
lib_src: Sample rate conversion

Publication Date: 2024/10/21
Document Number: XM-010383-UG v2.7.0

lib_src: Sample rate conversion

IN THIS DOCUMENT

1 Introduction . 2
1.1 lib_src components . 2
1.2 Using lib_src . 3

2 HiFi quality multi-rate SRC . 4
2.1 Initialisation . 4
2.2 Processing . 5
2.3 Buffer formats . 6
2.4 Performance and resource utilisation . 7
2.5 Implementation detail . 11
2.6 File structure and overview . 13
2.7 SSRC API . 15
2.8 ASRC API . 15

3 HiFi quality fixed factor of 3 SRC . 17
3.1 Shared API items . 18
3.2 HiFi quality DS3 API . 18
3.3 HiFi quality OS3 API . 19

4 Voice quality fixed factor of 3 SRC . 19
4.1 Voice quality DS3 API . 20
4.2 Voice quality US3 API . 20

5 Voice quality fixed factor of 3 and 3/2 SRC optimised for XS3 20
5.1 Fixed factor of 3 VPU implementation . 21
5.2 Voice quality DS3 VPU API . 21
5.3 Voice quality US3 VPU API . 21
5.4 Fixed factor of 3/2 VPU implementation . 23
5.5 Voice quality DS3/2 API . 23
5.6 Voice quality US3/2 API . 23

6 Asynchronous FIFO . 26
6.1 Using the asynchronous FIFO . 26
6.2 Design parameters . 28
6.3 Controller settings . 30
6.4 API . 30
6.5 Implementation detail . 33

7 ASRC Task . 37
7.1 Operation . 37
7.2 Latency characterisation . 39
7.3 API & usage . 40

8 Performance characterisation . 43
8.1 Pure Tone FFT SRC plots across sample rate combinations 44
8.2 Summary table . 157

1 Introduction

1.1 lib_src components

lib_src provides both synchronous and asynchronous audio sample rate conversion
functions.

lib_src includes the following components:

· HiFi quality multi-rate sample rate conversion:
· Synchronous Sample Rate Converter (SSRC) function
· Asynchronous Sample Rate Converter (ASRC) function

· HiFi quality fixed factor sample rate conversion:

2

lib_src: Sample rate conversion

· Synchronous factor of 3 downsample function (src_ds3)
· Synchronous factor of 3 oversample function (src_os3)

· Voice quality fixed factor sample rate conversion:
· Synchronous factor of 3 downsample function (src_ds3_voice)
· Synchronous factor of 3 oversample function (src_us3_voice)

· Voice quality fixed factor sample rate conversion optimised for XS3:
· Synchronous factor of 3 downsample function (src_ff3_96t_ds)
· Synchronous factor of 3 oversample function (src_ff3_96t_us)
· Synchronous factor of 3/2 downsample function (src_rat_2_3_96t_ds)
· Synchronous factor of 3/2 oversample function (src_rat_3_2_96t_us)

· Integration support:
· Asynchronous FIFO with controller for use with ASRC

The component listing above includes three different component options that support
fixed factor of 3 up/downsampling. To order to choose which one to use follow these
steps:

1. If HiFi quality (130 dB SNR) up/downsampling is required, use src_ds3 or src_os3.

2. If voice quality (65 dB SNR) is required running on xcore-200, use src_ds3_voice
or src_us3_voice.

3. If voice quality (75 dB SNR) is required running xcore-ai, use src_ff3_96t_ds or
src_ff3_96t_us.

1.2 Using lib_src

lib_src is intended to be used with the XCommon CMake , the XMOS application build
and dependency management system.

To use this library, include lib_src in the application’s APP_DEPENDENT_MODULES list,
for example:
set(APP_DEPENDENT_MODULES "lib_src")

Applications should then include the src.h header file.

3

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_src: Sample rate conversion

2 HiFi quality multi-rate SRC

Both SSRC and ASRC functions are accessed via standard function calls, making them
accessible from C or XC. Both SSRC and ASRC functions are passed an external state
structure which provides re-entrancy. The functions may be called in-line with other sig-
nal processing or placed in a thread on it’s own to provide guaranteed performance. By
placing the calls to SRC functions on separate threads, multiple instances can be pro-
cessed concurrently.

The API is designed to be simple and intuitive with just two public functions per sample
rate converter type.

2.1 Initialisation

All public ASRC and SSRC functions are declared within the src.h header:
#include "src.h"

There are a number of arrays of structures that must be declared from the application
which contain the buffers between the FIR stages, state and adapted coefficients (ASRC
only). There must be one element of each structure declared for each channel handled
by the SRC instance. The structures are then all linked into a single control structure,
allowing a single reference to be passed each time a call to the SRC is made.

For SSRC, the following state structures are required:
//State of SSRC module
ssrc_state_t ssrc_state[SSRC_CHANNELS_PER_INSTANCE];
//Buffers between processing stages
int ssrc_stack[SSRC_CHANNELS_PER_INSTANCE][SSRC_STACK_LENGTH_MULT * SSRC_N_IN_SAMPLES];
//SSRC Control structure
ssrc_ctrl_t ssrc_ctrl[SSRC_CHANNELS_PER_INSTANCE];

For ASRC, the following state structures are required. Note that only one instance of the
filter coefficients need be declared because these are shared amongst channels within
the instance:
//ASRC state
asrc_state_t asrc_state[ASRC_CHANNELS_PER_INSTANCE];
int asrc_stack[ASRC_CHANNELS_PER_INSTANCE][ASRC_STACK_LENGTH_MULT * ASRC_N_IN_SAMPLES];
//Control structure
asrc_ctrl_t asrc_ctrl[ASRC_CHANNELS_PER_INSTANCE];
//Adaptive filter coefficients
asrc_adfir_coefs_t asrc_adfir_coefs;

Note: lib_src expects SSRC_N_CHANNELS/ASRC_N_CHANNELS and
SSRC_N_IN_SAMPLES/ASRC_N_IN_SAMPLES to be defined by the user. It will
define SSRC_STACK_LENGTH_MULT/ASRC_STACK_LENGTH_MULT based on these
values. SSRC_N_CHANNELS/ASRC_N_CHANNELS values are expected to match the
n_in_samples parameter to the initialisation functions.

There is an initialisation call which sets up the variables within the structures associ-
ated with the SRC instance and clears the inter-stage buffers. Initialisation ensures the
correct selection, ordering and configuration of the filtering stages, be they decimators,
interpolators or pass-through blocks. This initialisation call contains arguments defining
selected input and output nominal sample rates as well as settings for the sample rate
converter:

ssrc_init()

The initialisation call is similar for ASRC:

4

lib_src: Sample rate conversion

asrc_init()

The input block size must be a power of 2 and is function of the n_in_samples and
n_channels_per_instance arguments - the total number of input samples expected
for each processing call is n_in_samples * n_channels_per_instance.

2.2 Processing

Following initialisation, the processingAPI is called for each block of input sampleswhich
will then produce a block of output samples as shown in Fig. 1.

Input

Fsin

Output

Fsout

Sample Rate
Converter

Fig. 1: SRC Operation

The logic is designed so that the final filtering stage always receives a sample to process.
The sample rate converters have been designed to handle a maximum decimation of
factor four from the first two stages. This architecture requires a minimum input block
size of 4 to operate.

The processing function call takes the the input and output buffers and a reference to
the control structure as parameters. In the case of ASRC a fractional frequency ratio
parameter must also be supplied. The processing functions are as follows:

ssrc_process() asrc_process()

The SRC processing call always returns a whole number of output samples produced
by the sample rate conversion. Depending on the sample ratios selected, this num-
ber may be between zero and (n_in_samples * n_channels_per_instance *
SRC_N_OUT_IN_RATIO_MAX). Where SRC_N_OUT_IN_RATIO_MAX is the maximum
number of output samples for a single input sample. For example, if the input frequency
is 44.1 kHz and the output rate is 192 kHz then a sample rate conversion of one sample
input may produce up to 5 output samples.

The fractional number of samples produced to be carried to the next operation is stored
inside the control structure, and additional whole samples are added during subsequent
calls to the sample rate converter as necessary.

For example, a sample rate conversion from 44.1 kHz to 48 kHz with a input block size
of 4 will produce a 4 sample result with a 5 sample result approximately every third call.

Each SRC processing call returns the integer number of samples produced during the
sample rate conversion.

The SSRC is synchronous in nature and assumes that the ratio is equal to the nominal
sample rate ratio. For example, to convert from 44.1 kHz to 48 kHz, it is assumed that the
sample clocks of the input and output stream are derived from the same master-clock
and have an exact ratio of 147:160.

If the sample clocks are derived from separate master-clocks, different oscillators for
example, or are not synchronous (for example are derived from each other using a frac-
tional PLL), ASRC must be used rather than SSRC.

