN d,l,r

Operation:

d <- unordered(l, r)

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1

118

The XMOS XS3 Architecture

22.72 GETD: Get resource data

Gets the contents of the data/dest/divide register of a resource. This data register is set
using SETD. The way that a resource depends on its data register is resource dependent
and described at SETD.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

GETD d,r

Operation:

d <- data(r)

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
d is not referring to a legal resource, or a resource which doesn’t have a
DATA register.

119

The XMOS XS3 Architecture

22.73 GETED: Get ED into r11

Obtains the value of ed, exception data, into r11. In the case of an event, ed is set to the
environment vector stored in the resource by SETEV. The data that is stored in ed in the
case of an exception is given in XCore XS3 Exceptions.

The instruction has no operands.

Mnemonic and operands:

GETED

Operation:

r11 <- ed

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 (M or R)

120

The XMOS XS3 Architecture

22.74 GETET: Get ET into r11

Obtains the value of ET (exception type) into r11.

The instruction has no operands.

Mnemonic and operands:

GETET

Operation:

r11 <- et

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 (M or R)

121

The XMOS XS3 Architecture

22.75 GETID: Get the thread’s ID

Get the thread ID of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETID

Operation:

r11 <- tid

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 (M or R)

122

The XMOS XS3 Architecture

22.76 GETKEP: Get the Kernel Entry Point

Get the kernel entry point of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETKEP

Operation:

r11 <- kep

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 (M or R)

123

The XMOS XS3 Architecture

22.77 GETKSP: Get Kernel Stack Pointer

Gets the thread’s Kernel Stack Pointer ksp into r11. There is no instruction to set ksp
directly since it is normally not moved. SETSP followed by KRESTSP will set both sp
and ksp. By saving sp beforehand, ksp can be set to the value found in r0 by using the
following code sequence:

LDAWSP r1, sp[0] // Save SP into R1

SETSP r0 // Set SP, and place old SP...

STW r1, sp[0] // ...where KRESTSP expects it

KRESTSP 0 // Set KSP, restore SP

The kernel stack pointer is initialised by the boot-ROM to point to a safe location near the
last location of RAM - the last few locations are used by the JTAG debugging interface.
If debugging is not required, then the KSP can safely be moved to the top of RAM.

The instruction has no operands.

Mnemonic and operands:

GETKSP

Operation:

r11 <- ksp

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 (M or R)

124

The XMOS XS3 Architecture

22.78 GETN: Get network

Gets the network identifier that this channel-end belongs to.

The network identifier is set using SETN.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

GETN d,r

Operation:

d <- net(r)

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
d is not referring to a legal channel end, or the channel end is not in use.

125

The XMOS XS3 Architecture

22.79 GETPS: Get processor state

Obtains internal processor state; used for low level debugging. The operand is a proces-
sor state resource; the register to be read is encoded in bits 15…8, and bits 7…0 should
contain the resource type associated with processor state.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

GETPS d,r

Operation:

d <- PS[r]

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_PS
d is not referring to a legal processor state register

126

The XMOS XS3 Architecture

22.80 GETR: Get a resource

Gets a resource of a specific type. This instruction dynamically allocates a resource from
the pools of available resources. Not all resources are dynamically allocated; resources
that refer to physical objects (IO pins, clock blocks) are used without allocating. The
resource types are:

RES_TYPE_PORT Ports 0 cannot be allocated
RES_TYPE_TIMER Timers 1
RES_TYPE_CHANEND Channel ends 2
RES_TYPE_SYNC Synchronisers 3
RES_TYPE_THREAD Threads 4
RES_TYPE_LOCK Lock 5
RES_TYPE_CLKBLK Clock source 6 cannot be allocated
RES_TYPE_SWMEM S/W mem 8 cannot be allocated
RES_TYPE_PS Proc state 11 cannot be allocated
RES_TYPE_CONFIG Config 12 cannot be allocated

The returned identifier comprises a 32-bit word, where the most significant 16-bits are
resource specific data, followed by an 8-bit resource counter, and 8-bits resource-type.
The resource specific 16 bits have the following meaning:

· Port: The width of the port.

· Timer: Reserved, returned as 0.

· Channel end: The node id (8-bits) and the core id (8-bits).

· Synchroniser: Reserved, returned as 0.

· Thread: Reserved, returned as 0.

· Lock: Reserved, returned as 0.

· Clock source: Reserved, should be set to 0.

· Processor state: Reserved, should be set to 0.

· Configuration: Reserved, should be set to 0.

If no resource of the requested type is available, then the destination operand is set to
zero, otherwise the destination operand is set to a valid resource id .

If a channel end is allocated, a local channel end is returned. In order to connect to a re-
mote channel end, a programnormally receives a channel-end over an already connected
channel, which is stored using SETD. To connect the first remote channel, a channel-end
identifier can be constructed (by concatenating a node id, core id, channel-end and the
value ‘2’).

When allocated, resources are freed using FREER to allow them to be available for real-
location.

The instruction has two operands:

127

The XMOS XS3 Architecture

op1
d, Operand register, one of r0… r11

op2
us, An integer in the range 0…11

Mnemonic and operands:

GETR d,u_s

Operation:

d <- first res in setof(us): !inuse(res)
inuse(d) <- 1

Encoding:

rus: Register with immediate
1 0 0 0 0 0 (R)

128

The XMOS XS3 Architecture

22.81 GETSR: Get bits from SR

Get bits from the thread’s Status Register. Themask supplied specifieswhich bits should
be extracted.

SETSR is used to set bits in the status register. The value of these bits are documented
on the SETSR page.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

GETSR u_{16}

Operation:

r11 <-sr & u16

Encoding:

u6: 6-bit immediate
0 1 1 1 1 1 1 1 0 0 (M or R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 1 1 1 0 0

The latter is prefixed for long immediates.

129

The XMOS XS3 Architecture

22.82 GETST: Get a synchronised thread

Gets a new thread and binds it to a synchroniser. The synchroniser ID is passed as an
operand to this instruction, and the destination register is set to the resulting thread ID.
If no threads are available then the destination register is set to 0.

The thread is started on execution of MSYNC by the master thread.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

GETST d,r

Operation:

d <- first thread in threads: ! inuse(thread)
inuse(d) <- 1
spaused <- spaused union {d}
slaves(r) <- slaves(r) union {d}
mstr(r) <- tid

Encoding:

2r: Two register
0 0 0 0 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a synchroniser that is in use

130

The XMOS XS3 Architecture

22.83 GETTIME: Get the reference time

Gets the current value of the reference time and loads it into the specified register

The instruction has one operand:

op1
d, Operand register, one of r0… r11

Mnemonic and operands:

GETTIME d

Operation:

d <- reference-time

Encoding:

1r: Register
1 0 0 0 1 1 1 1 1 1 1 0 (M or R)

131

The XMOS XS3 Architecture

22.84 GETTS: Get the time stamp

Gets the time stamp of a port. This is the value of the port timer at which the previous
transfer between the Shift and Transfer registers for input or output occurred. The port
timer counts ticks of the clock associated with this port, and returns a 16-bit value. In the
case of a conditional input, this instruction should be executed between a WAITEU and
its associated IN instruction; the value returned by GETTS will be the timestamp of the
data that will be input using the IN instruction.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

GETTS d,r

Operation:

d <- timestamp(r)

Encoding:

2r: Two register
0 0 1 1 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not referring to a port, or the port is not in use.

132

The XMOS XS3 Architecture

22.85 IN: Input data

Inputs data froma resource (r) into a destination register (d). The precise effect depends
on the resource type:

· Port: Read data from the port. If the port is buffered, a whole word of data is returned.
If the port is unbuffered, the most significant bits of the data will be set to 0. The
thread pauses if the data is not available.

· Timer: Reads the current time from the timer, or pauses until after a specific time
returning that time.

· Channel end: Reads Bpw data tokens from the channel, and concatenate them to a
single word of data. The bytes are assumed to be transmitted most significant byte
first. The thread pauses if there are not enough data tokens available.

· Lock: Lock the resource. The instruction pauses if the lock has been taken by another
thread, and is released when the out is released.

This instruction may pause.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

IN d,r

Operation:

r :> d

Encoding:

2r: Two register
1 0 1 1 0 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a valid resource, not in use, or it does not support IN.

ET_ILLEGAL_RESOURCE
r is a channel endwhich contains a Control Token in the firstBpw tokens
in its input buffer.

133

The XMOS XS3 Architecture

22.86 INCT: Input control tokens

If the next token on a channel is a control token, then this token is input to the destination
register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to input.

This instruction can be used together withOUTCT in order to implement robust protocols
on channels.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

INCT d,r

Operation:

if hasctoken(r):
r :> d

else:
raise exception

Encoding:

2r: Two register
1 0 0 0 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r is a channel end which contains a data token in the first entry in its
input buffer.

134

The XMOS XS3 Architecture

22.87 INPW: Input a part word

Inputs an incomplete word that is stored in the input buffer of a port. Used in conjunction
with ENDIN. ENDIN is used to determine how many bits are left on the port, and this
number is passed to INPW in order to read those remaining bits.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

op3
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

INPW d,r,bitp

Operation:

shiftcount(r) <- bitp
r :> d

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use, or bitp
is an unsupported width, or the port is not in BUFFERS mode.

135

The XMOS XS3 Architecture

22.88 INSHR: Input and shift right

Inputs a value from a port, and shifts the data read into the most significant bits of the
destination register. The bottom port-width bits of the destination register are lost.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

INSHR d,r

Operation:

r :> x
d <- x : d[bpw - 1...portwidth(r)]

Encoding:

2r: Two register
1 0 1 1 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use.

136

The XMOS XS3 Architecture

22.89 INT: Input a token of data

If the next token on a channel is a data token, then this token is input into the destination
register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to input.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

INT d,r

Operation:

if hasctoken(r):
raise exception

else
r :> d

Encoding:

2r: Two register
1 0 0 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r contains a control token in the first entry in its input buffer.

137

The XMOS XS3 Architecture

22.90 INVALIDATE: Invalidates the entire contents of the cache

The instruction has no operands.

Mnemonic and operands:

INVALIDATE

Operation:

nop

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 (M)

138

The XMOS XS3 Architecture

22.91 KCALL: Kernel call

Performs a kernel call. The program counter, status register and exception data are
stored in save-registers spc, ssr, and sed and the program continues at the kernel entry
point. Similar to exceptions, the program counter that is saved on KCALL is the program
counter of this instruction - hence an kernel call handler using KRET has to adjust spc
prior to returning.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

KCALL s

Operation:

spc <- pc
ssr <- sr
et <- ET_KCALL
sed <- ed
ed <- s
pc <- kep + 64
sr[ink] <- 1
sr[ieble] <- 0
sr[eeble] <- 0

Encoding:

1r: Register
0 1 0 0 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_KCALL
Kernel call.

139

The XMOS XS3 Architecture

22.92 KCALLI: Kernel call immediate

Performs a kernel call. The program counter, status register and exception data are
stored in save-registers spc, ssr, and sed and the program continues at the kernel entry
point. Similar to exceptions, the program counter that is saved on KCALL is the program
counter of this instruction - hence an kernel call handler using KRET has to adjust spc
prior to returning.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

KCALLI u_{16}

Operation:

spc <- pc
ssr <- sr
et <- ET_KCALL
sed <- ed
ed <- u16
pc <- kep + 64
sr[ink] <- 1
sr[ieble] <- 0
sr[eeble] <- 0

Encoding:

u6: 6-bit immediate
0 1 1 1 0 0 1 1 1 1 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 0 1 1 1 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_KCALL
Kernel call.

140

The XMOS XS3 Architecture

22.93 KENTSP: Switch to kernel stack

Saves the stack pointer on the kernel stack, then sets the stack pointer to the kernel
stack.

KRESTSP is used to use the restore the original stack pointer from the kernel stack.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

KENTSP u_{16}

Operation:

mem[ksp] <- sp
sp <- ksp - n * Bpw

Encoding:

u6: 6-bit immediate
0 1 1 1 1 0 1 1 1 0 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 0 1 1 1 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
Register ksp points to an unaligned address, or does not point to a valid
memory location.

141

The XMOS XS3 Architecture

22.94 KRESTSP: Restore stack pointer from kernel stack

Restores the stack pointer from the address saved on entry to the kernel by KENTSP.
This instruction is also used to initialise the kernel-stack-pointer.

KENTSP is used to save the stack pointer on entry to the kernel.

The instruction has one operand:

op1
u16, A 16-bit mask

Mnemonic and operands:

KRESTSP u16

Operation:

ksp <- sp + n * Bpw
sp <- mem[ksp]

Encoding:

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 0 1 1 1 1

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address points to an unaligned address, or the indexed ad-
dress does not point to a valid memory location.

142

The XMOS XS3 Architecture

22.95 KRET: Kernel Return

Returns from the kernel after an interrupt, kernel call, or exception.

The instruction has no operands.

Mnemonic and operands:

KRET

Operation:

pc <- spc
sr <- ssr
ed <- sed

Encoding:

l0r: No operands
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_PC
The register spc was not 16-bit aligned or did not point to a valid mem-
ory location.

143

The XMOS XS3 Architecture

22.96 LADD: Long unsigned add with carry

Adds two unsigned integers and a carry, and produces both the unsigned result and the
possible carry. For this purpose, the instruction has five operands, two registers that
contain the numbers to be added (x and y); the carry which is stored in the last bit of
a third source operand (v); one destination register which is used to store the carry (e),
and a destination register for the sum (d).

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

op5
v, Operand register, one of r0… r11

Mnemonic and operands:

LADD d,e,x,y,v

Operation:

r = x + y + v[0]
d <- r[bpw-1...0]
e <- r[bpw]

Encoding:

l5r: Five register long
1 1 1 1 1 (M and R)
0 0 0 0 0 1

144

The XMOS XS3 Architecture

22.97 LD8U: Load unsigned 8 bits

Loads an unsigned 8-bit value from memory. The address is computed using a base
address (b) and index (i).

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LD8U d,b,i

Operation:

d <- 0:...:0:word[bnum + 7... bnum]
where ea = b + i

bytenum = ea % Bpw
bnum = 8 * bytenum
word = mem[ea - bytenum]

Encoding:

3r: Three register
1 0 0 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

145

The XMOS XS3 Architecture

22.98 LD16S: Load signed 16 bits

Loads a signed 16-bit integer from memory extending the sign into the whole word. The
address is computed using a base address (b) and index (i). The base address should
be word-aligned.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LD16S d,b,i

Operation:

d <- word[bnum + 15]:...:word[bnum + 15]:word[bnum + 15... bnum]
where ea = b + i * 2

bytenum = ea % Bpw
bnum = 16 * (bytenum // 2)
word = mem[ea-bytenum]

Encoding:

3r: Three register
1 0 0 0 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
b is not 16-bit aligned (unaligned load), or does not point to a validmem-
ory location.

146

The XMOS XS3 Architecture

22.99 LDA16B: Subtract from 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index (i)

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDA16B d,b,i

Operation:

d <- b - i * 2

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

147

The XMOS XS3 Architecture

22.100 LDA16F: Add to a 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index (i)

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDA16F d,b,i

Operation:

d <- b + i * 2

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

148

The XMOS XS3 Architecture

22.101 LDAPB: Load backward pc-relative address

Load effective address relative to the program counter. This operation scales the index
(u10) so that it counts 16-bit entities.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

LDAPB u10

Operation:

r11 <- pc - u10 * iw

Encoding:

u10: 10-bit immediate
1 1 0 1 1 1 (M or R)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 0 1 1 1

The latter is prefixed for long immediates.

149

The XMOS XS3 Architecture

22.102 LDAPF: Load forward pc-relative address

Load effective address relative to the program counter. This operation scales the index
(u10) so that it counts 16-bit entities.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

LDAPF u10

Operation:

r11 <- pc + u10 * iw

Encoding:

u10: 10-bit immediate
1 1 0 1 1 0 (M or R)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 0 1 1 0

The latter is prefixed for long immediates.

150

The XMOS XS3 Architecture

22.103 LDAWB: Subtract from word address

Load effective address for word given a base-address (b) and an index (i)

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDAWB d,b,i

Operation:

d <- b - i * Bpw

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

151

The XMOS XS3 Architecture

22.104 LDAWBI: Subtract from word address immediate

Load effective address for word given a base-address (b) and an index (u_s)

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

LDAWBI d,b,u_s

Operation:

d <- b - us * Bpw

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

152

The XMOS XS3 Architecture

22.105 LDAWCP: Load address of word in constant pool

Loads the address of a word relative to the constant pointer.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDAWCP u_{16}

Operation:

r11 <- cp + u16 * Bpw

Encoding:

u6: 6-bit immediate
0 1 1 1 1 1 1 1 0 1 (M or R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 1 1 1 0 1

The latter is prefixed for long immediates.

153

The XMOS XS3 Architecture

22.106 LDAWDP: Load address of word in data pool

Loads the address of a word relative to the data pointer.

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDAWDP D,u_{16}

Operation:

D <- dp + u16 * Bpw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 0 0 0 (M or R)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 0 0 0

The latter is prefixed for long immediates.

154

The XMOS XS3 Architecture

22.107 LDAWF: Add to a word address

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDAWF d,b,i

Operation:

d <- b + i * Bpw

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

155

The XMOS XS3 Architecture

22.108 LDAWFI: Add to a word address immediate

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, An integer in the range 0…11

Mnemonic and operands:

LDAWFI d,b,i

Operation:

d <- b + i * Bpw

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

156

The XMOS XS3 Architecture

22.109 LDAWSP: Load address of word on stack

Loads the address of a word relative to the stack pointer.

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDAWSP D,u_{16}

Operation:

D <- sp + u16 * Bpw

Encoding:

ru6: Register with 6-bit immediate
0 1 1 0 0 1 (M or R)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 0 0 1

The latter is prefixed for long immediates.

157

The XMOS XS3 Architecture

22.110 LDC: Load constant

Load a constant into a register

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDC D,u_{16}

Operation:

D <- u16

Encoding:

ru6: Register with 6-bit immediate
0 1 1 0 1 0 (M or R)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 0 1 0

The latter is prefixed for long immediates.

158

The XMOS XS3 Architecture

22.111 LDD: Load double word

Loads two words from memory, using a base and an index. The index is scaled in order
to translate the double-word-index into a byte-index. The base address must be double-
word-aligned. The immediate version, LDDI, implements a load from a structured data
type; the version with registers only, LDD, implements a load from an array.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDD d,e,b,i

Operation:

d <- mem[b + i * Bpw * 2]
e <- mem[b + i * Bpw * 2 + Bpw]

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 1 0 0 1 1 1 1 1 1 0

Conditions that raise an exception:

ET_LOAD_STORE
b is not double word aligned, or the indexed address does not point to a
valid memory location.

159

The XMOS XS3 Architecture

22.112 LDDI: Load double word immediate

Loads two words from memory, using a base and an index. The index is scaled in order
to translate the double-word-index into a byte-index. The base address must be double-
word-aligned. The immediate version, LDDI, implements a load from a structured data
type; the version with registers only, LDD, implements a load from an array.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, An integer in the range 0…11

Mnemonic and operands:

LDDI d,e,b,i

Operation:

d <- mem[b + i * Bpw * 2]
e <- mem[b + i * Bpw * 2 + Bpw]

Encoding:

l3rus: Three register with immediate long
1 1 1 1 1 (M and R)
0 0 1 0 0 1 1 1 1 1 1 1

Conditions that raise an exception:

ET_LOAD_STORE
b is not double word aligned, or the indexed address does not point to a
valid memory location.

160

The XMOS XS3 Architecture

22.113 LDDSP: Load double word from stack

Loads two words relative to the stack pointer. The stack pointer must be double-word
aligned.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

LDDSP d,e,u_s

Operation:

d <- mem[sp + us * Bpw * 2]
e <- mem[sp + us * Bpw * 2 + Bpw]

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
sp is not double-word aligned, or the indexed address does not point to
a valid memory location.

161

The XMOS XS3 Architecture

22.114 LDET: Load ET from the stack

Restores the value of ET from the stack from offset 4.

The value was typically saved using STET. Together with LDSPC, LDSSR, and LDSED all
or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDET

Operation:

et <- mem[sp + 4 * Bpw]

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

162

The XMOS XS3 Architecture

22.115 LDIVU: Long unsigned divide

Divides a double word operand by a single word operand. This will result in a single word
quotient and a single word remainder. This instruction has three source operands and
two destination operands. The LDIVU instruction can take up to bpw thread-cycles to
complete; the divide unit is shared between threads.

The operation only works if the division fits in a 32-bit word, that is, if the higher word of
the double word input is less than the divisor. This operation is intended to be used for
the implementation of long division.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

op5
v, Operand register, one of r0… r11

Mnemonic and operands:

LDIVU d,e,x,y,v

Operation:

d <- (v : x) // y
e <- (v : x) % y

Encoding:

l5r: Five register long
1 1 1 1 1 (M and R)
0 0 0 0 0 0

Conditions that raise an exception:

ET_ARITHMETIC
y = 0 || v >= y

163

The XMOS XS3 Architecture

22.116 LDSED: Load SED from stack

Restores the value of SED from the stack from offset 3.

The value was typically saved using STSED. Together with LDSPC, LDSSR, and LDET all
or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSED

Operation:

sed <- mem[sp + 3 * Bpw]

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

164

The XMOS XS3 Architecture

22.117 LDSPC: Load the SPC from the stack

Restores the value of SPC from the stack from offset 1.

The value was typically saved using STSPC. Together with LDSED, LDSSR, and LDET all
or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSPC

Operation:

spc <- mem[sp + 1 * Bpw]

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

165

The XMOS XS3 Architecture

22.118 LDSSR: Load SSR from stack

Restores the value of SSR from the stack from offset 2.

The value was typically saved using STSSR. Together with LDSED, LDSPC, and LDET all
or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSSR

Operation:

ssr <- mem[sp + 2 * Bpw]

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

166

The XMOS XS3 Architecture

22.119 LDW: Load word

Loads a word frommemory, using two registers as a base register and an index register.
The index register is scaled in order to translate the word-index into a byte-index. The
base address must be word-aligned. The immediate version, LDWI, implements a load
from a structured data type; the versionwith registers only, LDW, implements a load from
an array.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

LDW d,b,i

Operation:

d <- mem[b + i * Bpw]

Encoding:

3r: Three register
0 1 0 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
b is not word aligned, or the indexed address does not point to a valid
memory location.

167

The XMOS XS3 Architecture

22.120 LDWI: Load word immediate

Loads a word frommemory, using two registers as a base register and an index register.
The index register is scaled in order to translate the word-index into a byte-index. The
base address must be word-aligned. The immediate version, LDWI, implements a load
from a structured data type; the versionwith registers only, LDW, implements a load from
an array.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, An integer in the range 0…11

Mnemonic and operands:

LDWI d,b,i

Operation:

d <- mem[b + i * Bpw]

Encoding:

2rus: Two register with immediate
0 0 0 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
b is not word aligned, or the indexed address does not point to a valid
memory location.

168

The XMOS XS3 Architecture

22.121 LDWCP: Load word from constant pool

Loads a word relative to the constant pool pointer.

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDWCP D,u_{16}

Operation:

D <- mem[cp + u16 * Bpw]

Encoding:

ru6: Register with 6-bit immediate
0 1 1 0 1 1 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 0 1 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
cp is not word aligned, or the indexed address does not point to a valid
memory location.

169

The XMOS XS3 Architecture

22.122 LDWCPL: Load word from large constant pool

Loads a word relative to the constant pool pointer into r11. The offset can be larger than
the offset specified in LDWCP.

The instruction has one operand:

op1
u10, A 20-bit immediate in the range 0…1048575. If u20 < 1024, the
instruction requires no prefix

Mnemonic and operands:

LDWCPL u10

Operation:

r11 <- mem[cp + u10 * Bpw]

Encoding:

u10: 10-bit immediate
1 1 1 0 0 1 (M)

lu10: 20-bit immediate
1 1 1 1 0 0 (M and R)
1 1 1 0 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
cp is not word aligned, or the indexed address does not point to a valid
memory location.

170

The XMOS XS3 Architecture

22.123 LDWDP: Load word form data pool

Loads a word relative to the data pointer.

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDWDP D,u_{16}

Operation:

D <- mem[dp + u16 * Bpw]

Encoding:

ru6: Register with 6-bit immediate
0 1 0 1 1 0 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 0 1 1 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
dp is not word aligned, or the indexed address does not point to a valid
memory location.

171

The XMOS XS3 Architecture

22.124 LDWSP: Load word from stack

Loads a word relative to the stack pointer.

The instruction has two operands:

op1
D, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

LDWSP D,u_{16}

Operation:

D <- mem[sp + u16 * Bpw]

Encoding:

ru6: Register with 6-bit immediate
0 1 0 1 1 1 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 0 1 1 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
sp is not word aligned, or the indexed address does not point to a valid
memory location.

172

The XMOS XS3 Architecture

22.125 LEXTRACT: Bitfield extraction from register pair

Extracts a bitfield at position x in a pair of registers l and r into d. A mask bitp is
applied allowing a bitfield of less than bpw bits to be extracted.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
l, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

op3
x, Operand register, one of r0… r11

op5
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

LEXTRACT d,l,r,x,bitp

Operation:

d <- (l:r)[bpw+x-1..x] & (2^bitp-1);

Encoding:

l4rus: Four registers with immediate long
1 1 1 1 1 (M and R)
0 0 0 1 1 x x x x x . 0

173

The XMOS XS3 Architecture

22.126 LINSERT: Inserts a bitfield into a pair of registers

Inserts a bitfield into a pair of registers d and e. The bitfield is stored in register x, the
location of the bitfield is stored in register s (which must be between 0 and bpw-1 inclu-
sive), and the length of the bitfield is a short immediate operand bitp.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
s, Operand register, one of r0… r11

op5
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

LINSERT d,e,x,s,bitp

Operation:

m = ((1 << bitp) - 1) << s
d:e <- ((d:e) & ~ m) | ((x << s) & m)

Encoding:

l4rus: Four registers with immediate long
1 1 1 1 1 (M and R)
0 0 0 1 1 x x x x x . 1

174

The XMOS XS3 Architecture

22.127 LMUL: Long multiply

Multiplies two words to produce a double-word, and adds two single words. Both the
high word and the low word of the result are produced. This multiplication is unsigned
and cannot overflow.

The instruction has six operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

op5
v, Operand register, one of r0… r11

op6
w, Operand register, one of r0… r11

Mnemonic and operands:

LMUL d,e,x,y,v,w

Operation:

e <- r [bpw-1 ... 0]
d <- r [2 bpw-1 ... bpw]

where r = x * y + v + w

Encoding:

l6r: Six register long
1 1 1 1 1 (M and R)
0 0 0 0 0

175

The XMOS XS3 Architecture

22.128 LSS: Less than signed

Tests whether one signed value is less than another signed value. The test result is
produced in the destination register (c) as 1 (true) or 0 (false).

The instruction has three operands:

op1
c, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

LSS c,x,y

Operation:

c <- 1, if x < y # signed comparison
0, if x >= y # signed comparison

Encoding:

3r: Three register
1 1 0 0 0 (M or R)

176

The XMOS XS3 Architecture

22.129 LSU: Less than unsigned

Tests whether one unsigned value is less than another unsigned value. The result is
produced in the destination register (c) as 1 (true) or 0 (false). It can be used to perform
efficient bound checks against values in the range 0...(y-1)

The instruction has three operands:

op1
c, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

LSU c,x,y

Operation:

c <- 1, if x < y
0, if x >= y

Encoding:

3r: Three register
1 1 0 0 1 (M or R)

177

The XMOS XS3 Architecture

22.130 LSUB: Long unsigned subtract

Subtracts unsigned integers and a borrow from an unsigned integer, producing both the
unsigned result and the possible borrow. The instruction has five operands: two registers
that contain the numbers to be subtracted (x and y), the borrow input which is stored in
the last bit of a third source operand (v), one destination register which is used to store
the borrow-out (e), and a destination register for the difference (d).

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

op5
v, Operand register, one of r0… r11

Mnemonic and operands:

LSUB d,e,x,y,v

Operation:

d <- r[bpw-1...0]
e <- r[bpw]

where r = x - y - v[0]

Encoding:

l5r: Five register long
1 1 1 1 1 (M and R)
0 0 0 0 1 0

178

The XMOS XS3 Architecture

22.131 MACCS: Multiply and accumulate signed

Multiplies two signed words, and adds the double word result into a signed double word
accumulator. The double word accumulator comprises two registers that are used both
as a source and destination. Two other operands are the values that are to bemultiplied.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

MACCS d,e,x,y

Operation:

e <- tmp[bpw-1...0]
d <- tmp[2 * bpw-1...bpw]

where tmp = (d:e) + x * y # signed

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0

179

The XMOS XS3 Architecture

22.132 MACCU: Multiply and accumulate unsigned

Multiplies two unsigned words, and adds the double word result into an unsigned double
word accumulator. The double word accumulator comprises two registers that are used
both as a source and destination. Two other operands are the values that are to be
multiplied.

MACCU can be used to correct word alignment issues by repeatedly operating on words
of a stream. For example, multiplying with 0x00010000 will result in the high word of the
accumulator to produce the same stream of words offset by half a word.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

MACCU d,e,x,y

Operation:

e <- tmp[bpw-1...0]
d <- tmp[2 * bpw-1...bpw]

where tmp = (d:e) + x * y

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 0 0 1 1 1 1 1 1 1

180

The XMOS XS3 Architecture

22.133 MJOIN: Synchronise and join

Synchronises the master thread that executes this instruction with all the slave threads
associated with its synchroniser operand (r), and frees those slave threads when the
synchronisation completes. This is used to end a group of parallel threads. Note this
clears the EEBLE bit. If the ININT bit is set, then MJOIN will not block; MJOIN should not
be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute an
MSYNC instruction to synchronise without freeing the slave threads.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

MJOIN r

Operation:

sr[eeble] <- 0
if slaves(r) == spaused:
for thread in slaves(r):
inuse(thread) <- 0

mjoin(syn(tid)) <- 0
else:
mpaused <- mpaused UNION {tid}
mjoin(r) <- 1
msyn(r) <- 1

Encoding:

1r: Register
0 0 0 1 0 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a synchroniser resource, or the resource is not in use.

181

The XMOS XS3 Architecture

22.134 MKMSK: Make n-bit mask

Makes an n-bit mask that can be used to extract a bit field from a word. The resulting
mask consists of s 1 bits aligned to the right.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

MKMSK d,s

Operation:

d <- 2^{s}-1, if s < bpw
~0, if s >= bpw

Encoding:

2r: Two register
1 0 1 0 0 0 (M or R)

182

The XMOS XS3 Architecture

22.135 MKMSKI: Make n-bit mask immediate

Makes an n-bit mask that can be used to extract a bit field from a word. The resulting
mask consists of bitp 1 bits aligned to the right.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

MKMSKI d,bitp

Operation:

d <- 2^{bitp}-1, if bitp < bpw
~0, if bitp >= bpw

Encoding:

rus: Register with immediate
1 0 1 0 0 1 (M or R)

183

The XMOS XS3 Architecture

22.136 MSYNC: Master synchronise

Synchronise a master thread with the slave threads associated with its synchroniser (r).
If the slave threads have just been created (with GETST), then MSYNC starts all slaves.
This clears the EEBLE bit. If the ININT bit is set, then MSYNC will not block; MSYNC
should not be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute an
MJOIN instruction to free the slave threads after synchronisation.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

MSYNC r

Operation:

sr[eeble] <- 0
if slaves(r) == spaused:
spaused <- spaused setminus slaves(r)

else:
mpaused <- mpaused UNION {tid}
msyn(r) <- 1

Encoding:

1r: Register
0 0 0 1 1 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a synchroniser resource, or the resource is not in use.

ET_ILLEGAL_PC
One or more of the slave threads do not have a legal program counter.

184

The XMOS XS3 Architecture

22.137 MUL: Unsigned multiply

Performs a single word unsigned multiply. Any overflow is discarded, and only the last
bpw bits of the result are produced.