5

lib_src: Sample rate conversion

2.3 Buffer formats

The format of the sample buffers sent and received from each SRC instance is time
domain interleaved. How this looks in practice depends on the number of channels and
SRC instances. Three examples are shown below, each showing n_in_samples = 4.
The ordering of sample indicies is 0 representing the oldest sample and n - 1, where n
is the buffer size, representing the newest sample.

In the case where two channels are handled by a single SRC instance Fig. 2 shows that
the samples are interleaved into a single buffer of size 8.

Left[1]

Right[1]

Left[2]

Left[3]

Right[2]

Right[3]

Left[0]

Right[0]

2

3

4

6

5

7

0

1

Fig. 2: Buffer Format for Single Stereo SRC instance

Where a single audio channel is mapped to a single instance, the buffers are simply an
array of samples starting with the oldest sample and ending with the newest sample as
shown in Fig. 3.

Left[2]

Left[3]

Right[0]

Right[2]

Right[1]

Right[3]

Left[0]

Left[1]

2

3

0

2

1

3

0

1

Fig. 3: Buffer Format for Dual Mono SRC instances

In the case where four channels are processed by two instances, channels 0 & 1 are pro-
cessed by SRC instance 0 and channels 2 & 3 are processed by SRC instance 1 as shown
in Fig. 4. For each instance, four pairs of samples are passed into the SRC processing
function and n pairs of samples are returned, where n depends on the input and output
sample rate ratio.

In addition to the above arguments the asrc_process() call also requires an unsigned
Q4.60 fixed point ratio value specifying the actual input to output ratio for the next calcu-
lated block of samples. This allows the input and output rates to be fully asynchronous
by allowing rate changes on each call to the ASRC. The converter dynamically computes
coefficients using a spline interpolation within the last filter stage. It is up to the callee to
maintain the input and output sample rate ratio difference.

Further details about these function arguments are contained here: SSRC API.

6

lib_src: Sample rate conversion

Ch_0[1]

Ch_1[1]

Ch_0[2]

Ch_0[3]

Ch_1[2]

Ch_1[3]

Ch_0[0]

Ch_1[0]

2

3

4

6

5

7

0

1

Ch_2[1]	

Ch_3[1]	

Ch_2[2]	

Ch_2[3]	

Ch_3[2]	

Ch_3[3]	

Ch_2[0]	

Ch_3[0]	

2

3

4

6

5

7

0

1

Fig. 4: Buffer Format for Dual Stereo SRC instances (4 channels total)

2.4 Performance and resource utilisation

2.4.1 Audio performance

The performance of the SSRC library is as follows:

· THD+N (1 kHz, 0 dBFs): better than -130 dB, depending on the accuracy of the ratio
estimation

· SNR: 140 dB (or better). Note that when dither is not used, SNR is infinite as output
from a zero input signal is zero.

To see frequency plots illustrating the noise floor with respect to a sample rate converted
tone refer to the Performance characterisation section of this document.

2.4.2 SSRC resource utilisation

The SSRC algorithm runs a series of cascaded FIR filters to perform the rate conver-
sion. This includes interpolation, decimation and bandwidth limiting filters with a fi-
nal polyphase FIR filter. The last stage supports the rational rate change of 147:160 or
160:147 allowing conversion between 44.1 kHz family of sample rates to the 48 kHz fam-
ily of sample rates.

Tip: Table 1 shows the worst case MHz consumption at a given sample rate using the
minimum block size of 4 input samples with dithering disabled. The MHz requirement
can be reduced by around 8-12%, depending on sample rate, by increasing the input block
size to 16. It is not usefully reduced by increasing block size beyond 16.

Tip: Table 1 is timed on xcore-200. When using xcore.ai the performance requirement
is roughly halved due to VPU optimisations.

7

lib_src: Sample rate conversion

Table 1: SSRC Processor Usage per Channel (MHz) for xcore-200

Output
rate
44.1 kHz 48

kHz
88.2
kHz

96
kHz

176.4
kHz

192
kHz

Input
rate

44.1
kHz

1 MHz 23
MHz

16 MHz 26
MHz

26 MHz 46
MHz

48 kHz 26 MHz 1 MHz 28
MHz

17
MHz

48 MHz 29
MHz

88.2
kHz

18 MHz 43
MHz

1 MHz 46
MHz

32 MHz 53
MHz

96 kHz 48 MHz 20
MHz

52
MHz

2 MHz 56 MHz 35
MHz

176.4
kHz

33 MHz 61
MHz

37MHz 67
MHz

3 MHz 76
MHz

192 kHz 66 MHz 36
MHz

70MHz 40
MHz

80 MHz 4 MHz

2.4.3 ASRC performance

The performance of the ASRC library is as follows:

· THD+N: (1 kHz, 0 dBFs): better than -130 dB

· SNR: 135 dB (or better). Note that when dither is not used, SNR is infinite as output
from a zero input signal is zero.

To see frequency plots illustrating the noise floor with respect to a sample rate converted
tone refer to the Performance characterisation section of this document.

2.4.4 ASRC latency / group delay

The ASRC algorithm runs a series of cascaded FIR filters to perform the rate conversion
including a final adaptive filter to handle the varying rate change between the input and
the output. The latency or group delay through the filter depends on the input rate and
output rate and the input block size. Table 2 quantifies the amount of latency in millisec-
onds seen from the filtering. For input block sizes of greater than four please add 1000
* (INPUT_BLOCK_SIZE - 4) / INPUT_SAMPLE_RATE milliseconds to the numbers in the
table.

8

lib_src: Sample rate conversion

Table 2: ASRC total filter delay by sample rate inmilliseconds for input block
size of four

Output
rate
44.1 kHz 48

kHz
88.2
kHz

96
kHz

176.4
kHz

192
kHz

Input
rate

44.1 kHz 0.907 0.899 0.896 0.899 0.896 0.894

48 kHz 0.910 0.833 0.830 0.823 0.825 0.823
88.2
kHz

0.907 0.908 0.454 0.450 0.448 0.450

96 kHz 0.931 0.833 0.455 0.417 0.415 0.411
176.4
kHz

0.998 0.996 0.317 0.319 0.159 0.157

192 kHz 0.998 0.917 0.295 0.292 0.148 0.146

ASRC resource utilisation The ASRC algorithm runs a series of cascaded FIR filters to
perform the rate conversion. The final filter is different because it uses adaptive coeffi-
cients to handle the varying rate change between the input and the output. The adap-
tive coefficients must be computed for each output sample period, but can be shared
amongst all channels within the ASRC instance. Consequently, the MHz usage of the
ASRC is expressed as two tables; Table 3 quantifies theMHz required for the first channel
with adaptive coefficients calculation and Table 4 specifies the MHz required for filtering
of each additional channel processed by the ASRC instance.

Tip: The below tables show the worst case MHz consumption per sample, using the
minimumblock size of 4 input samples. TheMHz requirement can be reduced by around
8-12% by increasing the input block size to 16.

Tip: Typically some performance headroom is needed for buffering (especially if the
system is sample orientated rather than block orientated) and inter-task communication.

Tip: Table 3 is timed on xcore-200. When using xcore.ai the performance requirement
is roughly halved due to VPU optimisations.

9

lib_src: Sample rate conversion

Table 3: ASRC Processor Usage (MHz) for the First Channel in the ASRC
Instance for xcore-200

Output
rate
44.1 kHz 48

kHz
88.2
kHz

96
kHz

176.4
kHz

192
kHz

Input
rate

44.1
kHz

29 MHz 30
MHz

40
MHz

42
MHz

62 MHz 66
MHz

48 kHz 33 MHz 32
MHz

42
MHz

43
MHz

63 MHz 66
MHz

88.2
kHz

47 MHz 50
MHz

58
MHz

61
MHz

80 MHz 85
MHz

96 kHz 55 MHz 51
MHz

67
MHz

64
MHz

84 MHz 87MHz

176.4
kHz

60 MHz 66
MHz

76
MHz

81
MHz

105
MHz

106
MHz

192 kHz 69 MHz 66
MHz

82
MHz

82
MHz

109
MHz

115
MHz

Caution: Configurations requiring more than 100 MHz may not be able run in real
time on a single logical core. The performance limit for a single core on a 500 MHz
xcore-200 device is 100 MHz (500/5) however an xcore-ai device running at 600 MHz
can provide 120 MHz logical cores.

Tip: Table 4 is timed on xcore-200. When using xcore.ai the performance requirement
is roughly halved due to VPU optimisations.

Table 4: ASRC Processor Usage (MHz) for Subsequent Channels in the
ASRC Instance

Output
rate
44.1 kHz 48

kHz
88.2
kHz

96
kHz

176.4
kHz

192
kHz

Input
rate

44.1
kHz

28 MHz 28
MHz

32
MHz

30
MHz

40 MHz 40
MHz

48 kHz 39 MHz 31
MHz

33
MHz

36
MHz

40 MHz 45
MHz

88.2
kHz

51 MHz 49
MHz

57
MHz

55
MHz

65 MHz 60
MHz

96 kHz 51 MHz 56
MHz

57
MHz

62
MHz

66 MHz 71 MHz

176.4
kHz

60 MHz 66
MHz

76
MHz

79
MHz

92 MHz 91 MHz

192 kHz 69 MHz 66
MHz

76
MHz

82
MHz

90 MHz 100
MHz

10

lib_src: Sample rate conversion

2.5 Implementation detail

The SSRC and ASRC implementations are closely related to each other and share the
majority of the system building blocks. The key difference between them is that SSRC
uses fixed polyphase 160:147 and 147:160 final rate change filterswhereas the ASRCuses
an adaptive polyphase filter. The ASRC adaptive polyphase coefficients are computed
for every sample using second order spline based interpolation.

2.5.1 SSRC structure

The SSRC algorithm is based on three cascaded FIR filter stages (F1, F2 and F3). These
stages are configured differently depending on rate change and only part of them is used
in certain cases. Fig. 5 shows an overall view of the SSRC algorithm:

F1
Over-spl by 2,
Down-spl by 2 or
band-limiting

F2
Over-spl by 2,
Down-spl by 2 or
band-limiting

F3
147/160 or 160/147
Polyphase filter

Fsin Fsout

Computed for every
output sample only

Fsin = Fsout Fsin = 2 x Fsout or
Fsin = 1/2 x Fsout

Fsin = 4 x Fsout or
Fsin = 1/4 x Fsout

Bandwidth control and
integer over/down-sampling

Polyphase filter (rational rate
change, used only changes
between 44.1 and 48 bases)

Fig. 5: SSRC Algorithm Structure

The SSRC algorithm is implemented as a two stage structure:

· The bandwidth control stagewhich includes filters F1 and F2 is responsible for limiting
the bandwidth of the input signal and for providing integer rate Sample Rate Conver-
sion. It is also used for signal conditioning in the case of rational non-integer Sample
Rate Conversion.

· The polyphase filter stage which converts between the 44.1 kHz and the 48 kHz fami-
lies of sample rates.

2.5.2 ASRC structure

Similar to the SSRC, the ASRC algorithm is based on three cascaded FIR filters (F1, F2
and F3). These are configured differently depending on rate change and F2 is not used
in certain rate changes. Fig. 6 shows an overall view of the ASRC algorithm:

The ASRC algorithm is implemented as a two stage structure:

· The bandwidth control stage includes filters F1 and F2 which are responsible for lim-
iting the bandwidth of the input signal and for providing integer rate sample rate con-
version to condition the input signal for the adaptive polyphase stage (F3).

· The polyphase filter stage consists of the adaptive polyphase filter F3, which effec-
tively provides the asynchronous connection between the input and output clock do-
mains.

2.5.3 SRC filter list

A complete list of the filters supported by the SRC library, both SSRC and ASRC, is shown
in Table 5. The filters are implemented in C within the FilterDefs.c function and the

11

lib_src: Sample rate conversion

Fig. 6: ASRC Algorithm Structure

coefficients can be found in the /FilterData folder. The particular combination of
filters cascaded together for a given sample rate change is specified in ssrc.c and
asrc.c.

12

lib_src: Sample rate conversion

Table 5: SRC Filter Specifications

Filter Fs
(norm)

Pass-
band

Stop-
band

Rip-
ple

Atten-
uation

Taps Notes

BL 2 0.454 0.546 0.01
dB

155 dB 144 Down-sampler by two,
steep

BL9644 2 0.417 0.501 0.01
dB

155 dB 160 Low-pass filter, steep
for 96 to 44.1

BL8848 2 0.494 0.594 0.01
dB

155 dB 144 Low-pass, steep for
88.2 to 48

BLF 2 0.41 0.546 0.01
dB

155 dB 96 Low-pass at half band

BL192882 0.365 0.501 0.01
dB

155 dB 96 Low pass, steep for 192
to 88.2

BL176962 0.455 0.594 0.01
dB

155 dB 96 Low-pass, steep for
176.4 to 96

UP 2 0.454 0.546 0.01
dB

155 dB 144 Over sample by 2, steep

UP4844 2 0.417 0.501 0.01
dB

155 dB 160 Over sample by 2, steep
for 48 to 44.1

UPF 2 0.41 0.546 0.01
dB

155 dB 96 Over sample by 2, steep
for 176.4 to 192

UP1921762 0.365 0.501 0.01
dB

155 dB 96 Over sample by 2, steep
for 192 to 176.4

DS 4 0.57 1.39 0.01
dB

160 dB 32 Down sample by 2, re-
laxed

OS 2 0.57 1.39 0.01
dB

160 dB 32 Over sample by 2, re-
laxed

HS294 284 0.55 1.39 0.01
dB

155 dB 2352 Polyphase 147/160 rate
change

HS320 320 0.55 1.40 0.01
dB

151 dB 2560 Polyphase 160/147 rate
change

AD-
FIR

256 0.45 1.45 0.012
dB

170 dB 1920 Adaptive polyphase
prototype filter

2.6 File structure and overview

All source files for the SSRC and ASRC are located within the multirate_hifi subdi-
rectory.

· src_mrhf_ssrc_wrapper.c / src_mrhf_ssrc_wrapper.h
These wrapper files provide a simplified public API to the SSRC initialization and pro-
cessing functions.

· src_mrhf_asrc_wrapper.c / src_mrhf_asrc_wrapper.h
These wrapper files provide a simplified public API to the ASRC initialization and pro-
cessing functions.

· src_mrhf_ssrc.c / src_mrhf_ssrc.h
These files contain the core of the SSRC algorithm. They set up the correct filtering
chains depending on rate change and apply in the processing calls. The table sFilter-

13

lib_src: Sample rate conversion

sIDs declared in SSRC.c contains definitions of the filter chains for all supported rate
changes. The files also integrate the code for the optional dithering function.

· src_mrhf_asrc.c / src_mrhf_asrc.h
These files contain the core of the ASRC algorithm. They setup the correct filtering
chains depending on rate change and apply them for the corresponding processing
calls. Note that filters F1, F2 and dithering are implemented using a block based ap-
proach similar to SSRC. The adaptive polyphase filter (ADFIR) is implemented on a
sample by sample basis. These files also contain functions to compute the adaptive
polyphase filter coefficients.

· src_mrhf_fir.c / src_mrhf_fir.h
These files provide Finite Impulse Response (FIR) filtering setup, with calls to the
assembler-optimized inner loops. They provide functions for handling down-sampling
by 2, synchronous or over-sampling by 2 FIRs. They also provides functions for han-
dling polyphase filters used for rational ratio rate change in the SSRC and adaptive FIR
filters used in the asynchronous section of the ASRC.

· src_mrhf_filter_defs.c / src_mrhf_filter_defs.h
These files define the size and coefficient sources for all the filters used by the SRC
algorithms.

· /FilterData directory (various files)
This directory contains the pre-computed coefficients for all of the fixed FIR filters. The
numbers are stored as signed Q1.31 format and are directly included in the source of
FilterDefs.c. Both the .dat files used by the C compiler and the .sfp ScopeFIR (http:
//iowegian.com/scopefir/) design source files, used to originally create the filters, are
included.

· src_mrhf_fir_inner_loop_asm.S / src_mrhf_fir_inner_loop_asm.h
Inner loop for the standard FIR function optimized for double-word load and store, 32
bit * 32 bit -> 64 bit MACC and saturation instructions. Even and odd sample longword
alignment versions are provided.

· src_mrhf_fir_os_inner_loop_asm.S / scr_mrhf_fir_os_inner_loop_asm.h
Inner loop for the oversampling FIR function optimized for double-word load and store,
32 bit * 32 bit -> 64 bit MACC and saturation instructions. Both (long word) even and
odd sample input versions are provided.

· src_mrhf_spline_coeff_gen_inner_loop_asm.S / src_mrhf_spline_coeff_gen_inner_loop_asm.h
Inner loop for generating the spline interpolated coefficients. This assembler func-
tion is optimized for double-word load and store, 32 bit * 32 bit -> 64 bit MACC and
saturation instructions.

· src_mrhf_adfir_inner_loop_asm.S / src_mrhf_adfir_inner_loop_asm.h
Inner loop for the adaptive FIR function using the previously computed spline interpo-
lated coefficients. It is optimized for double-word load and store, 32 bit * 32 bit -> 64
bit MACC and saturation instructions. Both (long word) even and odd sample input
versions are provided.