If overflow is important, one of the LMUL,MACCU orMACCS instructions should be used.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

MUL d,x,y

Operation:

d <- (x * y) % 2^bpw

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0

185

The XMOS XS3 Architecture

22.138 NEG: Two’s complement negate

Performs a signed negation in two’s complement, ie, it computes 0-s. Overflow is ig-
nored, ie, Negating -2^{bpw-1} will produce -2^{bpw-1}.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

NEG d,s

Operation:

d <- 2^bpw-s

Encoding:

2r: Two register
1 0 0 1 0 0 (M or R)

186

The XMOS XS3 Architecture

22.139 NOP: No operation

No operation.

The instruction has no operands.

Mnemonic and operands:

NOP

Operation:

No operation

Encoding:

0r: No operands
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 (M or R)

187

The XMOS XS3 Architecture

22.140 NOT: Bitwise not

Produces the bitwise not of its source operand.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

NOT d,s

Operation:

d <- ~ s

Encoding:

2r: Two register
1 0 0 0 1 0 (M or R)

188

The XMOS XS3 Architecture

22.141 OR: Bitwise or

Produces the bitwise or of its two source operands.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

OR d,x,y

Operation:

d <- x | y

Encoding:

3r: Three register
0 1 0 0 0 (M or R)

189

The XMOS XS3 Architecture

22.142 OUT: Output data

Output data to a resource. The precise effect of this instruction depends on the resource:

· Port: Output a word to the port - if the port is buffered the data will be shifted out
piece-meal, if the port is unbuffered themost significant bits of the data outputted will
be ignored. The instruction pauses if the out data cannot be accepted.

· Channel end: Output Bpw data tokens to the destination associated with this channel-
end (see SETD) - the most significant byte of the word is output first. The instruction
pauses if the out data cannot be accepted.

· Lock: Releases the lock.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

OUT r,s

Operation:

r <: s

Encoding:

r2r: Two register reversed
1 0 1 0 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a valid resource, not in use, or it does not support OUT.

ET_LINK_ERROR
r is a channel end, and the destination has not been set.

190

The XMOS XS3 Architecture

22.143 OUTCT: Output a control token

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

OUTCT r,s

Operation:

r <: ctoken(s)

Encoding:

2r: Two register
0 1 0 0 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a channel end, or not in use.

ET_LINK_ERROR
r is a channel end, and the destination has not been set.

ET_LINK_ERROR
r is a channel end, and the control token is a reserved hardware token.

191

The XMOS XS3 Architecture

22.144 OUTCTI: Output a control token immediate

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
us, An integer in the range 0…11

Mnemonic and operands:

OUTCTI r,u_s

Operation:

r <: ctoken(us)

Encoding:

rus: Register with immediate
0 1 0 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a channel end, or not in use.

ET_LINK_ERROR
r is a channel end, and the destination has not been set.

ET_LINK_ERROR
r is a channel end, and the control token is a reserved hardware token.

192

The XMOS XS3 Architecture

22.145 OUTPW: Output a part word

Outputs a partial word to a port. This is useful to send the last few port-widths of data.

The instruction pauses if the out data cannot be accepted.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

op3
w, Operand register, one of r0… r11

Mnemonic and operands:

OUTPW s,r,w

Operation:

shiftcount(r) <- w
r <: s

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use, or w is
an unsupported width, or the port is not in BUFFERS mode.

193

The XMOS XS3 Architecture

22.146 OUTPWI: Output a part word immediate

Outputs a partial word to a port. This is useful to send the last few port-widths of data.

The instruction pauses if the out data cannot be accepted.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

op3
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

OUTPWI s,r,bitp

Operation:

shiftcount(r) <- bitp
r <: s

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use, or bitp
is an unsupported width, or the port is not in BUFFERS mode.

194

The XMOS XS3 Architecture

22.147 OUTSHR: Output data and shift

Outputs the least significant port-width bits of a register to a port, shifting the register
contents to the right by that number of bits.

The instruction pauses if the out data cannot be accepted.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
d, Operand register, one of r0… r11

Mnemonic and operands:

OUTSHR r,d

Operation:

r <: d[portwidth(r)-1...0]
d <- 0 : ... : 0 : d[bpw - 1...portwidth(r

Encoding:

r2r: Two register reversed
1 0 1 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resoruce is not in use.

195

The XMOS XS3 Architecture

22.148 OUTT: Output a token

Output a data token to a channel.

The instruction pauses if the output token cannot be accepted.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

OUTT r,s

Operation:

r <: dtoken(s)

Encoding:

r2r: Two register reversed
0 0 0 0 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a channel end or not in use.

ET_LINK_ERROR
r is a channel end, and the destination has not been set.

196

The XMOS XS3 Architecture

22.149 PEEK: Peek at port data

Looks at the value of the port pins, by-passing all input logic. Peek will not pause, and
will not take ownership of the port.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

PEEK d,r

Operation:

d <- pins(r)

Encoding:

2r: Two register
1 0 1 1 1 0 (R)

Conditions that raise an exception:

ET_ILLEGAL_RESOURCE
r is not a port resource, or the resource is not in use.

197

The XMOS XS3 Architecture

22.150 PREFETCH: Prefetches a load from external memory

The instruction has no operands.

Mnemonic and operands:

PREFETCH

Operation:

nop

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
r11 is not word aligned, or a complete vector cannot be loaded from
this address.

198

The XMOS XS3 Architecture

22.151 REMS: Signed remainder

Computes a signed integer remainder. The remainder is negative if the dividend is neg-
ative. For example 5 rem 3 is 2, -5 rem 3 is -2, -5 rem -3 is -2, and 5 rem -3 is 2.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The remainder may take up to bpw thread-cycles.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

REMS d,x,y

Operation:

d <- x % y # signed

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ARITHMETIC
Remainder by x by 0.

ET_ARITHMETIC
Remainder by of -2^{bpw-1} by -1

199

The XMOS XS3 Architecture

22.152 REMU: Unsigned remainder

Computes an unsigned integer remainder.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

REMU d,x,y

Operation:

d <- x % y

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ARITHMETIC
Remainder of x by 0.

200

The XMOS XS3 Architecture

22.153 RETSP: Return

Returns to the caller of this procedure, and (optionally) adjusts the stack. This instruction
assumes that the return address is stored in LR (where call instructions leave the return
address).

This instruction is used with ENTSP. The BLA, BLACP, BLAT, BLRB and BLRF instructions
perform the opposite of this instruction, calling a procedure.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

RETSP u_{16}

Operation:

if u16 > 0:
sp <- sp + u6 * Bpw
lr <- mem[sp]

pc <- lr
sr[di] <- lr & 1

Encoding:

u6: 6-bit immediate
0 1 1 1 0 1 1 1 1 1 (M)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 0 1 1 1 1 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
Registersp points to an unaligned address, or the indexed address does
not point to a valid memory address.

201

The XMOS XS3 Architecture

22.154 LSATS: Saturate signed

Perform saturation on a double word value. Given a bit index this operation will check if
any arithmetic has overflowed beyond this bit. If an overflow has occurred, then the dou-
ble word will be set to MININT or MAXINT (shifted by the given bit location). Performing
this instruction between a series ofMACCS instructions and a LEXTRACT instruction will
cause the extracted word to be either the correct answer or MAXINT/MININT if the result
had overflowed positively or negatively.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

LSATS d,x,y

Operation:

if d:x > 2^{y+bpw}-1:
d:x <- 2^{y+bpw} - 1

elif d:x < -2^{y+bpw}:
d:x <- -2^{y+bpw}

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0

202

The XMOS XS3 Architecture

22.155 SETC: Set resource control bits

Sets the resource control bits. The control bits that can be set with SETC are the follow-
ing:

CTRL_INUSE_OFF 0x0000 CTRL_RUN_CLRBUF 0x0017
CTRL_INUSE_ON 0x0008 CTRL_MS_MASTER 0x1007
CTRL_COND_NONE 0x0001 CTRL_MS_SLAVE 0x100f
CTRL_COND_FULL 0x0001 CTRL_BUF_NOBUFFERS 0x2007
CTRL_COND_AFTER 0x0009 CTRL_BUF_BUFFERS 0x200f
CTRL_COND_EQ 0x0011 CTRL_RDY_NOREADY 0x3007
CTRL_COND_NEQ 0x0019 CTRL_RDY_STROBED 0x300f
CTRL_COND_GREATER 0x0021 CTRL_RDY_HANDSHAKE 0x3017
CTRL_COND_LESS 0x0029 CTRL_SDELAY_NOSDELAY 0x4007
CTRL_IE_MODE_EVENT 0x0002 CTRL_SDELAY_SDELAY 0x400f
CTRL_IE_MODE_INTERRUPT 0x000a CTRL_PORT_DATAPORT 0x5007
CTRL_DRIVE_DRIVE 0x0003 CTRL_PORT_CLOCKPORT 0x500f
CTRL_DRIVE_PULL_DOWN 0x000b CTRL_PORT_READYPORT 0x5017
CTRL_DRIVE_PULL_UP 0x0013 CTRL_INV_NOINVERT 0x6007
CTRL_RUN_STOPR 0x0007 CTRL_INV_INVERT 0x600f
CTRL_RUN_STARTR 0x000f

The precise effect depends on the resource type:

· Ports: See the chapter on Ports in the architecturemanual for a description of the port
modes.

· Timer: Only two of the modes, COND_AFTER and COND_NONE, can be used. When
COND_AFTER is set, the next IN operation on this resource will block until the timer
has reached the value set with SETD. Note that any value between the set time and
the set time - 2^{bpw-1} is accepted for the after condition.

· Clock source: Only the modes INUSE_ON and INUSE_OFF can be used - the resource
must be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETC r,s

Operation:

203

The XMOS XS3 Architecture

control(r) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a valid resource, or the resource is not in use, or not a resource
on which SETC can be used

ET_ILLEGAL_RESOURCE
s is not a valid mode, or not a mode that can be used on r.

204

The XMOS XS3 Architecture

22.156 SETCI: Set resource control bits immediate

Sets the resource control bits. The control bits that can be set with SETC are the follow-
ing:

CTRL_INUSE_OFF 0x0000 CTRL_RUN_CLRBUF 0x0017
CTRL_INUSE_ON 0x0008 CTRL_MS_MASTER 0x1007
CTRL_COND_NONE 0x0001 CTRL_MS_SLAVE 0x100f
CTRL_COND_FULL 0x0001 CTRL_BUF_NOBUFFERS 0x2007
CTRL_COND_AFTER 0x0009 CTRL_BUF_BUFFERS 0x200f
CTRL_COND_EQ 0x0011 CTRL_RDY_NOREADY 0x3007
CTRL_COND_NEQ 0x0019 CTRL_RDY_STROBED 0x300f
CTRL_COND_GREATER 0x0021 CTRL_RDY_HANDSHAKE 0x3017
CTRL_COND_LESS 0x0029 CTRL_SDELAY_NOSDELAY 0x4007
CTRL_IE_MODE_EVENT 0x0002 CTRL_SDELAY_SDELAY 0x400f
CTRL_IE_MODE_INTERRUPT 0x000a CTRL_PORT_DATAPORT 0x5007
CTRL_DRIVE_DRIVE 0x0003 CTRL_PORT_CLOCKPORT 0x500f
CTRL_DRIVE_PULL_DOWN 0x000b CTRL_PORT_READYPORT 0x5017
CTRL_DRIVE_PULL_UP 0x0013 CTRL_INV_NOINVERT 0x6007
CTRL_RUN_STOPR 0x0007 CTRL_INV_INVERT 0x600f
CTRL_RUN_STARTR 0x000f

The precise effect depends on the resource type:

· Ports: See the chapter on Ports in the architecturemanual for a description of the port
modes.

· Timer: Only two of the modes, COND_AFTER and COND_NONE, can be used. When
COND_AFTER is set, the next IN operation on this resource will block until the timer
has reached the value set with SETD. Note that any value between the set time and
the set time - 2^{bpw-1} is accepted for the after condition.

· Clock source: Only the modes INUSE_ON and INUSE_OFF can be used - the resource
must be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

SETCI r,u_{16}

Operation:

205

The XMOS XS3 Architecture

control(r) <- u16

Encoding:

ru6: Register with 6-bit immediate
1 1 1 0 1 0 (R)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
1 1 1 0 1 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
op1 is not a valid resource, or the resource is not in use, or not a resource
on which SETC can be used

ET_ILLEGAL_RESOURCE
op2 is not a valid mode, or not a mode that can be used on op1.

206

The XMOS XS3 Architecture

22.157 SETCLK: Set clock for a resource

Sets the clock for a resource. The precise meaning of this instruction depends on the
resource.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETCLK r,s

Operation:

clk(r) <- s

Encoding:

lr2r: Two register reversed long
1 1 1 1 1 1 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a port or clock source resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
s is not a port or clock source resource.

ET_ILLEGAL_RESOURCE
r is a running clock-block.

207

The XMOS XS3 Architecture

22.158 SETCP: Set constant pool

Sets the base address of the constant pool, held in cp. The value that is written into cp
should be word-aligned, otherwise subsequent loads and stores relative to cp will raise
an exception.

SETCP is used in conjunction with LDWCP and LDAWCP.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

SETCP s

Operation:

cp <- s

Encoding:

1r: Register
0 0 1 1 0 1 1 1 1 1 1 1 (M)

208

The XMOS XS3 Architecture

22.159 SETD: Set event data

Sets the contents of the data/dest/divide register of a resource. Its data register is read
usingGETD. Theway that a resource depends on the data register is resource dependent:

· Port: specifies the value for the input condition (see SETC)

· Timer: specifies the value to wait for (see SETC)

· Channel end: specifies the destination channel for OUT operations. The value written
should be a channel identifier, constructed as specified for GETR.

· Clock source specifies the value to divide the clock input by.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETD r,s

Operation:

data(r) <- s

Encoding:

r2r: Two register reversed
0 0 0 1 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a channel, timer, port or clock resource, or the resource is not in
use.

ET_ILLEGAL_RESOURCE
r is a running clock-block.

ET_ILLEGAL_RESOURCE
r is a channel-end, and s is not a channel-end or a configuration re-
source.

209

The XMOS XS3 Architecture

22.160 SETDP: Set the data pointer

Sets the base address of the global data area, held in dp. The value that is written into dp
should be word-aligned, otherwise subsequent loads and stores relative to dp will raise
an exception.

SETDP is used in conjunction with LDWDP, STWDP, and LDAWDP

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

SETDP s

Operation:

dp <- s

Encoding:

1r: Register
0 0 1 1 0 1 1 1 1 1 1 0 (M)

210

The XMOS XS3 Architecture

22.161 SETEV: Set environment vector

Sets the environment vector related to a resource. When a resource issues an event to
a thread, any address stored in the environment vector will overwrite ed. If uninitialised,
ed will be set to the resource identifier. SETEV can be used to pass an address specific
to a resource to the event handler. SETEV can be used to share a single handler between
multiple resources. Note that SETEV is intended to pass address information, as such it
does not necessarily hold bpw bits.

SETEV is used in conjunction with SETV, and any of the WAITEU instructions.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

SETEV r

Operation:

ev(r) <- r11

Encoding:

1r: Register
0 0 1 1 1 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a port, timer or channel resource, or the resource is not in use.

211

The XMOS XS3 Architecture

22.162 SETKEP: Set the kernel entry point

Sets the kernel entry point. The kernel entry point should be aligned on a 128-byte bound-
ary.

The instruction has no operands.

Mnemonic and operands:

SETKEP

Operation:

kep <- r11

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 (M)

212

The XMOS XS3 Architecture

22.163 SETN: Set network

Sets the logical network over which a channel should communicate.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETN r,s

Operation:

net(r) <- s

Encoding:

lr2r: Two register reversed long
1 1 1 1 1 0 (M and R)
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a channel end or not in use.

213

The XMOS XS3 Architecture

22.164 SETPS: Set processor state

Sets a processor internal register. Only used when configuring the core.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETPS r,s

Operation:

ps[r] <- s

Encoding:

lr2r: Two register reversed long
1 1 1 1 1 0 (M and R)
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_PS
s is not referring to a legal processor state register

ET_ILLEGAL_PS
s is not referring to a read-only processor state register

ET_ILLEGAL_PS
s is referring to RAMBASE and r is set to the ROM address

214

The XMOS XS3 Architecture

22.165 SETPSC: Set the port shift count

Sets the port shift count for input and output operations.