· src_mrhf_int_arithmetic.c / src_mrhf_int_arithmetic.h
These files contain simulation implementations of XMOS ISA specific assembler in-
structions. These are only used for dithering functions, and may be eliminated during
future optimizations.

14

http://iowegian.com/scopefir/
http://iowegian.com/scopefir/

lib_src: Sample rate conversion

2.7 SSRC API

void ssrc_init(const fs_code_t sr_in, const fs_code_t sr_out, ssrc_ctrl_t ssrc_ctrl[],
const unsigned n_channels_per_instance, const unsigned
n_in_samples, const dither_flag_t dither_on_off)

initializes synchronous sample rate conversion instance.

Parameters

· sr_in – Nominal sample rate code of input stream
· sr_out – Nominal sample rate code of output stream
· ssrc_ctrl – Reference to array of SSRC control stuctures
· n_channels_per_instance – Number of channels handled

by this instance of SSRC
· n_in_samples – Number of input samples per SSRC call
· dither_on_off – Dither to 24b on/off

unsigned ssrc_process(int in_buff[], int out_buff[], ssrc_ctrl_t ssrc_ctrl[])
Perform synchronous sample rate conversion processing on block of input sam-
ples using previously initialized settings.

Parameters

· in_buff – Reference to input sample buffer array
· out_buff – Reference to output sample buffer array
· ssrc_ctrl – Reference to array of SSRC control stuctures

Returns
The number of output samples produced by the SRC operation

2.8 ASRC API

uint64_t asrc_init(const fs_code_t sr_in, const fs_code_t sr_out, asrc_ctrl_t
asrc_ctrl[], const unsigned n_channels_per_instance, const
unsigned n_in_samples, const dither_flag_t dither_on_off)

initializes asynchronous sample rate conversion instance.

Parameters

· sr_in – Nominal sample rate code of input stream
· sr_out – Nominal sample rate code of output stream
· asrc_ctrl – Reference to array of ASRC control structures
· n_channels_per_instance – Number of channels handled

by this instance of SSRC
· n_in_samples – Number of input samples per SSRC call
· dither_on_off – Dither to 24b on/off

Returns
The nominal sample rate ratio of in to out in Q4.60 format

unsigned asrc_process(int in_buff[], int out_buff[], uint64_t fs_ratio, asrc_ctrl_t
asrc_ctrl[])

Perform asynchronous sample rate conversion processing on block of input sam-
ples using previously initialized settings.

Parameters

· in_buff – Reference to input sample buffer array
· out_buff – Reference to output sample buffer array

15

lib_src: Sample rate conversion

· fs_ratio – Fixed point ratio of in/out sample rates in Q4.60 for-
mat

· asrc_ctrl – Reference to array of ASRC control structures
Returns

The number of output samples produced by the SRC operation.

16

lib_src: Sample rate conversion

3 HiFi quality fixed factor of 3 SRC

The SRC library includes synchronous sample rate conversion functions to downsample
(decimate) and oversample (upsample or interpolate) by a fixed factor of 3.

These components offer a high quality conversion with an SNR of 130 dB.

In each case, the processing is carried out each time a single output sample is required.
In the case of the decimator, three input samples are passed to the filter with a resulting
one sample output on calling the processing function. The interpolator produces an out-
put sample each time the processing function is called but will require a single sample
to be pushed into the filter every third cycle. All samples use Q1.31 format (left justified
signed 32b integer).

Both sample rate converters are based on a 144 tap FIR filter with two sets of coefficients
available, depending on application requirements:

· firos3_b_144.dat / firds3_b_144.dat - These filters have 20 dB of attenua-
tion at the Nyquist frequency and a higher cutoff frequency

· firos3_144.dat / firds3_144.dat - These filters have 60 dB of attenuation at
the Nyquist frequency but trade this off with a lower cutoff frequency

The default setting is to use the coefficients that provide 60 dB of attenuation at the
Nyquist frequency.

The filter coefficients may be selected by adjusting the line:
#define FIROS3_COEFS_FILE

and:
#define FIRDS3_COEFS_FILE

in the files src_ff3_os3.h (API for oversampling) and src_ff3_ds3.h (API for
downsampling) respectively.

The OS3 processing takes up to 153 core cycles to compute a sample which translates
to 1.53 µs at 100MHz or 2.448 µs at 62.5MHz core speed. This permits up to 8 channels
of 16 kHz -> 48 kHz sample rate conversion in a single 62.5MHz core.

The DS3 processing takes up to 389 core cycles to compute a sample which translates
to 3.89 µs at 100MHz or 6.224 µs at 62.5MHz core speed. This permits up to 9 channels
of 48 kHz -> 16 kHz sample rate conversion in a single 62.5MHz core.

Both downsample and oversample functions return ERROR or NO_ERROR status codes
as defined in the return code enums listed below. The only way these functions can error
is if the passed delay_base structure member is uninitialized (NULL).

The downsampling functions return the following error codes
FIRDS3_NO_ERROR
FIRDS3_ERROR

The upsampling functions return the following error codes
FIROS3_NO_ERROR
FIROS3_ERROR

17

lib_src: Sample rate conversion

Tip: There are three different component options that support fixed factor of 3 up/-
downsampling. To help choose which one to use follow these steps: If HiFi quality (130
dB SNR) up/downsampling is required, use ds3 or os3. If voice quality (65 dB SNR) is
required running on xcore-200, use ds3_voice or us3_voice. If voice quality (75 dB SNR)
is required running xcore-ai, use ff3_96t_ds or ff3_96t_us

3.1 Shared API items

enum src_ff3_return_code_t
Fixed factor of 3 return codes
This type describes the possible error status states from calls to the DS3 and OS3
API.
Values:

enumerator SRC_FF3_NO_ERROR

enumerator SRC_FF3_ERROR

3.2 HiFi quality DS3 API

struct src_ds3_ctrl_t
Downsample by 3 control structure

src_ff3_return_code_t src_ds3_init(src_ds3_ctrl_t *src_ds3_ctrl)
This function initializes the decimate by 3 function for a given instance

Parameters

· src_ds3_ctrl – DS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

src_ff3_return_code_t src_ds3_sync(src_ds3_ctrl_t *src_ds3_ctrl)
This function clears the decimate by 3 delay line for a given instance

Parameters

· src_ds3_ctrl – DS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

src_ff3_return_code_t src_ds3_proc(src_ds3_ctrl_t *src_ds3_ctrl)
This function performs the decimation on three input samples and outputs
one sample. The input and output buffers are pointed to by members of the
src_ds3_ctrl structure

Parameters

· src_ds3_ctrl – DS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

18

lib_src: Sample rate conversion

3.3 HiFi quality OS3 API

struct src_os3_ctrl_t
Oversample by 3 control structure

src_ff3_return_code_t src_os3_init(src_os3_ctrl_t *src_os3_ctrl)
This function initializes the oversample by 3 function for a given instance

Parameters

· src_os3_ctrl – OS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

src_ff3_return_code_t src_os3_sync(src_os3_ctrl_t *src_os3_ctrl)
This function clears the oversample by 3 delay line for a given instance

Parameters

· src_os3_ctrl – OS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

src_ff3_return_code_t src_os3_input(src_os3_ctrl_t *src_os3_ctrl)
This function pushes a single input sample into the filter. It should be called three
times for each FIROS3_proc call

Parameters

· src_os3_ctrl – OS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

src_ff3_return_code_t src_os3_proc(src_os3_ctrl_t *src_os3_ctrl)
This function performs the oversampling by 3 and outputs one sample. The input
and output buffers are pointed to by members of the src_os3_ctrl structure

Parameters

· src_os3_ctrl – OS3 control structure
Returns

SRC_FF3_NO_ERROR on success, SRC_FF3_ERROR on failure

4 Voice quality fixed factor of 3 SRC

A pair of SRC components supporting upconversion and downconversion by a factor
of 3 are provided that are suitable for voice applications. They provide voice quality SNR
(around 60 dB) and use a 72 tapRemez FIR filter and are optimized for the XS2 instruction
set.