OUTPW and INPW can be used instead of a combination of SETPSC and OUT/IN.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETPSC r,s

Operation:

shiftcount(r) <- s

Encoding:

r2r: Two register reversed
1 1 0 0 0 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resoruce is not in use.

ET_ILLEGAL_RESOURCE
s is not a valid shift count for the transfer width of the port, or the port
is not in BUFFERED mode.

215

The XMOS XS3 Architecture

22.166 SETPT: Set the port time

Specifies the time when the next port input or output will be performed. The time is
specified in terms of the number of edges of the clock associated with this port. The
port timer stores a 16-bit value hence the largest delay is 65535 edges of the port-clock.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETPT r,s

Operation:

porttimer(r) <- s

Encoding:

r2r: Two register reversed
0 0 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the resource is not in use.

216

The XMOS XS3 Architecture

22.167 SETRDY: Set ready input for a port

Sets ready input pin to be used by a port for strobing or handshaking.

If r is a clock block, then s should be the 1-bit port to be used as ready input. r should
be associated with a dataport using SETCLK.

Otherwise, if r is a port, then this port should be in mode READY_OUT, and s is the data
port from which the ready out will be generated.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETRDY r,s

Operation:

rdy(r) <- s

Encoding:

lr2r: Two register reversed long
1 1 1 1 1 0 (M and R)
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port or clock resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
s is not pointing to a port resource, or the port is not a 1-bit port.

217

The XMOS XS3 Architecture

22.168 SETSP: Set the stack pointer

Sets the end address of the stack, held in sp. The value that is written into sp should be
word-aligned, otherwise subsequent loads and stores relative to sp will raise an excep-
tion.

SETSP is used in conjunction with ENTSP, RETSP, LDWSP and STWSP.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

SETSP s

Operation:

sp <- s

Encoding:

1r: Register
0 0 1 0 1 1 1 1 1 1 1 1 (M)

218

The XMOS XS3 Architecture

22.169 SETSR: Set bits in SR

Set bits in the thread’s Status Register. Themask supplied specifies which bits should be
set. Note that setting the EEBLEbitmay cause an event to be issued, causing subsequent
instructions to not be executed (since events do not save the program counter). Setting
IEBLE may cause an interrupt to be issued. The bits are defined as follows:

Bit Name Number

0 EEBLE When 1 events are enabled for the thread.
1 IEBLE When 1 interrupts are enabled for the thread.
2 INENB 1 when in an event enabling sequence.
3 ININT 1 when in an interrupt handler.
4 INK 1 when in kernel mode.
6 WAITING When 1 the thread is paused waiting for events.
7 FAST When 1 the thread will continually issue.

SETSR can only be used to set the EEBLE, IEBLE and INENB bits.

CLRSR is used to clear bits in the status register.

The instruction has one operand:

op1
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

SETSR u_{16}

Operation:

sr <- sr | u16

Encoding:

u6: 6-bit immediate
0 1 1 1 1 0 1 1 0 1 (R)

lu6: 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 1 1 1 0 1 1 0 1

The latter is prefixed for long immediates.

219

The XMOS XS3 Architecture

22.170 SETTW: Set transfer width for a port

Sets the number of bits that is transferred on an IN or OUT operation on a port that is
buffered. The buffering will shift the data.

The instruction has two operands:

op1
r, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SETTW r,s

Operation:

transferwidth(r) <- s

Encoding:

lr2r: Two register reversed long
1 1 1 1 1 1 (M and R)
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_ILLEGAL_RESOURCE
r is not pointing to a port resource, or the port is not in use.

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
s is not legal width for the port, or the port is not in BUFFERS mode.

220

The XMOS XS3 Architecture

22.171 SETV: Set event vector

Sets the vector related to a resource. When a resource issues an event to a thread, this
vector is used to determine which instruction to issue. The vector is typically set up once
when all event handlers are installed. Note that if an illegal vector is supplied, this will not
raise an exception until an actual event is handled.

SETV is used in conjunction with SETEV, and any of the WAITEU instructions.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

SETV r

Operation:

v(r) <- r11

Encoding:

1r: Register
0 1 0 0 0 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a port, timer or channel resoruce, or the resource is
not in use.

221

The XMOS XS3 Architecture

22.172 SEXT: Sign extend an n-bit field

Sign extends an n-bit field stored in a register. The first operand is both a source and
destination operand. The second operand contains the bit position. All bits at a position
higher or equal are set to the value of the bit one position lower. In effect, the lower n bits
are interpreted as a signed integer, and produced in the destination register.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

SEXT d,s

Operation:

d <- d, if s <= 0 || s >= bpw
d[s-1]:...:d[s-1]:d[s-1...0], if s > 0 && s < bpw,

Encoding:

2r: Two register
0 0 1 1 0 0 (M or R)

222

The XMOS XS3 Architecture

22.173 SEXTI: Sign extend an n-bit field immediate

Sign extends an n-bit field stored in a register. The first operand is both a source and
destination operand. The second operand contains the bit position. All bits at a position
higher or equal are set to the value of the bit one position lower. In effect, the lower n bits
are interpreted as a signed integer, and produced in the destination register.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SEXTI d,bitp

Operation:

d <- d, if bitp <= 0 || bitp >= bpw
d[bitp-1]:...:d[bitp-1]:d[bitp-1...0], if bitp > 0 && bitp < bpw,

Encoding:

rus: Register with immediate
0 0 1 1 0 1 (M or R)

223

The XMOS XS3 Architecture

22.174 SHL: Shift left

Shifts aword left byy bits, filling the least significant y bits with zeros. Shift leftmultiplies
signed and unsigned integers by 2^{y}.

SHL with perform an arithmetic shift right with a negative value.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

SHL d,x,y

Operation:

d <- x[bpw-y...0]:0:...:0, if 0 < y < bpw
x[bpw]:x[bpw]:...:x[bpw-1:-y], if y < 0
0, if y >= bpw

Encoding:

3r: Three register
0 0 1 0 0 (M or R)

224

The XMOS XS3 Architecture

22.175 SHLI: Shift left immediate

Shifts a word left by bitp bits, filling the least significant bitp bits with zeros. Shift left
multiplies signed and unsigned integers by 2^{bitp}.

SHL with perform an arithmetic shift right with a negative value.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SHLI d,x,bitp

Operation:

d <- x[bpw-bitp...0]:0:...:0, if 0 < bitp < bpw
x[bpw]:x[bpw]:...:x[bpw-1:-bitp], if bitp < 0
0, if bitp >= bpw

Encoding:

2rus: Two register with immediate
1 0 1 0 0 (M or R)

225

The XMOS XS3 Architecture

22.176 SHR: Shift right

Shifts a word right by y positions, filling the most significant y bits with zeros. This
implements an unsigned divide by 2^{y}.

SHR will perform an shift left with a negative value.

For signed shifts, use ASHR.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

SHR d,x,y

Operation:

d <- 0:...:0:x[bpw-1...y], if 0 < y < bpw,
x[bpw+y-1...0]:0:...:0, if 0 < y < 0
0, if y >= bpw

Encoding:

3r: Three register
0 0 1 0 1 (M or R)

226

The XMOS XS3 Architecture

22.177 SHRI: Shift right immediate

Shifts a word right by bitp positions, filling the most significant bitp bits with zeros.
This implements an unsigned divide by 2^{bitp}.

SHR will perform an shift left with a negative value.

For signed shifts, use ASHR.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SHRI d,x,bitp

Operation:

d <- 0:...:0:x[bpw-1...bitp], if 0 < bitp < bpw,
x[bpw+bitp-1...0]:0:...:0, if 0 < bitp < 0
0, if bitp >= bpw

Encoding:

2rus: Two register with immediate
1 0 1 0 1 (M or R)

227

The XMOS XS3 Architecture

22.178 SSYNC: Slave synchronise

Synchronises this thread with all threads associated with a synchroniser. SSYNC is used
togetherwithMSYNC to implement a barrier, or togetherwithMJOIN in order to terminate
a group of processes. SSYNC uses the synchroniser that was used to create this process
in order to establish which other processes to synchronise with.

SSYNC clears the EEBLE bit, disabling any events from being issued; this commits the
thread to synchronising. If the ININT bit is set, then SSYNC will not block; SSYNC should
not be used inside an interrupt handler.

The instruction has no operands.

Mnemonic and operands:

SSYNC

Operation:

sr[eeble] <- 0
if (slaves(syn(tid)) setminus spaused = {tid}) && msyn(syn(tid)):
if mjoin(syn(tid)):
for thread in slaves(syn(tid)):
inuse_{thread} <- 0

mjoin(syn(tid)) <- 0
else:
spaused <- spaused - slaves(syn(tid))

mpaused <- mpaused - {mstr(syn(tid))}
msyn(syn(tid)) <- 0

else:
spaused <- spaused UNION {tid}

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 (R)

228

The XMOS XS3 Architecture

22.179 ST8: 8-bit store

Stores eight bits of a register into memory. The least significant 8 bits of the register are
stored into the address computed using a base address (b) and index (i).

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

ST8 s,b,i

Operation:

mem[ea-bytenum][bitnum+7...bitnum] <- s
where ea = b + i

bytenum = ea % Bpw
bitnum = 8 * bytenum

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

229

The XMOS XS3 Architecture

22.180 ST16: 16-bit store

Stores 16 bits of a register into memory. The least significant 16 bits of the register are
stored into the address computed using a base address (b) and index (i). The base
address should be word-aligned, the index is multiplied by 2.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

ST16 s,b,i

Operation:

mem[ea - bytenum][bitnum+15...bitnum] <- s[15...0]
where ea = b + i * 2

bytenum = ea % Bpw
bitnum = 16 * (bytenum // 2)

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
b is not 16-bit aligned (unaligned load), or does not point to a validmem-
ory location.

230

The XMOS XS3 Architecture

22.181 STD: Store double word

Stores twowords inmemory, at a location specified by a base address and an index. The
index is multiplied by the size of a double word, the base address must be double-word
aligned.

The immediate version, STDI, implements a store into a structured data type, the version
with registers only, STD, implements a store into an array.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

STD d,e,b,i

Operation:

mem[b + i * Bpw * 2] <- d
mem[b + i * Bpw * 2 + Bpw] <- e

Encoding:

l4r: Four register long
1 1 1 1 1 (M and R)
0 0 0 1 0 1 1 1 1 1 1 0

Conditions that raise an exception:

ET_LOAD_STORE
b is not double word aligned, or the indexed address does not point to a
valid memory location.

231

The XMOS XS3 Architecture

22.182 STDI: Store double word immediate

Stores twowords inmemory, at a location specified by a base address and an index. The
index is multiplied by the size of a double word, the base address must be double-word
aligned.

The immediate version, STDI, implements a store into a structured data type, the version
with registers only, STD, implements a store into an array.

The instruction has four operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, An integer in the range 0…11

Mnemonic and operands:

STDI d,e,b,i

Operation:

mem[b + i * Bpw * 2] <- d
mem[b + i * Bpw * 2 + Bpw] <- e

Encoding:

l3rus: Three register with immediate long
1 1 1 1 1 (M and R)
0 0 0 1 0 1 1 1 1 1 1 1

Conditions that raise an exception:

ET_LOAD_STORE
b is not double word aligned, or the indexed address does not point to a
valid memory location.

232

The XMOS XS3 Architecture

22.183 STDSP: Store double word on stack

Stores twowords on the stack, using a constant offset from the stack pointer. The offset
is specified in double words.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

STDSP d,e,u_s

Operation:

mem[sp + us * Bpw * 2] <- d
mem[sp + us * Bpw * 2 + Bpw] <- e

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
sp is not double-word aligned, or the indexed address does not point to
a valid memory location.

233

The XMOS XS3 Architecture

22.184 STET: Store ET on the stack

Stores the value of ET on the stack at offset 4.

The value can be restored using LDET. Together with STSPC, STSSR, and STSED all or
part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STET

Operation:

mem[sp + 4 * Bpw] <- et

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

234

The XMOS XS3 Architecture

22.185 STSED: Store SED on the stack

Stores the value of SED on the stack at offset 3.

The value can be restored using LDSED. Together with STSPC, STSSR, and STET all or
part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSED

Operation:

mem[sp + 3 * Bpw] <- sed

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

235

The XMOS XS3 Architecture

22.186 STSPC: Store SPC on the stack

Stores the value of SPC on the stack at offset 1.

The value can be restored using LDSPC. Together with STET, STSSR, and STSED all or
part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSPC

Operation:

mem[sp + 1 * Bpw] <- spc

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

236

The XMOS XS3 Architecture

22.187 STSSR: Store the SSR to the stack

Stores the value of SSR on the stack at offset 2.

The value can be restored using LDSSR. Together with STET, STSPC, and STSED all or
part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSSR

Operation:

mem[sp + 2 * Bpw] <- ssr

Encoding:

0r: No operands
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
The indexed address does not point to a valid memory location.

237

The XMOS XS3 Architecture

22.188 STW: Store word

Stores a word in memory, at a location specified by a base address and an index. The
index is multiplied by the size of a word, the base address must be word aligned.

The immediate version, STWI, implements a store into a structured data type, the version
with registers only, STW, implements a store into an array.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, Operand register, one of r0… r11

Mnemonic and operands:

STW s,b,i

Operation:

mem[b + i * Bpw] <- s

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
b is not word aligned, or the indexed address does not point to a valid
memory location.

238

The XMOS XS3 Architecture

22.189 STWI: Store word immediate

Stores a word in memory, at a location specified by a base address and an index. The
index is multiplied by the size of a word, the base address must be word aligned.

The immediate version, STWI, implements a store into a structured data type, the version
with registers only, STW, implements a store into an array.

The instruction has three operands:

op1
s, Operand register, one of r0… r11

op2
b, Operand register, one of r0… r11

op3
i, An integer in the range 0…11

Mnemonic and operands:

STWI s,b,i

Operation:

mem[b + i * Bpw] <- s

Encoding:

2rus: Two register with immediate
0 0 0 0 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
b is not word aligned, or the indexed address does not point to a valid
memory location.

239

The XMOS XS3 Architecture

22.190 STWDP: Store word in data pool

Stores a word in the data area, using a constant offset from the data pointer. The offset
is specified in words. STWDP can be used to write to global variables.

The instruction has two operands:

op1
S, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

STWDP S,u_{16}

Operation:

mem[dp + u16 * Bpw] <- S

Encoding:

ru6: Register with 6-bit immediate
0 1 0 1 0 0 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 0 1 0 0

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
dp is not word aligned, or the indexed address does not point to a valid
memory location.

240

The XMOS XS3 Architecture

22.191 STWSP: Store word on stack

Stores a word on the stack, using a constant offset from the stack pointer. The offset is
specified in words. STWSP is used to write to stack variables.

The instruction has two operands:

op1
S, Any of r0… r11, cp, dp, sp, lr

op2
u16, A 16-bit immediate in the range 0…65535. If u16 < 64, the instruc-
tion requires no prefix

Mnemonic and operands:

STWSP S,u_{16}

Operation:

mem[sp + u16 * Bpw] <- S

Encoding:

ru6: Register with 6-bit immediate
0 1 0 1 0 1 (M)

lru6: Register with 16-bit immediate
1 1 1 1 0 0 (M and R)
0 1 0 1 0 1

The latter is prefixed for long immediates.

Conditions that raise an exception:

ET_LOAD_STORE
sp is not word aligned, or the indexed address does not point to a valid
memory location.

241

The XMOS XS3 Architecture

22.192 SUB: Integer unsigned subtraction

Computes the difference between two words. No check on overflow is performed, and
the result is produced modulo 2^{bpw}.

If a borrow is required, then the LSUB instruction should be used. LSU and LSS should
be used to compare signed and unsigned integers.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

SUB d,x,y

Operation:

d <- (2^bpw + x - y) % 2^bpw

Encoding:

3r: Three register
0 0 0 1 1 (M or R)

242

The XMOS XS3 Architecture

22.193 SUBI: Integer unsigned subtraction immediate

Computes the difference between two words. No check on overflow is performed, and
the result is produced modulo 2^{bpw}.