Warning: These SRC components have been deprecated. For new designs using
xcore-ai, use the XS3 optimised components which provide both better perfor-
mance and use approximately half of the MIPS. See ff3_voice_vpu_hdr

19

lib_src: Sample rate conversion

4.1 Voice quality DS3 API

int64_t src_ds3_voice_add_sample(int64_t sum, int32_t data[], const int32_t
coefs[], int32_t sample)

This function performs the first two iterations of the downsampling process

Parameters

· sum – Partially accumulated value returned during previous cycle
· data – Data delay line
· coefs – FIR filter coefficients
· sample – The newest sample

Returns
Partially accumulated value, passed as sum parameter next cycle

int64_t src_ds3_voice_add_final_sample(int64_t sum, int32_t data[], const
int32_t coefs[], int32_t sample)

This function performs the final iteration of the downsampling process

Parameters

· sum – Partially accumulated value returned during previous cycle
· data – Data delay line
· coefs – FIR filter coefficients
· sample – The newest sample

Returns
The decimated sample

4.2 Voice quality US3 API

int32_t src_us3_voice_input_sample(int32_t data[], const int32_t coefs[], int32_t
sample)

This function performs the initial iteration of the upsampling process

Parameters

· data – Data delay line
· coefs – FIR filter coefficients
· sample – The newest sample

Returns
A decimated sample

int32_t src_us3_voice_get_next_sample(int32_t data[], const int32_t coefs[])
This function performs the final two iterations of the upsampling process

Parameters

· data – Data delay line
· coefs – FIR filter coefficients

Returns
A decimated sample

5 Voice quality fixed factor of 3 and 3/2 SRC optimised for
XS3

A set of SRC components are provided which are optimised for the Vector Processing
Unit (VPU) and are suitable for voice applications. They cannot be run on XS2 based
devices.

20

lib_src: Sample rate conversion

The fixed factor of 3 SRC components are designed for conversion between 48 kHz to
16 kHz and the fixed factor of 3/2 are designed for conversion between 48 kHz and 32
kHz.

They have been designed for voice applications and, in particular, conformance to the
Microsoft Teams v5 specification.

Warning: Synchronous fixed factor of 3 and 3/2 downsample and oversample func-
tions for voice applications optimised for the XS3 Vector Processing Unit currently
overflow rather than saturate in cases where a full scale input causes a perturbation
above full scale at the output. To avoid this scenario, ensure that the input amplitude
is always 3.5 dB below full scale.

5.1 Fixed factor of 3 VPU implementation

The filters use less than half of the cycles of the previous fixed factor of 3 functions but at
the same time offer a much improved filter response thanks to an increased filter length
of 96 taps (compared with 72 taps) and use of a Kaiser window with a beta of 4.0. The
filter specification is shown in Table 6.

Table 6: Fixed Factor of 3 Voice VPU SRC characteristics

Filter CPU cy-
cles

Pass-
band

Stop-
band

Ripple Attenua-
tion

Taps

src_ff3_96t_ds 104 0.475 0.525 0.01
dB

70 dB min 96

src_ff3_96t_us 85 0.475 0.525 0.01
dB

70 dB min 96

The fixed factor of 3 components produce three samples for each call passing one sam-
ple in the case of upsampling and produce a single sample for each call passing three
samples in the case of downsampling. All input and output samples are signed 32 bit
integers. The filter characteristics are shown in Fig. 7 and Fig. 8.

5.2 Voice quality DS3 VPU API

static inline void src_ff3_96t_ds(int32_t samp_in[3], int32_t samp_out[1], const
int32_t coefs_ff3[3][32], int32_t state_ds[3][32])

Performs VPU-optimised 96 taps polyphase fixed-factor-of-3 downsampling.
Parameters

· samp_in – Values to be downsampled
· samp_out – Downsampled output
· coefs_ff3 – Three-phase FIR coefficients array with [3][32] di-

mensions
· state_ds – Three-phase FIR state array with [3][32] dimensions

5.3 Voice quality US3 VPU API

static inline void src_ff3_96t_us(int32_t samp_in[1], int32_t samp_out[3], const
int32_t coefs_ff3[3][32], int32_t state_us[32])

Performs VPU-optimised 96 taps polyphase fixed-factor-of-3 upsampling.

21

lib_src: Sample rate conversion

Fig. 7: Fixed Factor of 3 Voice VPU SRC filter response

Fig. 8: Fixed Factor of 3 Voice VPU SRC passband ripple

22

lib_src: Sample rate conversion

Note: samp_in and samp_out have to be different memory locations

Parameters

· samp_in – Value to be upsampled
· samp_out – Upsampled output
· coefs_ff3 – Three-phase FIR coefficients array with [3][32] di-

mensions
· state_us – FIR state array with 32 elements in it

5.4 Fixed factor of 3/2 VPU implementation

The fixed factor of 3/2 VPU sample rate converts use a rational factor polyphase ar-
chitecture to achieve the non-integer rate ratio. Downsampling takes two phases while
upsampling takes three. The filters have been designed with a Kaiser windowwith a beta
of 3.2. The filter specification is shown in Table 7.

Table 7: Fixed Factor of 3/2 Voice VPU SRC characteristics

Filter CPU cy-
cles

Pass-
band

Stop-
band

Ripple Attenua-
tion

Taps

src_rat_2_3_96t_ds 112 0.46875 0.53125 0.03
dB

70 dB 96

src_rat_3_2_96t_us 95 0.46875 0.53125 0.03
dB

70 dB 96

The fixed factor of 3/2 components produce three samples for each call passing two
samples in the case of upsampling and produce two samples for each call passing three
samples in the case of downsampling. All input and output samples are signed 32 bit
integers. The filter characteristics are shown in Fig. 9 and Fig. 10.

5.5 Voice quality DS3/2 API

static inline void src_rat_2_3_96t_ds(int32_t samp_in[3], int32_t samp_out[2],
const int32_t coefs_ds[2][48], int32_t
state_ds[48])

Performs VPU-optimised 96 taps polyphase rational factor 2/3 downsampling.

Parameters

· samp_in – Values to be downsampled
· samp_out – Downsampled output
· coefs_ds–Two-phase FIR coefficients array with [2][48] dimen-

sions
· state_ds – FIR state array with 48 elements in it

5.6 Voice quality US3/2 API

static inline void src_rat_3_2_96t_us(int32_t samp_in[2], int32_t samp_out[3],
const int32_t coefs_us[3][32], int32_t
state_us[32])

Performs VPU-optimised 96 taps polyphase rational factor 3/2 upsampling.

23

lib_src: Sample rate conversion

Fig. 9: Fixed Factor of 3/2 Voice VPU SRC filter response

Fig. 10: Fixed Factor of 3/2 Voice VPU SRC passband ripple

24

lib_src: Sample rate conversion

Note: samp_in and samp_out have to be different memory locations

Parameters

· samp_in – Values to be upsampled
· samp_out – Upsampled output
· coefs_us – Three-phase FIR coefficients array with [3][32] di-

mensions
· state_us – FIR state array with 32 elements in it

25

lib_src: Sample rate conversion

6 Asynchronous FIFO

An Asynchronous FIFO is a non-blocking data structure in which elements gets pushed
in on one side and pulled out on the other side. It is primarily designed to be used with
the ASRC to help build practical systems. The keys to this component are:

1. The non-blocking nature of the interfaces on both sides.

2. An underlying assumption that software on both sides rate-matches their requests.

The asynchronous FIFO has a PID control inside it that can be used to control the rate of
either the producer or the consumer.

Two typical use cases are shown in Use cases for the asynchronous FIFO. In the first use
case there is an Asynchronous Sample Rate Converter (ASRC) in front of the FIFO. The
task of this ASRC is to dynamically introduce or remove samples in order to match the
rate of producer and consumer. In the second use case there is a PLL (either hardware
or software) that is used to match the rate of the producer and consumer.

Thread 1
i2s.recv()
ASRC(ratio)
err = async_produce()
ratio = adjust(ratio, err)

Thread 2
async_consume()
i2s.send()Async

FIFO

Thread 1
spdif.recv()
err = async_produce()
ratio = adjust(ratio, err)
adjust_PLL(ratio)

Thread 2
async_consume()
i2s.send()Async

FIFO

Use case with ASRC

Use case with (software) PLL

Fig. 11: Use cases for the asynchronous FIFO

In order to use the asynchronous FIFO one needs at least two threads that are located
on the same tile. A producer thread (on the left), and a consumer thread (on the right).
These threads are free-running relative to each other, and the FIFO transports data from
the producer to the consumer. Free-running means that the threads can simultaneously
access the FIFO without being able to observe a change in timing.

The FIFOhas a fixed length, set on creation, and the control algorithm inside the FIFO tries
and keep the FIFO half-full at all times. When the producer is slower than the consumer
the FIFO will drain a bit until the rates match again, and when the producer is faster than
the consumer the FIFO will grow until the rates match again. In order to ensure that the
FIFO stays half full, the control algorithm will always slightly overshoot on a change in
relative rates. Note that the FIFO is unaware whether it is the producer that is too fast,
or the consumer that is too slow. It does not attribute blame for a rate-mismatch. The
FIFO just observes the mismatch.