If a borrow is required, then the LSUB instruction should be used. LSU and LSS should
be used to compare signed and unsigned integers.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
us, An integer in the range 0…11

Mnemonic and operands:

SUBI d,x,u_s

Operation:

d <- (2^bpw + x - us) % 2^bpw

Encoding:

2rus: Two register with immediate
1 0 0 1 1 (M or R)

243

The XMOS XS3 Architecture

22.194 SYNCR: Synchronise a resource

Synchronise with a port to ensure all data has been output. This instruction completes
once all data has been shifted out of the port, and the last port width of data has been
held for one clock period.

The instruction has one operand:

op1
r, Operand register, one of r0… r11

Mnemonic and operands:

SYNCR r

Operation:

syncr(r)

Encoding:

1r: Register
1 0 0 0 0 1 1 1 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not a port resource, or the resource is not in use.

244

The XMOS XS3 Architecture

22.195 TESTCT: Test for control token

Test whether the next token on a channel (r) is a control token. If the channel contains a
control token, then 1 (true) will be produced in the destination register, otherwise 0 (false)
will be produced.

This instruction pauses if the channel does not have a token available to be read.

In contrast to CHKCT this test does not trap, and does not discard the control token.
TESTCT can be used to implement complex protocols over channels.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

TESTCT d,r

Operation:

d <- 1, if hasctoken(r)
0, if !hasctoken(r)

Encoding:

2r: Two register
1 0 1 1 1 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

245

The XMOS XS3 Architecture

22.196 TESTLCL: Test local

Tests if a channel end is connected to a local channel end or to a remote channel end. It
produces 1 (true) in the destination register if the channel end is local, and 0 (false) if the
channel end is remote. The instruction will raise an exception if the resource supplied is
not a channel end or an unconnected channel end.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

TESTLCL d,r

Operation:

d <- 1, if d(r)[bpw-1..16] = r[bpw-1..16]
0, if d(r)[bpw-1..16] != r[bpw-1..16]

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

ET_ILLEGAL_RESOURCE
r is a channel end, and the destination has not been set.

246

The XMOS XS3 Architecture

22.197 TESTWCT: Test for position of control token

Test whether the next word contains a control token, and produces the position (1-4) of
the first control token in the word, or 0 if it contains no control tokens.

This instruction pauses if the channel has not received enough tokens to determine what
value to return. So if less than four tokens have been received, but one of them is a control
token, the instruction will not pause.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
r, Operand register, one of r0… r11

Mnemonic and operands:

TESTWCT d,r

Operation:

d <- 0, if !hasctoken(r)
1, if first token is ctoken
2, if second token is ctoken
3, if third token is ctoken
4, if fourth token is ctoken

Encoding:

2r: Two register
1 1 0 0 0 1 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
r is not pointing to a channel resource, or the resource is not in use.

247

The XMOS XS3 Architecture

22.198 TINITCP: Initialise a thread’s CP

Sets the constant pool pointer for a specific thread. This operation may be used after
a thread has been allocated (using GETST or GETR), but prior to the thread starting its
execution.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

TINITCP s,t

Operation:

cp(t) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use, or the
thread is not SSYNC.

248

The XMOS XS3 Architecture

22.199 TINITDP: Initialise a thread’s DP

Sets the data pointer for a specific thread. This operationmay be used after a thread has
been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

TINITDP s,t

Operation:

dp(t) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use, or the
thread is not SSYNC.

249

The XMOS XS3 Architecture

22.200 TINITLR: Initialise a thread’s LR

Sets the link register for a specific thread. This operation may be used after a thread has
been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

TINITLR s,t

Operation:

lr(t) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use, or the
thread is not SSYNC.

250

The XMOS XS3 Architecture

22.201 TINITPC: Initialise a thread’s PC

Sets the program counter for a specific thread. This operationmay be used after a thread
has been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

TINITPC s,t

Operation:

pc(t) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use, or the
thread is not SSYNC.

251

The XMOS XS3 Architecture

22.202 TINITSP: Initialise a thread’s SP

Sets the stack pointer for a specific thread. This operation may be used after a thread
has been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

TINITSP s,t

Operation:

sp(t) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use, or the
thread is not SSYNC.

252

The XMOS XS3 Architecture

22.203 TSETMR: Set the master’s register

Writes data to a register of the master thread. This instruction should be used with care,
and only when the other thread is known to be not using that register. Typically used to
transfer results from a slave thread back to the master prior to a MJOIN.

TSETMR uses the synchroniser that was used to create this process in order to establish
which thread’s register to write to.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

TSETMR d,s

Operation:

register(mtid, d) <- s

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
Master thread is not in use.

253

The XMOS XS3 Architecture

22.204 TSETR: Set register in thread

Writes data to a register of another thread. This instruction should be used with care,
and only when the other thread is known to be not using that register.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

op3
t, Operand register, one of r0… r11

Mnemonic and operands:

TSETR d,s,t

Operation:

register(t, d) <- s

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread resource, or the thread is not in use.

254

The XMOS XS3 Architecture

22.205 TSTART: Start thread

Starts an unsynchronised thread. An unsynchronised thread runs independently from
the starting thread.

The unsynchronised thread must have been allocated with GETR, and the program
counter should have been initialised with TINITPC.

The instruction has one operand:

op1
t, Operand register, one of r0… r11

Mnemonic and operands:

TSTART t

Operation:

spaused <- spaused - {t}
waiting(t) <- 0

Encoding:

1r: Register
0 0 0 1 1 1 1 1 1 1 1 0 (R)

Conditions that raise an exception:

ET_RESOURCE_DEP
Resource illegally shared between threads

ET_ILLEGAL_RESOURCE
t is not pointing to a thread, or the thread is not in use, or the thread is
not SSYNC.

ET_ILLEGAL_PC
Thread t does not have a legal program counter.

255

The XMOS XS3 Architecture

22.206 UNZIP: Unzips a pair of registers

Unzips a pair of registers in bit, bit-pairs, nibbles, bytes or byte-pairs. The granularity
of zipping is determined by 2^{s}. The pair of registers is split in chunks of 2^{s}
bits. The most significant chunk and every other chunk after that are concatenated and
written back to d. The other chunks in between are written back to e.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
s, An integer in the range 0…11

Mnemonic and operands:

UNZIP d,e,s

Operation:

w = 2^s
z = d:e
d <- z[2 * bpw-1..2 * bpw-w]:

z[2 * bpw-2w-1..2 * bpw-3w]:...:
z[2w-1..w]

e <- z[2 * bpw-w-1..2 * bpw-2w]:
z[2 * bpw-3w-1..2 * bpw-4w]:...:
z[w-1..0]

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1

256

The XMOS XS3 Architecture

22.207 VCLRDR: Clear Vectors D and R

Sets the contents of vD and vR in the vector unit to all zeroes.

The instruction has no operands.

Mnemonic and operands:

VCLRDR

Operation:

vD <- 0
vR <- 0

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 (M)

257

The XMOS XS3 Architecture

22.208 VADDDR: Vector add double reduce

Takes a double precision result stored in two 16-bit pairs across vD and vR, and sums
them into a single value stored in the lowest part of vD and vR. VLSAT can be used to
reduce the values in vD and vR and saturate.

The instruction has no operands.

Mnemonic and operands:

VADDDR

Operation:

tmp = sum(vD[k* 16+15..k* 15] : vD[k* 16+15..k* 16]) where k in range(bpv // bpe)
vR[0] &<- & tmp[15:0]
vD[0] &<- & tmp[31:16]

Encoding:

0r: No operands
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 (M)

258

The XMOS XS3 Architecture

22.209 VCMCI: Vector Complex Multiply Conjugate Imaginary

This operation performs half of a complex multiply conjugate operation in the vector
unit, calculating all the imaginary parts of the answer. Together with VCMCR a complete
complex vector multiply can be performed on a vector.

The operation assumes that, in memory, the vector is stored as pairs of (real, imaginary)
values, where the imaginary part is stored in the higher memory addresses. After a VLD
instruction, this means that the real elements are stored in bytes 0..3, 8..11, etc, of each
vector and the associated imaginary elements in bytes 4..7, 12..15, etc.

Bit 30 of each number is assumed to have amagnitude of 1.0, so the final result is shifted
down by 30 bits. This enables two numbers in the unit square to be multiplied without
overflow.

Saturation and rounding are applied to the result.

Rounding is applied first, by adding a value 2^{2-bpe} to the result before removing
bits bpe-3..0. Saturation is applied in order to catch numbers that are not in the unit
square, and to catch the corner case of (1+j)^2, whichwill be rounded down by a single
lsb.

The instruction has no operands.

Mnemonic and operands:

VCMCI

Operation:

for k in range(bpv/(bpe * 2)):
t_k = bpe * 2 * k
r_k = rnd(vD[t_k+2* bpe - 1 .. t_k+bpe] * vC[t_k+bpe - 1 .. t_k]) -

rnd(vD[t_k+bpe - 1 .. t_k] * vC[t_k+2* bpe - 1 .. t_k+bpe])
T_k = t_k + bpe
vR[T_k+bpe - 1 .. T_k] <- sat(r_k[2* bpe-3 .. bpe-2] + r_k[bpe-3])

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

259

The XMOS XS3 Architecture

22.210 VCMCR: Vector Complex Multiply Conjugate Real

This operation performs half of a complexmultiply conjugate operation in the vector unit,
calculating all the real parts of the answer. Together with VCMCI a complete complex
vector multiply can be performed on a vector.

The operation assumes that, in memory, the vector is stored as pairs of (real, imaginary)
values, where the imaginary part is stored in the higher memory addresses. After a VLD
instruction, this means that the real elements are stored in bytes 0..3, 8..11, etc, of each
vector and the associated imaginary elements in bytes 4..7, 12..15, etc.

Bit 30 of each number is assumed to have amagnitude of 1.0, so the final result is shifted
down by 30 bits. This enables two numbers in the unit square to be multiplied without
overflow.

Saturation and rounding are applied to the result.

Rounding is applied first, by adding a value 2^{2-bpe} to the result before removing
bits bpe-3..0. Saturation is applied in order to catch numbers that are not in the unit
square, and to catch the corner case of (1+j)^2, whichwill be rounded down by a single
lsb.

The instruction has no operands.

Mnemonic and operands:

VCMCR

Operation:

for k in range(bpv/(bpe * 2)):
t_k = bpe * 2 * k
r_k = rnd(vD[t_k+bpe - 1 .. t_k] * vC[t_k+bpe - 1 .. t_k]) +

rnd(vD[t_k+2* bpe - 1 .. t_k+bpe] * vC[t_k+2* bpe - 1 .. t_k+bpe])
vR[t_k+bpe - 1 .. t_k] <- sat(r_k[2* bpe-3 .. bpe-2] + r_k[bpe-3])

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

260

The XMOS XS3 Architecture

22.211 VCMI: Vector Complex Multiply Imaginary

This operation performs half of a complex multiply operation in the vector unit, calcu-
lating all the imaginary parts of the answer. Together with VCMR a complete complex
vector multiply can be performed on a vector.

The operation assumes that, in memory, the vector is stored as pairs of (real, imaginary)
values, where the imaginary part is stored in the higher memory addresses. After a VLD
instruction, this means that the real elements are stored in bytes 0..3, 8..11, etc, of each
vector and the associated imaginary elements in bytes 4..7, 12..15, etc.

Bit 30 of each number is assumed to have amagnitude of 1.0, so the final result is shifted
down by 30 bits. This enables two numbers in the unit square to be multiplied without
overflow.

Saturation and rounding are applied to the result.

Rounding is applied first, by adding a value 2^{2-bpe} to the result before removing
bits bpe-3..0. Saturation is applied in order to catch numbers that are not in the unit
square, and to catch the corner case of (1+j)^2, whichwill be rounded down by a single
lsb.

The instruction has no operands.

Mnemonic and operands:

VCMI

Operation:

for k in range(bpv/(bpe * 2)):
t_k = bpe * 2 * k
r_k = rnd(vD[t_k+2* bpe - 1 .. t_k+bpe] * vC[t_k+bpe - 1 .. t_k]) +

rnd(vD[t_k+bpe - 1 .. t_k] * vC[t_k+2* bpe - 1 .. t_k+bpe])
T_k = t_k + bpe
vR[T_k+bpe - 1 .. T_k] <- sat(r_k[2* bpe-3 .. bpe-2] + r_k[bpe-3])

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

261

The XMOS XS3 Architecture

22.212 VCMR: Vector Complex Multiply Real

This operation performs half of a complex multiply operation in the vector unit, calcu-
lating all the real parts of the answer. Together with VCMI a complete complex vector
multiply can be performed on a vector.

The operation assumes that, in memory, the vector is stored as pairs of (real, imaginary)
values, where the imaginary part is stored in the higher memory addresses. After a VLD
instruction, this means that the real elements are stored in bytes 0..3, 8..11, etc, of each
vector and the associated imaginary elements in bytes 4..7, 12..15, etc.

Bit 30 of each number is assumed to have amagnitude of 1.0, so the final result is shifted
down by 30 bits. This enables two numbers in the unit square to be multiplied without
overflow.

Saturation and rounding are applied to the result.

Rounding is applied first, by adding a value 2^{2-bpe} to the result before removing
bits bpe-3..0. Saturation is applied in order to catch numbers that are not in the unit
square, and to catch the corner case of (1+j)^2, whichwill be rounded down by a single
lsb.

The instruction has no operands.

Mnemonic and operands:

VCMR

Operation:

for k in range(bpv/(bpe * 2)):
t_k = bpe * 2 * k
r_k = rnd(vD[t_k+bpe - 1 .. t_k] * vC[t_k+bpe - 1 .. t_k]) -

rnd(vD[t_k+2* bpe - 1 .. t_k+bpe] * vC[t_k+2* bpe - 1 .. t_k+bpe])
vR[t_k+bpe - 1 .. t_k] <- sat(r_k[2* bpe-3 .. bpe-2] + r_k[bpe-3])

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

262

The XMOS XS3 Architecture

22.213 VDEPTH1: Vector depth conversion

This operation takes a vector with elements that are bpe bits wide each, and binarises
the vector to epv bits. Negative values are represented as 1, positive values and zero as
0.

The instruction has no operands.

Mnemonic and operands:

VDEPTH1

Operation:

t[bpv-1..ve] = 0
t[i] = 1, if vr[i] < 0

0, if vr[i] >= 0
for i in range(ve)

vR <- t

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 (M)

263

The XMOS XS3 Architecture

22.214 VDEPTH16: Vector depth conversion

This operation takes a vector with elements that are bpe bits wide each, and reduces the
precision to 16-bits wide. Values are shifted down and rounded as appropriate.

The instruction has no operands.

Mnemonic and operands:

VDEPTH16

Operation:

t[bpv-1..ve * 16] = 0
t[i * 16 + 16-1..i* 16] = rnd(vR[i] >> (bpe - 16))

for i in range(ve)
vR <- t

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was set to VSETCTRL_TYPE_INT8

ET_ARITHMETIC
The type was set to VSETCTRL_TYPE_INT16

264

The XMOS XS3 Architecture

22.215 VDEPTH8: Vector depth conversion

This operation takes a vector with elements that are bpe bits wide each, and reduces the
precision to 8-bits wide. Values are shifted down and rounded as appropriate.

The instruction has no operands.

Mnemonic and operands:

VDEPTH8

Operation:

t[bpv-1..ve * 8] = 0
t[i * 8 + 8-1..i* 8] = rnd(vR[i] >> (bpe - 8))

for i in range(ve)
vR <- t

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was set to VSETCTRL_TYPE_INT8

265

The XMOS XS3 Architecture

22.216 VEQCR: Tests whether vC is equal to vR

Tests on equality between vC and vR

The instruction has no operands.

Mnemonic and operands:

VEQCR

Operation:

r10 <- vC == vR

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 (M)

266

The XMOS XS3 Architecture

22.217 VEQDR: Tests whether vD is equal to vR

Tests on equality between vD and vR

The instruction has no operands.

Mnemonic and operands:

VEQDR

Operation:

r10 <- vD == vR

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 (M)

267

The XMOS XS3 Architecture

22.218 VFTFB: Vector FFT decimate-in-frequency backwards

Performs a backward decimate-in-frequency FFT. This operation assumes that the data
has been shuffled (bit-reversed), and performs a complete backward FFT on the com-
plex vector stored in vR. To compute a decimate-in-frequency FFT on a larger vector,
VLADSB, VCMI, and VCMR can be used to implement the first rounds, and this instruc-
tion to perform the final round.

This operation is only supported for bpe=32.