6.1 Using the asynchronous FIFO

An Asynchronous FIFO is allocated as an array of double-word integers:

26

lib_src: Sample rate conversion

int64_t array[ASYNCHRONOUS_FIFO_INT64_ELEMENTS(ENTRIES, SAMPLE_SIZE)];

The ASYNCHRONOUS_FIFO_INT64_ELEMENTS() macro calculates the number
of double words required for the FIFO given the number of entries in the
FIFO, and the number of words that each sample occupies. For example,
when transferring stereo Audio through a fifo with 40 elements one would use
ASYNCHRONOUS_FIFO_INT64_ELEMENTS(40, 2). Note that the two elements are
not interchangeable. The number 40 is the total number of elements in the FIFO, in this
case the FIFO will be started half-full, so the first 20 elements read will be zeroes, after
which the produced data will appear on the consumer side.

The number of elements in the FIFO is a trade-off that the system designer makes. As
the FIFO will always aim to be half-full, a large number of elements will introduce a high
latency in the system and occupy a large amount ofmemory. A short FIFOwill contribute
little latency but may easily overflow and underflow. More on this in Design parameters.

The Asynchronous FIFO has the following functions to control the FIFO:

· asynchronous_fifo_init() initialises the FIFO structure. It needs to know the
number of integers that comprise a single sample, themaximum length that has been
allocated for the FIFO.

· asynchronous_fifo_exit() uninitialises the FIFO structure.

· asynchronous_fifo_producer_put() puts N samples into the FIFO. It needs a
timestamp that is related to when sample N-1 was obtained.

· asynchronous_fifo_consumer_get() gets one sample from the FIFO. It must
be given a timestamp related to when this (or the previous) sample is (was) output. It
returns 0 if the pulled samples are valid.

All timestamps are measured in 100 MHz ticks.

The asynchronous_fifo_producer_put() function returns the current rate-error
observed between the producer and consumer. The rate-error is typically a number close
to one, eg, 1.00001231 or 0.99995442, and for convenience the function returns epsilon,
where epsilon = rate - 1. That is, it would return the values 0.00001231 or -
0.00004558. This epsilon is represented in a signed fixed point value Q32.32. Hence,
given an ideal rate the estimated rate is calculated as:
est_rate = ideal_rate + ((epsilon * (int64_t) ideal_rate) >> 32)

in 32-bit precision or for 64-bit precision:
est_rate = (((int64_t)ideal_rate) << 32) + epsilon * (int64_t) ideal_rate

Where ideal_rate is the expected value that would make producer and
consumer match if they had no error and epsilon is the value returned by
asynchronous_fifo_producer_put(). The number used for ideal_rate
may be a PLL setting, or an ASRC ratio value. Note that the above maths can be
executed in a single multiply-accumulate instruction on XCORE.

It is important to note that the ideal_rate is never changed; the estimated rate is a
linear function combining the error and the ideal rate. Internally the Asynchronous FIFO
accumulates the errors so that the epsilon returned will eventually stabilise.

The ASRC Task section provides an example of the integration of the FIFO with an ASRC.

27

lib_src: Sample rate conversion

6.2 Design parameters

There are three degrees of freedom in this system:

· The length of the FIFO

· The time constant of the loop filter

· The jitter characteristics of the two clocks that can be sustained.

If a long FIFO length is chosen, operationwill be guaranteed but a large delay (i.e. latency)
between input-signal and output-signal is introduced. If a short time constant for the
loop-filter is chosen, the adjustments of the ASRC will be audible as harmonic distortion.
If only small changes between the clocks is permitted, then a long time constant on the
loop filter can be used with along with a short FIFO.

The value of a third parameter must match the choice of the first two; given the jitter
characteristics and the time-constant the FIFO length follows. Alternatively, given the
jitter characteristics and the FIFO length the maximum time constant for the loop-filter
follows.

6.2.1 Practical FIFO sizing for ASRC usage

Typically for most ASRC connected systems, the hardest case for the control loop is to
stabilise at startup when the peak PPM difference is first seen. This results in a FIFO
depth excursion from the half full state until the control loop has zeroed the error and
the FIFO level has settled back to half full. It is not typical to see a large change in PPM
difference during operation of practical systems; only small drifts due to voltage and
temperature changes but a system always has a startup condition which needs to be
accommodated.

The FIFO sizemust be at least twice the peak expected perturbation to account for either
a positive or negative PPM difference. Should the FIFO underflow or overflow due to
insufficient depth it will reset and wait to be filled to half and attempt to close the loop
again.

A typical FIFO depth plot at startup for a 500 PPM deviation is shown in Fig. 12. Note that
the plot appears to be thick line because the ASRC produces on average four samples at
a timewhereas the FIFO is emptied one sample at a time. This “lumpiness” in the FIFO fill
level means the real-time FIFO depth plot looks like a sawtooth waveform when zoomed
in.

The size of the FIFO required depends on:

· The nominal output rate of the ASRC. This defines how quickly the FIFO fills. Higher
rates require a larger FIFO.

· The PPM deviation from normal. This defines the maximum deviation of the nominal
sample rates and the peak perturbation from half full. The PPM range of the input
and output clocks must be added together. For example if a source can vary by up
to +500 PPM and the sink can vary by -500 PPM then the system must account for a
1000 PPM worst-case clock rate difference.

· The input block size multiplied by the maximum upsample ratio. This defines the
“lumpiness” of the real-time FIFO level and needs to be taken account of to fully buffer
the block being written. This needs to be supported in both positive and negative PPM
cases.

28

lib_src: Sample rate conversion

Fig. 12: Peak FIFO excursion at startup for a 500 PPM deviation at 48 kHz output rate.

Using the default constants for the loop filter (settings are conservative resulting in con-
vergence time of around four seconds for a large step change in rate) and using the
default (and minimum) input block size of four the FIFO should be sized to at least:
FIFO_LEN = (OUTPUT_RATE * PPM / 16000000) + (2 * SRC_N_IN_SAMPLES x SRC_N_OUT_IN_RATIO_MAX)

A sensible choice is to round up FIFO_LEN to the nearest multiple of 2 to ensure it is
symmetrical.

A few examples follow for an ASRC input block size of four. Note that the additional
latency/group delay added to the system will nominally be half of FIFO depth divided by
the output rate:

Table 8: Example minimum FIFO length setting

Input Sample
Rate

Output Sample
Rate

Peak PPM differ-
ence

Minimum FIFO
length

48000 48000 250 16
48000 48000 500 24
48000 48000 1000 38
48000 48000 2000 68
48000 96000 500 46
48000 192000 500 96
192000 48000 500 20

Note: The above settings are for the case when the timestamps are accurately mea-
sured. A time stamp relative offset between input and output values may require longer
FIFO lengths since this may result in a FIFO nominal fill level away from half full.

29

lib_src: Sample rate conversion

Note: Larger input block sizes will require longer FIFO lengths. Scaling the above num-
ber by around 1.5 for a block size of eight and 3.0 for a block size of 16 will help reduce
the chance of a FIFO overflow or underflow during a frequency step change.

It is recommended to test a system to themaximumPPM tolerance across all supported
sample rates to verify the chosen FIFO setting, especially if the goal is to minimise the
latency by reducing the FIFO size, otherwise a conservative FIFO size setting may be
applied at the cost of additional latency.

6.3 Controller settings

The asynchronous FIFO includes a Proportional–integral–derivative (PID) based con-
troller.

The PID constants can be set in two ways:

· When used with an ASRC they can be set based on input and output sample rates to
a value that stabilises a 375 ppm change in approximately four seconds at 48,000 Hz.

· When used in other situations one can provide ones own Kp and Ki values. Both are
represented as 32-bit integers, and a typical value for Ki is 422 (at 48 KHz, smaller for
higher frequencies), and a typical value for Kp is 28,000,000 (for X kHz to X KHz; higher
when the input frequency goes up, smaller when the output frequency goes up).

6.4 API

enum asynchronous_fifo_get_return_t_

Return code for asynchronous_fifo_consumer_get()
Values:

enumerator ASYNCH_FIFO_OK

enumerator ASYNCH_FIFO_UNDERFLOW

enumerator ASYNCH_FIFO_IN_RESET

typedef struct asynchronous_fifo_t_ asynchronous_fifo_t
Data structure that holds the status of an asynchronous FIFO

typedef enum asynchronous_fifo_get_return_t_
asynchronous_fifo_get_return_t

Return code for asynchronous_fifo_consumer_get()

void asynchronous_fifo_init(asynchronous_fifo_t *state, int channel_count, int
max_fifo_depth)

Function that must be called to initialise the asynchronous FIFO. The state ar-
gument should be an int64_t array of ASYNCHRONOUS_FIFO_INT64_ELEMENTS
elements that is cast to asynchronous_fifo_t*.
That pointer should also be used for all other operations, including operations both
the consumer and producer sides.

30

lib_src: Sample rate conversion

After initialising, you must initialise the PID by calling one of asyn-
chronous_fifo_init_PID_fs_codes() or asynchronous_fifo_init_PID_raw()

Parameters

· state – Asynchronous FIFO to be initialised
· channel_count – Number of audio channels
· max_fifo_depth – Length of the FIFO, delay when stable will

be max_fifo_depth/2

void asynchronous_fifo_init_PID_fs_codes(asynchronous_fifo_t *state, int
fs_input, int fs_output)

Function that that initialises the PID of a FIFO. Either this function or asyn-
chronous_fifo_init_PID_raw() should be called. This function uses frequency codes
as defined in the ASRC for a quick default setup, the raw function allows full control

Parameters

· state – Asynchronous FIFO to be initialised
· fs_input – Input FS ratio, used to pick appropriate Kp, and Ki.

Must be a number less than 6.
· fs_output– Input FS ratio, used to pick appropriate Kp, Ki, ideal

phase. Must be a number less than 6.

void asynchronous_fifo_init_PID_raw(asynchronous_fifo_t *state, int Kp, int Ki,
int ticks_between_samples)

Function that that initialises the PID of a FIFO. Either this function or asyn-
chronous_fifo_init_PID_raw() should be called. This function uses frequency codes
as defined in the ASRC for a quick default setup, the raw function allows full control.
This function may be called at any time by the producer in order to alter
the PID and midpoint settings. It does not reset the error; one of the asyn-
chronous_fifo_init_reset_producer() or asynchronous_fifo_init_reset_consumer()
functions should be called for that.

Parameters

· state – Asynchronous FIFO to be initialised
· Kp – Proportional constant for the FIFO. This gets multiplied by

the differential error measured in ticks (typically -2..2) and added
to the ratio_error. A typical value is 30,000,000 - 60,000,000.

· Ki – Integral constant for the FIFO. This gets multiplied by the
phase error measured in ticks (typically -20,000 - 20,000) and
added to the ratio_error. A typical value is 200 - 300.

· ticks_between_samples – The number of ticks between
samples is used to estimate the expected phase error halfway
down the FIFO.

void asynchronous_fifo_reset_producer(asynchronous_fifo_t *state)
Function that that resets the FIFO from the producer side. Ei-
ther this function should be called on the producing side, or
asynchronous_fifo_reset_consumer should be called on the consumer
side. In both cases the whole FIFO will be reset back

Parameters

· state – Asynchronous FIFO to be initialised

31

lib_src: Sample rate conversion

void asynchronous_fifo_reset_consumer(asynchronous_fifo_t *state)
Function that that resets the FIFO from the consumer side. Either this function
should be called on the consuming side, or asynchronous_fifo_reset_producer()
should be called on the producer side. In both cases the whole FIFO will be reset
back

Parameters

· state – Asynchronous FIFO to be initialised

void asynchronous_fifo_exit(asynchronous_fifo_t *state)
Function that must be called to deinitalise the asynchronous FIFO

Parameters

· state – ASRC structure to be de-initialised

int32_t asynchronous_fifo_producer_put(asynchronous_fifo_t *state, int32_t
*samples, int n, int32_t timestamp)

Function that provides the next samples to the asynchronous FIFO.
This function and asynchronous_fifo_consumer_get() function both need a times-
tamp, which is the time that the last sample was input (this function) or output
(asynchronous_fifo_consumer_get()). The asynchronous FIFO will hand the sam-
ples across from producer to consumer through an elastic queue, and run a PID
algorithm to calculate the best way to equalise the input clock relative to the output
clock. Therefore, the timestamps have to be measured on either the same clock
or two very similar clocks. It is probably fine to use the reference clocks on two
tiles, provided the tiles came out of reset at more or less the same time. Using the
clocks from two different chips would require the two chips to share an oscillator,
and for them to come out of reset simultaneously.

The output is filtered and should be applied directly as a correction factor eg, mul-
tiplied into an ASRC ratio, or multiplied into a PLL timing.

Parameters

· state – ASRC structure to push the sample into
· samples – The sample values.
· n – The number of samples
· timestamp – The number of ticks when this sample was input.

Returns
The current estimate of the mismatch of input and output frequen-
cies. This is represented as a 32-bit signed number. Zero means
no mismatch, a value less than zero means that the producer is
faster than the consumer, a value greater than zero means that
the producer is slower than the consumer. The value should be
scaled by 2**-32. That is, the current best approximation for con-
sumer_speed/producer_speed is 1 + (return_value * 2**-32)

asynchronous_fifo_get_return_t asynchronous_fifo_consumer_get(asynchronous_fifo_t
*state,
int32_t
*samples,
int32_t
timestamp)

Function that gets an output sample from the asynchronous FIFO

32

lib_src: Sample rate conversion

Function that implements the consumer interface. Control communication hap-
pens through two variables: reset and sample_data_valid. These shall only be set
as the last action, as they signify to the production side that the datastructure can
now be read on that side.
Note that the samples are filled in regardless of whether the FIFO is operating or
not; the consumer will repeatedly get the same sample if the producer fails. The
producer side is reset exactly once on reset. If this is a problem then please use
the return flag (0 = OK) to handle.

Parameters

· state – ASRC structure to read a sample out off.
· samples – The array where the frame with output samples will

be stored.
· timestamp–A timestamp taken at the time that the last sample

was output. See asynchronous_fifo_produce for require-
ments.

Returns
The FIFO status and whether the samples are valid or not

ASYNCHRONOUS_FIFO_INT64_ELEMENTS(N, C)
macro that calculates the number of int64_t to be allocated for the fifo for a FIFO
of N elements and C channels

struct asynchronous_fifo_t_
#include <asynchronous_fifo.h> Data structure that holds the status of an asyn-
chronous FIFO

int asrc_timestamp_interpolation(int timestamp, asrc_ctrl_t *asrc_ctrl, int
ideal_freq)

Function that interpolates a timestamp for a sample generated by the ASRC. Given
a measured timestamp for the sample going into the ASRC, the asrc control struc-
ture, and the expected output frequency, this function returns a timestamp for
when the last sample was produced by the ASRC.

Parameters

· timestamp – Value of the reference clock taken when the last
sample fed into the ASRC was sampled.

· asrc_ctrl – ASRC control block
· ideal_freq – Expected base frequency to which the ASRC is

operating; eg, 48000 or 44100

6.5 Implementation detail

This section details the inner workings of the FIFO and is intended only for advanced
users who wish to understand the operation in more detail.

6.5.1 Measurements for the PID

The asynchronous FIFO uses the phase difference as the input for a PID controller. The
phase difference is shown in Measurement of the phase difference. It is defined as the
time difference between a sample when it entered the queue and left the queue. Un-
like traditional phase differences that are measured in radians and where the maximum
phase difference is +/- pi , the phase difference is measured as a time difference, and
thereby allow the phase to be off by more than half a sample.

33

lib_src: Sample rate conversion

Phase error

Producer LRclk

Consumer LRclk

Queue Len
48

49

Fig. 13: Measurement of the phase difference

In a stable situation, it is desirable that the FIFO is half-full, it follows that the desired
phase difference is half the maximum length of the FIFO multiplied by the sample rate.
For example, for a FIFO of 10 elements the ideal fill level is 5, and at 48 kHz the ideal phase
error is 5 x 2.0833 us = 10.4166 us. If the output is running slightly too fast then sample
X will enter the FIFO just after X-N/2 leaves the FIFO; if the output is running slightly too
slow than sample X will enter the FIFO just before X-N/2 leaves the FIFO.

The phase-error is defined as the difference between the ideal phase-difference and the
measured phase difference. Say that the queue has filled up badly and stores 9 items,
then the phase difference will account for the 4 extra items in the FIFO, causing a phase
difference 18.75 us rather than the desired 10.4166 us, producing a phase error of be-
tween 8.33 us. The phase difference is notionally a continuous value (a time stamp)
in practice it is measured with the reference clock which has a 10 ns granularity. How-
ever, that is of far higher granularity than whole samples (2083 times better at a 48 KHz
sample rate)

It is worth noting that the phase difference itself is an integral value; it is the number of
samples since the beginning of time that the ASRC is out by. The goal of the rate con-
verter is to make the phase difference stable (ie, it does not move between subsequent
samples), and zero (ie, the FIFO is exactly mid level). Hence, the differential of the phase
error can be seen as a proportional error, and the phase error itself as an integral error.

6.5.2 Implementation of asynchronicity

The FIFO straddles two threads; this is essential as the two threads operate on differ-
ent rates. Hence, the FIFO is a shared-memory element between those two threads. A
read-pointer (managed by the consuming thread) and a write-pointer (managed by the
producing thread) are maintained independently. The read-pointer and write-pointer are
normally N/2 elements apart.

During normal operation the Incoming and outgoing traffic are rate-matched, and the
read-pointer and write-pointer will be on opposite ends of the circular buffer.