The instruction has no operands.

Mnemonic and operands:

VFTFB

Operation:

assuming bpv = 256, bpe = 32
s_0 = vR[0] + vR[2] # All arithmetic is complex
s_1 = vR[1] + vR[3] # With real and imaginary
s_2 = vR[0] - vR[2] # components stored in subsequent
s_3 =(vR[1] - vR[3]) * -1j # elements of vR
vR[0] <- sat((s_0 + s_1) * x)
vR[1] <- sat((s_0 - s_1) * x)
vR[2] <- sat((s_2 + s_3) * x)
vR[3] <- sat((s_2 - s_3) * x)

where
x = 2.0, if VEC_SHL

1.0, if VEC_SH0
0.5, if VEC_SHR

Encoding:

0r: No operands
0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

268

The XMOS XS3 Architecture

22.219 VFTFF: Vector FFT decimate-in-frequency Forward

Performs a forward decimate-in-frequency FFT. This operation assumes that the data
has been shuffled (bit-reversed), and performs a complete forward FFT on the complex
vector stored in vR. To compute a decimate-in-frequency FFT on a larger vector, VLADSB,
VCMI, and VCMR can be used to implement the first rounds, and this instruction to per-
form the final round.

This operation is only supported for bpe=32.

The instruction has no operands.

Mnemonic and operands:

VFTFF

Operation:

assuming bpv = 256, bpe = 32
s_0 = vR[0] + vR[2] # All arithmetic is complex
s_1 = vR[1] + vR[3] # With real and imaginary
s_2 = vR[0] - vR[2] # components stored in subsequent
s_3 =(vR[1] - vR[3]) * -1j # elements of vR
vR[0] <- sat((s_0 + s_1) * x)
vR[1] <- sat((s_0 - s_1) * x)
vR[2] <- sat((s_2 + s_3) * x)
vR[3] <- sat((s_2 - s_3) * x)

where
x = 2.0, if VEC_SHL

1.0, if VEC_SH0
0.5, if VEC_SHR

Encoding:

0r: No operands
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

269

The XMOS XS3 Architecture

22.220 VFTTB: Vector FFT decimate-in-time backwards

Performs a backward decimate-in-time FFT. This operation assumes that the data has
been shuffled (bit-reversed), and performs a complete backward FFT on the complex
vector stored invR. To compute a decimate-in-timeFFTon a larger vector, this instruction
can perform the first round, and VCMR, VCMI, and VLADSB can be used to implement the
later rounds.

This operation is only supported for bpe=32.

The instruction has no operands.

Mnemonic and operands:

VFTTB

Operation:

assuming bpv = 256, bpe = 32
s_0 = vD[0] + vD[1] # All arithmetic is complex
s_1 = vD[0] - vD[1] # With real and imaginary
s_2 = vD[2] + vD[3] # components stored in subsequent
s_3 =(vD[2] - vD[3]) * -1j # elements of vD
vD[0] <- sat((s_0 + s_2) * x)
vD[1] <- sat((s_1 + s_3) * x)
vD[2] <- sat((s_0 - s_2) * x)
vD[3] <- sat((s_1 - s_3) * x)

where
x = 2.0, if VEC_SHL

1.0, if VEC_SH0
0.5, if VEC_SHR

Encoding:

0r: No operands
0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

270

The XMOS XS3 Architecture

22.221 VFTTF: Vector FFT decimate-in-time forwards

Performs a forward decimate-in-time FFT. This operation assumes that the data has
been shuffled (bit-reversed), and performs a complete forward FFT on the complex vec-
tor stored in vR. To compute a decimate-in-time FFT on a larger vector, this instruction
can perform the first round, and VCMR, VCMI, and VLADSB can be used to implement the
later rounds.

This operation is only supported for bpe=32.

The instruction has no operands.

Mnemonic and operands:

VFTTF

Operation:

assuming bpv = 256, bpe = 32
s_0 = vD[0] + vD[1] # All arithmetic is complex
s_1 = vD[0] - vD[1] # With real and imaginary
s_2 = vD[2] + vD[3] # components stored in subsequent
s_3 =(vD[2] - vD[3]) * -1j # elements of vD
vD[0] <- sat((s_0 + s_2) * x)
vD[1] <- sat((s_1 + s_3) * x)
vD[2] <- sat((s_0 - s_2) * x)
vD[3] <- sat((s_1 - s_3) * x)

where
x = 2.0, if VEC_SHL

1.0, if VEC_SH0
0.5, if VEC_SHR

Encoding:

0r: No operands
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 (M)

Conditions that raise an exception:

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

271

The XMOS XS3 Architecture

22.222 VGETC: Get Vector Headroom

This operation gets the vector headroom register and the control register.

The instruction has no operands.

Mnemonic and operands:

VGETC

Operation:

r11[bpw:16] <- 0
r11[15:6] <- vSR
r11[5:0] <- clz(vH)

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 (M)

272

The XMOS XS3 Architecture

22.223 VLADD: Vector Load and Add

Loads a vector from memory, add the vector element by element to the vector in the
output register vR, and store the result vector in the output register vR: vR[] <- vR[]
+ mem[s][].

The addition is signed, and the signed result is saturated if it cannot be represented in
bpe bits. That is, values less than 0b100…0 are replaced by 0b100…0, and values larger
than 0b011…1 are replaced by 0b011…1.

Note that this operation can be used to add both complex numbers and normal numbers.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLADD s

Operation:

t = vR[k] + mem[s + k..s + k + bpe/8-1],
vR[k] <- sat(t)

for k in range(ve)

Encoding:

1r: Register
1 0 1 0 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

273

The XMOS XS3 Architecture

22.224 VLADDD: Vector Load and Add to vD

Loads a vector from memory, add the vector element by element to the vector in the
output register vD, and store the result vector in the output register vD: vD[] <- vD[]
+ mem[r10][].

The addition is signed, and the signed result is saturated if it cannot be represented in
bpe bits. That is, values less than 0b100…0 are replaced by 0b100…0, and values larger
than 0b011…1 are replaced by 0b011…1.

Note that this operation can be used to add both complex numbers and normal numbers.

The instruction has no operands.

Mnemonic and operands:

VLADDD

Operation:

t = vD[k] + mem[op1 + k..op1 + k + bpe/8-1],
vD[k] <- sat(t)

for k in range(ve)

Encoding:

0r: No operands
0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
r10 is not word aligned, or a complete vector cannot be loaded from
this address.

274

The XMOS XS3 Architecture

22.225 VLADSB: Vector Load and Butterfly

Loads a vector from memory and perform a butterfly operation.

This operation is only supported for bpe=32.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLADSB s

Operation:

for i in range(bpv/(2*bpe):
vR[i] <- sat((t[i] +_{c} vR[i]) * x)
vD[i] <- sat((t[i] -_{c} vR[i]) * x)
where

t = mem[s]
x = 2.0, if VEC_SHL

1.0, if VEC_SH0
0.5, if VEC_SHR

Encoding:

1r: Register
1 0 1 0 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

ET_ARITHMETIC
The type was not set to VSETCTRL_TYPE_INT32

275

The XMOS XS3 Architecture

22.226 VLASHR: Vector Load and Arithmetic Shift Right

This instruction loads a vector from memory address s, shifts each element by t posi-
tions, and stores the result in vR.

A arithmetic right shift is performed if t is positive. If the value in t is greater or equal to
bpe, then the value in vR is replaced by a sequence of sign bits.

For negative values of t a saturating left shift is performed. That is, the value is shifted
left, and if an overflow occurs, either 2^{bpe}-1 or -2^{bpe} + 1 is stored in the
vector element.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

VLASHR s,t

Operation:

p = mem[s]
vR[i] <- p[i] >> t, if t in {0..bpe-1}

p[i] >> bpe-1, if t in {bpe..}
ssat(p[i] << -t), if t in {-bpe+1..-1}
ssat(p[i] << bpe-1), if t in {..-bpe}
for i range(ve)

Encoding:

l2r: Two register long
1 1 1 1 1 1 (M and R)
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

276

The XMOS XS3 Architecture

22.227 VLDC: Load Vector vC

Loads the coefficient register of the vector unit, vC, from memory. Register s is used as
the base address of the vector in memory. The vector is stored LSB first in memory. The
address must be aligned with the vector width.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLDC s

Operation:

for k in range(bpv // 8):
vC[k* 8+7:k* 8] <- mem[s + k]

Encoding:

1r: Register
1 0 0 1 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

277

The XMOS XS3 Architecture

22.228 VLDD: Load Vector vD

Loads the data register of the vector unit, vD, from memory. Register s is used as the
base address of the vector in memory. The vector is stored LSB first in memory. The
address must be aligned with the vector width.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLDD s

Operation:

for k in range(bpv // 8):
vD[k* 8+7:k* 8] <- mem[s + k]

Encoding:

1r: Register
1 0 0 1 0 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

278

The XMOS XS3 Architecture

22.229 VLDR: Vector Load vR

Loads the result register of the vector unit, vR, from memory. Register r11 is used as the
base address of the vector in memory. The vector is stored LSB first in memory. The
address must be aligned with the vector width.

The instruction has no operands.

Mnemonic and operands:

VLDR

Operation:

for k in range(bpv // 8):
vR[k* 8+7:k* 8] <- mem[r11 + k]

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
r11 is not word aligned, or a complete vector cannot be loaded from
this address.

279

The XMOS XS3 Architecture

22.230 VLMACC: Vector Load and MACC reduce

Loads a a vector from memory and performs a multiply accumulate across the vec-
tor. The vector loaded from memory is elementwise multiplied with vC. All products are
shifted down by bpe-2 bits in order to scale the result. All products are then summed
to results held in vR and vD

vR and vD hold an extended precision result, where vD is used to store up to an extra
vac bits to avoid overflow. The vD bits are stored with extra sign bits to make sure that
all bpe bits in each element of vD have ameaningful value. VLSAT can be used to reduce
the values in vD and vR and saturate.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLMACC s

Operation:

tmp = sum(x_k * y_k, for k in range(bpe))
where
x_k = vD[k* bpe+bpe-1:k* bpe]
y_k = mem[s + k:s + k + bpe/8-1]

vR[0:2* bpe] <- sat(vR[0:2* bpe] + tmp)

Encoding:

1r: Register
1 0 1 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

280

The XMOS XS3 Architecture

22.231 VLMACCR: Vector Load and MACC reduce

Loads a a vector from memory and computes an inner-product between this vector and
vC. The vector loaded from memory is elementwise multiplied with vC and all products
are summed together to form an inner product. The inner product is shifted down by
bpe-2 bits in order to scale the result.

vR and vD hold a set of extended precision results with the least significant bpe bits of
each element in vR and an extra vac bits stored in each element of vD. Both vecotrs are
rotated left by one element on executing VLMACCR and the inner product is added to
element zero stored in vR and vD.

VLSAT can be used to reduce the values in vD and vR and saturate.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLMACCR s

Operation:

tmp = sum(x_k * y_k)
where

k in range(bpv // bpe)
x_k = vD[k* bpe+bpe-1:k* bpe]
y_k = mem[s + k:s + k + bpe/8-1]

vR[0:2* bpe] <- sat(vR[0:2* bpe] + tmp)

Encoding:

1r: Register
1 0 1 0 0 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

281

The XMOS XS3 Architecture

22.232 VLMACCR1: Vector Load and MACC reduce

Loads a a vector from memory and computes an inner product assuming the vector
holds bpv values: 0 represents +1 and 1 represents -1. The inner product is divided by 2
(as the result is always even), and then added to a partial results stored in vR and vD as
follows.

vR and vD hold a set of extended precision results with the least significant bpe bits of
each element in vR and an extra vac bits stored in each element of vD. Both vectors are
rotated left by one element on executing VLMACCR1 and the inner product is added to
element zero stored in vR and vD.

VLSAT can be used to reduce the values in vD and vR and saturate.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLMACCR1 s

Operation:

t = sum((1 - 2 x[k]) * (1-2 y[k]), for k in range(bpv))
where
x_k = vD[k* bpe+bpe-1:k* bpe]
y_k = mem[s + k:s + k + bpe/8-1]

vR[0:2* bpe] <- sat(vR[0:2* bpe] + tmp)

Encoding:

1r: Register
1 1 0 0 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

282

The XMOS XS3 Architecture

22.233 VLMUL: Vector Load and Multiply

Loads a vector from memory, multiply the vector element by element with the vector
in the result register vR, and store the result vector in the output register vR: vR[] <-
vR[] * mem[s][].

Note that this operation is not suitable for complex numbers, use VCMR, VCMI, VCMCR,
and VCMCI for complex numbers.

The multiplication is signed, and bit 30 of all operands number is assumed to have a
magnitude of 1.0. Hence, the final result is shifted down by 30 bits. This enables two
numbers in the range [-1..1] inclusive to be multiplied without overflow.

Saturation and rounding are applied to the result.

Rounding is applied first, by adding one to bit position bpe - 3 to the result before
removing bits bpe-3..0. This rounds the result to the nearest representable value, with
a tie rounding up. Saturation is applied in order to catch results that do not fit.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLMUL s

Operation:

t = vR[k] * mem[s + k..s + k + bpe/8-1] * 2^(bpe-2)
vR[k] <- sat(t)

for k in range(ve)

Encoding:

1r: Register
1 0 1 1 0 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

283

The XMOS XS3 Architecture

22.234 VLSAT: Vector Load and saturate

Performs saturation of double precision results stored accross vD and vR. Each double
precision result is shifted right by a number of bits that is loaded from memory. The
shifted value is then rounded and saturated, and stored in vR.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLSAT s

Operation:

t = mem[s]
vR[i] <- sat(vD[i]:vR[i] >> t[i]), if t[i] >= 0
vR[i] <- sat(vD[i]:vR[i] << -t[i]), if t[i] < 0
vD[i] <- 0

for i range(ve)

Encoding:

1r: Register
1 0 1 1 1 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

284

The XMOS XS3 Architecture

22.235 VLSUB: Vector Load and Subtract

Loads a vector from memory, subtract the vector element by element from the vector
in the output register vR, and store the result vector in the output register vR: vR[] <-
mem[s][] - vR[].

The subtraction is signed, and the signed result is saturated if it cannot be represented in
bpe bits. That is, values less than 0b100…0 are replaced by 0b100…0, and values larger
than 0b011…1 are replaced by 0b011…1.

Note that this operation can be used to add both complex numbers and normal numbers.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VLSUB s

Operation:

t = mem[s + k..s + k + bpe/8-1] - vR[k]
vR[k] <- sat(t)

for k in range(ve)

Encoding:

1r: Register
1 0 1 0 1 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be loaded from this
address.

285

The XMOS XS3 Architecture

22.236 VPOS: Vector make positive

This operation replaces all negative values in vR with zero.

The instruction has no operands.

Mnemonic and operands:

VPOS

Operation:

for i in range(ve):
if vR[i] < 0:

vR[i] <- 0

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 (M)

286

The XMOS XS3 Architecture

22.237 VSETC: Set Vector Control/Status Register

This operation sets the control register and the headroom in the vector unit. If the type
is not a known type, it is set to zero.

The instruction has no operands.

Mnemonic and operands:

VSETC

Operation:

vSR <- r11[15:6]
vH <- mkmsk(32-r11[5:0])

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 (M)

287

The XMOS XS3 Architecture

22.238 VSIGN: Vector sign computation

This operation takes a vector in vR and replaces negative values with -1 (0b11000…000),
and non-negative values with +1 (0b01000…000).

The instruction has no operands.

Mnemonic and operands:

VSIGN

Operation:

for i in range(ve):
if R[i] < 0:

vR[i] <- -2^(bpe-2)
elif vR[i] > 0:

vR[i] <- 2^(bpe-2)

Encoding:

0r: No operands
0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 (M)

288

The XMOS XS3 Architecture

22.239 VSTC: Vector Store vC

Stores the the contents of the coefficient register of the vector unit, vC, in memory. Reg-
ister r11 is used as the base address of the vector in memory. The vector is stored LSB
first. The address must be aligned with the vector width.

The instruction has no operands.

Mnemonic and operands:

VSTC

Operation:

for k in range(bpv // 8):
tmp = vC[k* 8+7:k* 8]
mem[r11 + k] <- tmp
vH <- vH | |tmp|

Encoding:

0r: No operands
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
r11 is not word aligned, or a complete vector cannot be stored at this
address.

289

The XMOS XS3 Architecture

22.240 VSTD: Store Vector vD

Stores the contents of the data register of the vector unit, vD, in memory. Register s is
used as the base address of the vector in memory. The vector is stored LSB first. The
address must be aligned with the vector width.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VSTD s

Operation:

for k in range(bpv // 8):
tmp = vD[k* 8+7:k* 8]
mem[s + k] <- tmp
vH <- vH | |tmp|

Encoding:

1r: Register
1 0 0 1 1 1 1 1 1 1 1 0 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be stored at this ad-
dress.

290

The XMOS XS3 Architecture

22.241 VSTR: Store Vector R

Stores the contents of the result register of the vector unit, vR, in memory. Register s is
used as the base address of the vector in memory. The vector is stored LSB first. The
address must be aligned with the vector width.

The instruction has one operand:

op1
s, Operand register, one of r0… r11

Mnemonic and operands:

VSTR s

Operation:

for k in range(bpv // 8):
tmp = vR[k* 8+7:k* 8]
mem[s + k] <- tmp
vH <- vH | |tmp|

Encoding:

1r: Register
1 0 0 1 1 1 1 1 1 1 1 1 (M)

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be stored at this ad-
dress.

291

The XMOS XS3 Architecture

22.242 VSTRPV: Store part of Vector R

Stores part of the contents of the result register of the vector unit, vR, in memory. Regis-
ter s is used as the base address of the vector in memory. The vector is stored LSB first.
smust be word aligned. t is a mask specifying which bytes must be stored. Combined
with a MKMSK instruction the lower n bytes of a vector can be stored.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
t, Operand register, one of r0… r11

Mnemonic and operands:

VSTRPV s,t

Operation:

for k in range(bpw):
if t[k] == 1:
mem[s+k] <- vR[k * 8..k * 8+7]

Encoding:

l2r: Two register long
1 1 1 1 1 0 (M and R)
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0

Conditions that raise an exception:

ET_LOAD_STORE
s is not word aligned, or a complete vector cannot be stored at this ad-
dress.

292

The XMOS XS3 Architecture

22.243 WAITEF: If false wait for event

Waits for an event when a condition is false. If the condition is 0 (false), then the EEBLE
is set, and, if no event is ready it will suspend the thread until an event becomes ready.
When an event is available, the thread will continue at the address specified by the event.
If the condition is not 0, the next instruction will be executed. The current PC is not saved
anywhere.

The instruction has one operand:

op1
c, Operand register, one of r0… r11

Mnemonic and operands:

WAITEF c

Operation:

if c == 0:
sr[eeble] <- 1

Encoding:

1r: Register
0 0 0 0 1 1 1 1 1 1 1 1 (R)

293

The XMOS XS3 Architecture

22.244 WAITET: If true wait for event

Waits for an event when a condition is true. If the condition not 0, then the EEBLE is set,
and, if no event is ready it will suspend the thread until an event becomes ready. When
an event is available, the thread will continue at the address specified by the event. If the
condition is 0 (false), the next instruction will be executed. The current PC is not saved
anywhere.

The instruction has one operand:

op1
c, Operand register, one of r0… r11

Mnemonic and operands:

WAITET c

Operation:

if c != 0:
sr[eeble] <- 1

Encoding:

1r: Register
0 0 0 0 1 1 1 1 1 1 1 0 (R)

294

The XMOS XS3 Architecture

22.245 WAITEU: Wait for event

Waits for an event. This instruction sets EEBLE and, if no event is ready it will suspend the
thread until an event becomes ready. When an event is available, the thread will continue
at the address specified by the event. The current PC is not saved anywhere.

The instruction has no operands.

Mnemonic and operands:

WAITEU

Operation:

sr[eeble] <- 1

Encoding:

0r: No operands
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 (R)

295

The XMOS XS3 Architecture

22.246 XOR: Bitwise exclusive or

Produces the bitwise exclusive-or of two words.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

Mnemonic and operands:

XOR d,x,y

Operation:

d <- x @ y

Encoding:

l3r: Three register long
1 1 1 1 1 (M and R)
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

296

The XMOS XS3 Architecture

22.247 XOR4: Bitwise exclusive-or of four words

Produces the bitwise exclusive-or of four words.

The instruction has five operands:

op1
d, Operand register, one of r0… r11

op4
e, Operand register, one of r0… r11

op2
x, Operand register, one of r0… r11

op3
y, Operand register, one of r0… r11

op5
v, Operand register, one of r0… r11

Mnemonic and operands:

XOR4 d,e,x,y,v

Operation:

d <- x @ y @ e @ v

Encoding:

l5r: Five register long
1 1 1 1 1 (M and R)
0 0 0 0 1 1

297

The XMOS XS3 Architecture

22.248 ZEXT: Zero extend

Zero extends an n-bit field stored in a register. The first operand of this instruction is both
a source and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are cleared.

The instruction has two operands:

op1
d, Operand register, one of r0… r11

op2
s, Operand register, one of r0… r11

Mnemonic and operands:

ZEXT d,s

Operation:

if s > 0 && s < bpw:
d <- 0:...:0:d[s-1...0]

Encoding:

2r: Two register
0 1 0 0 0 0 (M or R)

298

The XMOS XS3 Architecture

22.249 ZEXTI: Zero extend immediate

Zero extends an n-bit field stored in a register. The first operand of this instruction is both
a source and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are cleared.

The instruction has two operands:

op1
s, Operand register, one of r0… r11

op2
bitp, A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

ZEXTI s,bitp

Operation:

if bitp > 0 && bitp < bpw:
s <- 0:...:0:s[bitp-1...0]

Encoding:

rus: Register with immediate
0 1 0 0 0 1 (M or R)

299

The XMOS XS3 Architecture

22.250 ZIP: Zips together a pair of registers

Zips a pair of registers in bit, bit-pairs, nibbles, bytes or byte-pairs. The granularity of
zipping is determined by 2^{s}. Each of d and e are chopped into chunks of 2^{s} bits.
They are then zipped together by starting with the most significant chunk of d, the most
significant chunk of e, then next significant chunk of d and so on until the least significant
chunks of e and d. This results in a bit string of 2* bpw bits, the most significant bpw
bits are written back to d, the least significant bpw bits to e.

The instruction has three operands:

op1
d, Operand register, one of r0… r11

op2
e, Operand register, one of r0… r11

op3
s, An integer in the range 0…11

Mnemonic and operands:

ZIP d,e,s

Operation:

w = 2^s
z = d[bpw-1..bpw-w]:

e[bpw-1..bpw-w]:
d[bpw-w-1..bpw-2 * w]:
e[bpw-w-1..bpw-2 * w]: ... :
d[w-1..0]:
e[w-1..0]:

d <- z[2 bpw-1..bpw]
e <- z[bpw-1..0]

Encoding:

l2rus: Two register with immediate long
1 1 1 1 1 (M and R)
1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0

300

The XMOS XS3 Architecture

23 XCore XS3 Instruction Format Specification

This section defines the instruction-formats. For each instruction format there is a name,
a short description of its purpose, then a graphical representation of the encoding, and
finally a list of instructions that use this instruction encoding. The graphical representa-
tion shows the bits of the instruction, bits are numbered from 15 down to 0. If a bit value
depends on the opcode, then this is marked with a x symbol. If a bit value depends on an
operand this is marked with a ., and the particular encoding for that operand is shown
underneath. Otherwise, the bit will have a value of 0 or 1, in order to differentiate between
formats.

301

The XMOS XS3 Architecture

23.1 3r: Three register

Instructions with three operand registers; the last two operands are always source reg-
isters, the first operand is always a destination register

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in 16 bits:

x x x x x
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

Opcode

This format is used by the following instructions:

ADD LD8U LSS SHL
AND LD16S LSU SHR
EQ LDW OR SUB

302

The XMOS XS3 Architecture

23.2 l3r: Three register long

Instructions with three operand registers; the last two operands are always source
operands, the first operand usually refers to the destination register (with the exception
of store instruction)

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 0 x x x x
Opcode

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

ASHR FEQ LDA16B REMU
CRC FGT LDA16F LSATS
DIVS FLT LDAWB ST8
DIVU FMUL LDAWF ST16
DVLD FSEXP MUL STW
DVST FSUB OUTPW TSETR
FADD FUN REMS XOR

303

The XMOS XS3 Architecture

23.3 2rus: Two register with immediate

Instructions with three operands. The last operand is a small unsigned constant (0..11),
the second operand is a source register, the first operand is either a destination register,
or a second source register in the case of memory-store operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in 16 bits:

x x x x x
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

Opcode

This format is used by the following instructions:

ADDI LDWI SHRI SUBI
EQI SHLI STWI

304

The XMOS XS3 Architecture

23.4 l2rus: Two register with immediate long

Instructions with three operands. The last operand is a small unsigned constant (0..11),
the second operand is a source register, the first operand is either a destination register,
or a second source register in the case of some resource operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 0 x x x x
Opcode

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

ASHRI LDAWFI STDSP
INPW LDDSP UNZIP
LDAWBI OUTPWI ZIP

305

The XMOS XS3 Architecture

23.5 ru6: Register with 6-bit immediate

Instructions with two operands where the first operand is a register and the second
operand is a 6-bit integer constant. This format used, amongst others, for load and store
operations relative to the stack pointer and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 16 bits:

x x x x x x
op2[5...0]

op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BRBF LDAWDP LDWDP STWSP
BRBT LDAWSP LDWSP
BRFF LDC SETCI
BRFT LDWCP STWDP

306

The XMOS XS3 Architecture

23.6 lru6: Register with 16-bit immediate

Instructions with two operands where the first operand is a register and the second
operand is a 16-bit integer constant. This instruction is a prefixed version of ru6. This for-
mat is used, amongst others, for load and store operations relative to the stack pointer
and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 32 bits:

x x x x x x
op2[5...0]

op1[3...0]

Opcode

Opcode

1 1 1 1 0 0
op2[15...6]

This format is used by the following instructions:

BRBF LDAWDP LDWDP STWSP
BRBT LDAWSP LDWSP
BRFF LDC SETCI
BRFT LDWCP STWDP

307

The XMOS XS3 Architecture

23.7 u6: 6-bit immediate

Instructions with a single operand encoding a 6-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in 16 bits:

x x x x x x x x x x
op1[5...0]

Opcode

Opcode

Opcode

This format is used by the following instructions:

BLAT DUALENTSP GETSR RETSP
BRBU ENTSP KCALLI SETSR
BRFU EXTDP KENTSP
CLRSR EXTSP LDAWCP

308

The XMOS XS3 Architecture

23.8 lu6: 16-bit immediate

Instructions with a single operand encoding a 16-bit integer. This instruction is a prefixed
version of u6.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in 32 bits:

x x x x x x x x x x
op1[5...0]

Opcode

Opcode

Opcode

1 1 1 1 0 0
op1[15...6]

This format is used by the following instructions:

BLAT DUALENTSP GETSR LDAWCP
BRBU ENTSP KCALLI RETSP
BRFU EXTDP KENTSP SETSR
CLRSR EXTSP KRESTSP

309

The XMOS XS3 Architecture

23.9 u10: 10-bit immediate

Instructions with a single operand encoding a 10-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in 16 bits:

x x x x x x
op1[9...0]

Opcode

Opcode

This format is used by the following instructions:

BLACP BLRF LDAPF
BLRB LDAPB LDWCPL

310

The XMOS XS3 Architecture

23.10 lu10: 20-bit immediate

Instructions with a single operand encoding a 20-bit integer. This instruction is a prefixed
version of u10.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in 32 bits:

x x x x x x
op1[9...0]

Opcode

Opcode

1 1 1 1 0 0
op1[19...10]

This format is used by the following instructions:

BLACP BLRF LDAPF
BLRB LDAPB LDWCPL

311

The XMOS XS3 Architecture

23.11 2r: Two register

Instructions with two operand registers; the last operand is always a source register, the
first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 16 bits:

x x x x x x
op2[1...0]

op1[1...0]

Opcode

(op1[3...2] * 3 + op2[3...2]+27)[5]

(op2[3...2] * 3 + op1[3...2]) \bmod 5 +27

Opcode

This format is used by the following instructions:

ANDNOT EEF INCT OUTCT
BITREV EET INSHR PEEK
BYTEREV ENDIN INT SEXT
CHKCT GETST MKMSK TESTCT
CLS GETTS NEG TESTWCT
CLZ IN NOT ZEXT

312

The XMOS XS3 Architecture

23.12 r2r: Two register reversed

Instructions with two operand registers used for resources; the first operand is always a
source register containing the resource to operate on, the last operand maybe a destina-
tion register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 16 bits:

x x x x x x
op1[1...0]

op2[1...0]

Opcode

(op2[3...2] * 3 + op1[3...2]+27)[5]

(op1[3...2] * 3 + op2[3...2]) \bmod 5 +27

Opcode

This format is used by the following instructions:

OUT OUTT SETPSC
OUTSHR SETD SETPT

313

The XMOS XS3 Architecture

23.13 l2r: Two register long

Instructions with two operand registers; the last operand is always a source register, the
first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 0 x x x x
Opcode

Opcode

1 1 1 1 1 x
op2[1...0]

op1[1...0]

Opcode

(op1[3...2] * 3 + op2[3...2]+27)[5]

(op2[3...2] * 3 + op1[3...2]) \bmod 5 +27

This format is used by the following instructions:

FMANT GETPS TINITDP TSETMR
FSPEC SETC TINITLR VLASHR
GETD TESTLCL TINITPC VSTRPV
GETN TINITCP TINITSP

314

The XMOS XS3 Architecture

23.14 lr2r: Two register reversed long

Instructions with two operand registers; the first operand is always a source register
containing a resource identifier, the last operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 0 x x x x
Opcode

Opcode

1 1 1 1 1 x
op1[1...0]

op2[1...0]

Opcode

(op2[3...2] * 3 + op1[3...2]+27)[5]

(op1[3...2] * 3 + op2[3...2]) \bmod 5 +27

This format is used by the following instructions:

SETCLK SETPS SETTW
SETN SETRDY

315

The XMOS XS3 Architecture

23.15 rus: Register with immediate

Instructions with two operands. The last operand is a small constant (0..11). The first
operand is a register that may be used as source and or destination.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in 16 bits:

x x x x x x
op2[1...0]

op1[1...0]

Opcode

(op1[3...2] * 3 + op2[3...2]+27)[5]

(op2[3...2] * 3 + op1[3...2]) \bmod 5 +27

Opcode

This format is used by the following instructions:

CHKCTI MKMSKI SEXTI
GETR OUTCTI ZEXTI

316

The XMOS XS3 Architecture

23.16 1r: Register

Instructions with one operand register.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in 16 bits:

x x x x x 1 1 1 1 1 1 x
op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BAU FENAN SETV VLMUL
BLA FREER SYNCR VLSAT
BRU GETTIME TSTART VLSUB
CLRPT KCALL VLADD VSTD
DGETREG MJOIN VLADSB VSTR
ECALLF MSYNC VLDC WAITEF
ECALLT SETCP VLDD WAITET
EDU SETDP VLMACC
EEU SETEV VLMACCR
ELATE SETSP VLMACCR1

317

The XMOS XS3 Architecture

23.17 0r: No operands

These instructions operate on implicit operands.

The syntax for this instruction is:

MNEMONIC

Instructions in this format are encoded in 16 bits:

x x x x x 1 1 1 1 1 1 x x x x x
Opcode

Opcode

Opcode

This format is used by the following instructions:

CLRE LDSPC VCMCI VFTTF
DCALL LDSSR VCMCR VGETC
FLUSH NOP VCMI VLADDD
FREET PREFETCH VCMR VLDR
GETED SETKEP VDEPTH1 VPOS
GETET SSYNC VDEPTH16 VSETC
GETID STET VDEPTH8 VSIGN
GETKEP STSED VEQCR VSTC
GETKSP STSPC VEQDR WAITEU
INVALIDATE STSSR VFTFB
LDET VCLRDR VFTFF
LDSED VADDDR VFTTB

318

The XMOS XS3 Architecture

23.18 l0r: No operands

These instructions operate on implicit operands.

The syntax for this instruction is:

MNEMONIC

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 0 x x x x
Opcode

Opcode

1 1 1 1 1 1 1 1 1 1 1 x x x x x
Opcode

Opcode

This format is used by the following instructions:

DENTSP DRESTSP DRET KRET

319

The XMOS XS3 Architecture

23.19 l4r: Four register long

Operations on four registers - the last two operands are source registers, the first two
may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 x
op4[3...0]

Opcode

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

CRC8 FMACC MACCS STD
CRCN LDD MACCU

320

The XMOS XS3 Architecture

23.20 l3rus: Three register with immediate long

Operations on three registers and an immediate - the third operand is a source register,
the first two may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3

Instructions in this format are encoded in 32 bits:

x x x x x 1 1 1 1 1 1 x
op4[3...0]

Opcode

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

LDDI STDI

321

The XMOS XS3 Architecture

23.21 l4rus: Four registers with immediate long

Instruction with five operands. The last operand is a small unsigned constant (0..11), the
third and fourth operands are source registers, the first and second operands may be
used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5

Instructions in this format are encoded in 32 bits:

x x x x x x x x x x . x
op5[1...0]

op4[1...0]

Opcode

(op4[3...2] * 3 + op5[3...2]+27)[5]

Opcode

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

CRC32_INC LEXTRACT LINSERT

322

The XMOS XS3 Architecture

23.22 l5r: Five register long

Operations on five registers - the last three operands are source registers, the first two
may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5

Instructions in this format are encoded in 32 bits:

x x x x x x
op5[1...0]

op4[1...0]

Opcode

(op4[3...2] * 3 + op5[3...2]+27)[5]

(op5[3...2] * 3 + op4[3...2]) \bmod 5 +27

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

FMAKE LDIVU XOR4
LADD LSUB

323

The XMOS XS3 Architecture

23.23 l6r: Six register long

Operations on six registers - the last four operands are source registers, the first twomay
be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5, op6

Instructions in this format are encoded in 32 bits:

x x x x x
op6[1...0]

op5[1...0]

op4[1...0]

op4[3...2] * 9 + op5[3...2] * 3 + op6[3..2]

Opcode

1 1 1 1 1
op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2] * 9 + op2[3...2] * 3 + op3[3..2]

This format is used by the following instructions:

LMUL

324

The XMOS XS3 Architecture

24 XCore XS3 Exceptions

Exceptions change the normal flow of control; they may be caused by interrupts, errors
arising during instruction execution and by system calls. On an exception, the processor
will save the pc and sr in spc and ssr, disable events and interrupts, and start exe-
cuting an exception handler. The program counter that is saved normally points to the
instruction that raised the exception. Two registers are also set. The exception-data (ed)
and exception-type (et) will be set to reflect the cause of the exception. The exception
handler can choose how to deal with the exception. In this chapter the different types
of exception are listed, together with their representation, their meaning, and the instruc-
tions that may cause them.

325

The XMOS XS3 Architecture

24.1 ET_LINK_ERROR

Ad hardware control token was output to a channel end. Alternatively, a channel end was
used to transmit data without its destination being set first.

When ET_LINK_ERROR is raised:

· et will be set to 1

· ed will be set to the resource ID of the channel end which generated the exception.

This exception may be raised by the following instructions:

OUT OUTCT OUTT

326

The XMOS XS3 Architecture

24.2 ET_ILLEGAL_PC

The program counter points to a position that could not be accessed, for example, be-
yond the end of memory, or a non 16-bit aligned memory location. This exception is
raised on dispatch of the instruction corresponding to the illegal program counter. The
program counter that is saved in spc is the illegal program counter; thememory address
of the instruction that caused the program counter to become illegal is not known. Note
that this exception could be caused by, for example, loading a resource with an illegal
vector (SETV), but that this will not be known until an event happens.

When ET_ILLEGAL_PC is raised:

· et will be set to 2

· ed will be set to the PC which generated the exception.

This exception may be raised by the following instructions:

BAU BLRF BRFT MSYNC
BLA BRBF BRFU TSTART
BLACP BRBT BRU
BLAT BRBU DRET
BLRB BRFF KRET

327

The XMOS XS3 Architecture

24.3 ET_ILLEGAL_INSTRUCTION

A 16-bit/32-bit word was encountered that could not be decoded. This typically indicates
that the program counter was incorrect and addresses data memory. Alternatively, a
binary is executed that was not compiled for this device.

When ET_ILLEGAL_INSTRUCTION is raised:

· et will be set to 3

· ed will be set to 0.

This exception may be raised by the following instructions:

DENTSP DRESTSP DVLD
DGETREG DRET DVST

328

The XMOS XS3 Architecture

24.4 ET_ILLEGAL_RESOURCE

A resource operation was performed and failed because either the resource identifier
supplied was not a valid resource, it was not allocated, or the operation was not legal on
that resource.

When ET_ILLEGAL_RESOURCE is raised:

· et will be set to 4

· ed will be set to the resource identifier passed to the instruction.

This exception may be raised by the following instructions:

CHKCT IN PEEK TESTCT
CLRPT INCT SETC TESTLCL
EDU INPW SETCLK TESTWCT
EEF INSHR SETD TINITCP
EET INT SETEV TINITDP
EEU MJOIN SETN TINITLR
ENDIN MSYNC SETPSC TINITPC
FREER OUT SETPT TINITSP
GETD OUTCT SETRDY TSETMR
GETN OUTPW SETTW TSETR
GETST OUTSHR SETV TSTART
GETTS OUTT SYNCR

329

The XMOS XS3 Architecture

24.5 ET_LOAD_STORE

Amemory operation was performed that was not properly aligned. This could be a word
load or word store to an address where the least significant log2 Bpw bits were not
zero, or access to a 16-bit number using LD16S or ST16 where the least significant bit
of the address was one. Many load and store operations multiply their operand by Bpw
in order to increase the density of the encoding; even though this part of the address is
guaranteed to be aligned, it is possible for one of sp, cp, or dp to be unaligned, causing
any subsequent load or store which uses them to fail.

When ET_LOAD_STORE is raised:

· et will be set to 5

· ed will be set to the load or store address which generated the exception.

This exception may be raised by the following instructions:

BLACP LDSED STDSP VLDD
BLAT LDSPC STET VLDR
DUALENTSP LDSSR STSED VLMACC
DVLD LDW STSPC VLMACCR
DVST LDWCP STSSR VLMACCR1
ENTSP LDWCPL STW VLMUL
KENTSP LDWDP STWDP VLSAT
KRESTSP LDWSP STWSP VLSUB
LD8U PREFETCH VLADD VSTC
LD16S RETSP VLADDD VSTD
LDD ST8 VLADSB VSTR
LDDSP ST16 VLASHR VSTRPV
LDET STD VLDC

330

The XMOS XS3 Architecture

24.6 ET_ILLEGAL_PS

Access to a non existent processor status register was requested by either GETPS or
SETPS.

When ET_ILLEGAL_PS is raised:

· et will be set to 6

· ed will be set to the processor status register identifier.

This exception may be raised by the following instructions:

GETPS SETPS

331

The XMOS XS3 Architecture

24.7 ET_ARITHMETIC

Signals an arithmetic error, for example a division by 0 or an overflow that was detected.

When ET_ARITHMETIC is raised:

· et will be set to 7

· ed will be set to 0.

This exception may be raised by the following instructions:

DIVS LDIVU VCMI VFTFF
DIVU REMS VCMR VFTTB
FENAN REMU VDEPTH16 VFTTF
FMANT VCMCI VDEPTH8 VLADSB
FSEXP VCMCR VFTFB

332

The XMOS XS3 Architecture

24.8 ET_ECALL

An ECALL instruction was executed, and the associated condition caused an exception.
Indicates that the application program raised an exception, for example to signal array
bound errors or a failed assertion.

When ET_ECALL is raised:

· et will be set to 8

· ed will be set to 0.

This exception may be raised by the following instructions:

ECALLF ECALLT ELATE

333

The XMOS XS3 Architecture

24.9 ET_RESOURCE_DEP

Resources are owned and used by a single thread. If multiple threads attempt to access
the same resource within 4 cycles of each other, a Resource Dependency exception will
be raised.

When ET_RESOURCE_DEP is raised:

· et will be set to 9

· ed will be set to the resource identifier supplied by the instruction.

This exception may be raised by the following instructions:

CHKCT IN SETC TESTLCL
CLRPT INCT SETCLK TESTWCT
EDU INPW SETD TINITCP
EEF INSHR SETEV TINITDP
EET INT SETN TINITLR
EEU MJOIN SETPSC TINITPC
ENDIN MSYNC SETPT TINITSP
FREER OUT SETRDY TSETMR
GETD OUTCT SETTW TSETR
GETN OUTPW SETV TSTART
GETST OUTSHR SYNCR
GETTS OUTT TESTCT

334

The XMOS XS3 Architecture

24.10 ET_KCALL

Indicates that the KCALL or KCALLI instruction was executed.

When ET_KCALL is raised:

· et will be set to 15

· ed will be set to the kernel call operand.

This exception may be raised by the following instructions:

KCALL

335

The XMOS XS3 Architecture

24.11 ET_IOLANE

This value is ORed in with any of the previous exception types to indicate that the excep-
tion took place in the resource lane.

When ET_IOLANE is raised:

· et will be set to 16

· N/A

This exception is not related to a specific instruction

336

The XMOS XS3 Architecture

25 XCore XS3 Lanes

When executing in dual-issue mode, instructions are executed in lanes. Some instruc-
tions can only be executed in a specific lane, other instructions can execute in one of
multiple lanes, and yet other instructions required multiple lanes for execution. In this
chapter the different classes of instructions are explained, together with a list of instruc-
tions for each.

337

The XMOS XS3 Architecture

25.1 MEMORY_LANE

In dual issuemode, these instructions can only be executed in thememory lane, indicated
by M.

Instructions:

BAU(16) KENTSP(16) STSPC(16) VLADD(16)
BLA(16) LD8U(16) STSSR(16) VLADDD(16)
BLACP(16) LD16S(16) STWI(16) VLADSB(16)
BLAT(16) LDET(16) STWDP(16) VLDC(16)
BLRB(16) LDSED(16) STWSP(16) VLDD(16)
BLRF(16) LDSPC(16) VCLRDR(16) VLDR(16)
BRBF(16) LDSSR(16) VADDDR(16) VLMACC(16)
BRBT(16) LDW(16) VCMCI(16) VLMACCR(16)
BRBU(16) LDWI(16) VCMCR(16) VLMACCR1(16)
BRFF(16) LDWCP(16) VCMI(16) VLMUL(16)
BRFT(16) LDWCPL(16) VCMR(16) VLSAT(16)
BRFU(16) LDWDP(16) VDEPTH1(16) VLSUB(16)
BRU(16) LDWSP(16) VDEPTH16(16) VPOS(16)
DGETREG(16) PREFETCH(16) VDEPTH8(16) VSETC(16)
DUALENTSP(16) RETSP(16) VEQCR(16) VSIGN(16)
ENTSP(16) SETCP(16) VEQDR(16) VSTC(16)
FENAN(16) SETDP(16) VFTFB(16) VSTD(16)
FLUSH(16) SETKEP(16) VFTFF(16) VSTR(16)
INVALIDATE(16) SETSP(16) VFTTB(16)
KCALL(16) STET(16) VFTTF(16)
KCALLI(16) STSED(16) VGETC(16)

338

The XMOS XS3 Architecture

25.2 RESOURCE_LANE

In dual issue mode, these instructions can only be executed in the resource lane, indi-
cated by R.

Instructions:

CHKCT(16) FREET(16) OUTCT(16) SETV(16)
CHKCTI(16) GETR(16) OUTCTI(16) SSYNC(16)
CLRE(16) GETST(16) OUTSHR(16) SYNCR(16)
CLRPT(16) GETTS(16) OUTT(16) TESTCT(16)
CLRSR(16) IN(16) PEEK(16) TESTWCT(16)
EDU(16) INCT(16) SETCI(16) TSTART(16)
EEF(16) INSHR(16) SETD(16) WAITEF(16)
EET(16) INT(16) SETEV(16) WAITET(16)
EEU(16) MJOIN(16) SETPSC(16) WAITEU(16)
ENDIN(16) MSYNC(16) SETPT(16)
FREER(16) OUT(16) SETSR(16)

339

The XMOS XS3 Architecture

25.3 MEMORY_OR_RESOURCE_LANE

In dual issue mode, these instructions can be executed in either lane, indicated by M or
R.

Instructions:

ADD(16) EQ(16) LDAPF(16) OR(16)
ADDI(16) EQI(16) LDAWCP(16) SEXT(16)
AND(16) EXTDP(16) LDAWDP(16) SEXTI(16)
ANDNOT(16) EXTSP(16) LDAWSP(16) SHL(16)
BITREV(16) GETED(16) LDC(16) SHLI(16)
BYTEREV(16) GETET(16) LSS(16) SHR(16)
CLS(16) GETID(16) LSU(16) SHRI(16)
CLZ(16) GETKEP(16) MKMSK(16) SUB(16)
DCALL(16) GETKSP(16) MKMSKI(16) SUBI(16)
ECALLF(16) GETSR(16) NEG(16) ZEXT(16)
ECALLT(16) GETTIME(16) NOP(16) ZEXTI(16)
ELATE(16) LDAPB(16) NOT(16)

340

The XMOS XS3 Architecture

25.4 MEMORY_AND_RESOURCE_LANE

In dual issue mode, these instructions are executed in both lanes simultaneously, indi-
cated by M and R.

Instructions:

ASHR(32) FEQ(32) LDAWF(32) SETPS(32)
ASHRI(32) FGT(32) LDAWFI(32) SETRDY(32)
BLACP(32) FLT(32) LDAWSP(32) SETSR(32)
BLAT(32) FMACC(32) LDC(32) SETTW(32)
BLRB(32) FMAKE(32) LDD(32) ST8(32)
BLRF(32) FMANT(32) LDDI(32) ST16(32)
BRBF(32) FMUL(32) LDDSP(32) STD(32)
BRBT(32) FSEXP(32) LDIVU(32) STDI(32)
BRBU(32) FSPEC(32) LDWCP(32) STDSP(32)
BRFF(32) FSUB(32) LDWCPL(32) STW(32)
BRFT(32) FUN(32) LDWDP(32) STWDP(32)
BRFU(32) GETD(32) LDWSP(32) STWSP(32)
CLRSR(32) GETN(32) LEXTRACT(32) TESTLCL(32)
CRC8(32) GETPS(32) LINSERT(32) TINITCP(32)
CRC(32) GETSR(32) LMUL(32) TINITDP(32)
CRC32_INC(32) INPW(32) LSUB(32) TINITLR(32)
CRCN(32) KCALLI(32) MACCS(32) TINITPC(32)
DENTSP(32) KENTSP(32) MACCU(32) TINITSP(32)
DIVS(32) KRESTSP(32) MUL(32) TSETMR(32)
DIVU(32) KRET(32) OUTPW(32) TSETR(32)
DRESTSP(32) LADD(32) OUTPWI(32) UNZIP(32)
DRET(32) LDA16B(32) REMS(32) VLASHR(32)
DUALENTSP(32) LDA16F(32) REMU(32) VSTRPV(32)
DVLD(32) LDAPB(32) RETSP(32) XOR(32)
DVST(32) LDAPF(32) LSATS(32) XOR4(32)
ENTSP(32) LDAWB(32) SETC(32) ZIP(32)
EXTDP(32) LDAWBI(32) SETCI(32)
EXTSP(32) LDAWCP(32) SETCLK(32)
FADD(32) LDAWDP(32) SETN(32)

341

The XMOS XS3 Architecture

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

342

	Introduction
	Interconnect
	Concurrent Threads
	The XCORE Instruction Set
	Instruction Issue and Execution
	Instruction Set Notation and Definitions
	Data Access
	Expression Evaluation
	Branching, Jumping and Calling
	Resources and the Thread Scheduler
	Concurrency and Thread Synchronisation
	Communication
	Locks
	Timers
	Ports, Input and Output
	Memory model
	Events, Interrupts and Exceptions
	Initialisation and Debugging
	Specialised Instructions
	Floating point arithmetic
	Vector unit
	XCore XS3 Instructions
	XCore XS3 Instruction Format Specification
	XCore XS3 Exceptions
	XCore XS3 Lanes