There are three situations where operation may be abnormal:

· Where the consumer is no longer consuming samples

· Where the producer is no longer producing samples

· Where a larger than expected change in the sample rates has caused the loop filter to
require more than N/2 spaces away from the mid-point.

Detecting these cases requires the calculation of the modulo difference between the
write-pointer and read-pointer; if that difference is close to zero the FIFO is about to un-
derflow; if it is close to N the FIFO is about to overflow. The notion “close to” is used
since the read- and write-pointer are updated independently by different threads, so the

34

lib_src: Sample rate conversion

pointer may be one less than anticipated, and an update may be missed (i.e. a race con-
dition). Underflow is detected by the thread on the output side, overflow is detected by
the thread on the input side. Differentiating overflow/underflow from too large a change
in the sample rate may be hard and not necessary if they are all treated in the same way.

The employedmethod is to use two flags; RESET andDO_NOT_PRODUCE that are owned
by the consumer and producer sides respectively.

· The RESET flag is set by the consumer if it spots an underflow condition. Once RESET
is set, the consumer will no longer advance the FIFO, return the same sample on each
call, andwait for RESET to clear. Only the consumermay set RESET, only the producer
may clear RESET.

· The DO_NOT_PRODUCE flag is set by the producer if it spots on overflow condition.
Once set, the producer will no longer advance the FIFO, and wait for the consumer
to set the RESET flag once it has come to an underflow (which must happen as the
producer has stopped producing), at which point a third action is met.

· If the producer spots RESET being high, it resets the FIFO state except for the read-
pointer; it leaves that as it is maintained by the consumer. Instead, it sets the write
pointer to be at the other side of the buffer. Once the state is reset it will clear
DO_NOT_PRODUCE and finally RESET, whereupon all should start running again.

6.5.3 Communication and reset protocol summary

In the thread on the producer side a put() operation performs the following:

· If the RESET flag is set:
1. Set the write-pointer to half-way from the read-pointer
2. Set fs_ratio to 1
3. Clear the phase error and reset all other PID state.
4. Clear the DO_NOT_PRODUCE flag
5. Clear the RESET flag (this is the last step, unlocking the consumer when it is safe

to do so)

· else if there is no room left in the FIFO to store all samples:
1. Set the DO_NOT_PRODUCE flag

· else if the DO_NOT_PRODUCE flag is not set:
1. Copy N frames into the FIFO
2. Increase the write-pointer
3. Obtain a timestamp that was queued by the consumer
4. Calculate the phase-error and the difference with the previous phase error
5. Update the PID using the difference as the proportional error and the phase-error

as the integral error.

In the thread on the consumer side a get() operation performs the following:

· Copy the sample at the read-pointer into the buffer provided by the consumer

· If the RESET flag is clear and there is at least one sample in the FIFO:
1. Record the timestamp in the time-stamp queue
2. Increase the read-pointer.

35

lib_src: Sample rate conversion

· else if the RESET flag is clear:
1. Set the RESET flag.

36

lib_src: Sample rate conversion

7 ASRC Task

The ASRC library provides a function call that operates on blocks of samples whereas
typical XMOS audio IO libraries provide streaming audio one sample at a time. The ASRC
task wraps up the core ASRC function with all of the other lower level APIs (eg. FIFO) and
required sample change and initialisation logic. It provides a simple-to-use and generic
ASRC conversion block suitable for integration into practical designs. It is fully re-entrant
permittingmultiple instances within a project supportingmultiple (or bi-directional) sam-
ple rates and audio clock domain bridges.

7.1 Operation

The ASRC task handles bridging between two asynchronous audio sources. It has an
input side and output side. The input samples are provided over a channel allowing the
source to be placed on a different xcore tile if needed. The output side sample interface
is via an asynchronous FIFO meaning the consumer must reside on the same xcore tile
as the ASRC. The ASRC task uses a minimum of one thread but may be configured to
use many depending on processing requirements.

Both input and output interfaces must specify the nominal sample rate required and ad-
ditionally the input must specify a channel count. The output channel count will be set
to the same as the input channel count automatically once the ASRC has automatically
configured itself. A timestamp indicating the time of the production of the last input
sample and the consumption of the first output sample must also be supplied which
allows the ASRC FIFO to calculate the rate and phase difference. Each time either the
input or output nominal sample rate or the channel count changes the ASRC subsystem
automatically re-configures itself and restarts with the new settings.

The ASRC Task supports the following nominal sample rates for input and output:

· 44.1 kHz

· 48 kHz

· 88.2 kHz

· 96 kHz

· 176.4 kHz

· 192 kHz

37

lib_src: Sample rate conversion

Because the required compute for multi-channel systems may exceed the performance
limit of a single thread, the ASRC subsystem is able to make use of multiple threads
in parallel to achieve the required conversion within the sample time period. It uses a
dynamic fork and join architecture to share the ASRC workload across multiple threads
each time a batch of samples is processed. The threads must all reside on the same
tile as the ASRC task due to them sharing input and output buffers. The workload and
buffer partitioning is dynamically computed by the ASRC task at stream startup and is
constrained by the user at compile time to set maximum limits of both channel count
and worker threads.

The number of threads that are required depends on the required channel count and
sample rates required. Higher sample rates require more MIPS. The amount of thread
MHz (and consequently howmany threads) required can be roughly calculated using the
following formulae:

· Total thread MHz required for xcore.ai systems = 0.15 * Max channel count * (Max SR
input kHz + Max SR output kHz)

· Total thread MHz required for xcore-200 systems = 0.3 * Max channel count * (Max
SR input kHz + Max SR output kHz)

The difference between the performance requirement between the two architectures is
due to xcore.ai supporting a Vector Processing Unit (VPU) which allows acceleration of
the internal filters used by the ASRC. For example:

· A two channel system supporting up to 192kHz input and output will require about
(0.15 * (192 + 192) * 2) ~= 115 thread MHz. This means a single thread (assuming no
more than 5 active threads on an xcore.ai device with a 600MHz clock) will likely be
capable of handling this stream.

· An eight channel system consisting of either 44.1kHz or 48kHz input with maximum
output rate of 192kHz will require about (0.15 * (48 + 192) * 8) ~= 288 thread MHz.
This can adequately be provided by four threads (assuming up to 8 active threads on
an xcore.ai device with a 600MHz clock).

38

lib_src: Sample rate conversion

In reality the amount of thread MHz needed will be lower than the above formulae sug-
gest since subsequent ASRC channels after the first can share some of the calculations.
This results in about at 10% performance requirement reduction per additional channel
per worker thread. Increasing the input frame size in the ASRC task may also reduce the
MHz requirement a few % at the cost of larger buffers and a slight latency increase.

Warning: Exceeding the processing time available by specifying a channel count,
input/output rates, number of worker threads or device clock speed may result in at
best choppy audio or a blocked ASRC task if the overrun is persistent.

It is strongly recommended that the system is tested for the desired channel count and
input and output sample rates. An optional timing calculation and check is provided in
the ASRC to allow characterisation at run-time which can be found in the asrc_task.c
source code.

The low level ASRC processing function call API accepts a minimum input frame size of
four whereas most XMOS audio interfaces provide a single sample period frame. The
ASRC subsystem integrates a serial to block back to serial conversion to support this.
The input side works by stealing cycles from the ASRC using an interrupt and notifies the
main ASRC loop using a single channel end when a complete frame of double buffered is
available to process. The ASRC output side is handled by the asynchronous FIFO which
supports a block put with single sample get and thus provides de-serialisation intrinsi-
cally.

7.2 Latency characterisation

The latency shown by ASRC Task depends on many factors:

· Input sample rate (dynamically variable)

· Output sample rate (dynamically variable)

· ASRC filter stages latency (fixed based on input and output sample rates)

· FIFO sizing (statically or dynamically variable by user)

· ASRC sample processing block size (default of 4 which is the minimum for the ASRC
and recommended for most applications)

The input and output sample rate are defined by the application and are not negotiable.
The ASRC filters have fixed group delay according to the input and output rates. The
underlying filter delay can be found in ASRC latency characterisation section and typically
dominates the total delay.

The ASRC sample block processing size is nominally 4 but can be increased to 8, 16 or
32 to slightly reduce the MIPS required to run the processing but will incur extra delay.
The case for the block size of 4 is already accounted for in the ASRC filter stage figures.

FIFO sizing is the major variable which the user has control over. The FIFO size is con-
figurable and is a trade-off between PPM lock range required, output sample rate and
desired latency. It is also partly governed by the maximum upsample ratio since, when
upsampling, multiple samples are produced for a single input sample and hence the FIFO
needs to be larger to accommodate a whole block.

See the Practical FIFO sizing section for more details.

The total delay can be calculated as follows:

39

lib_src: Sample rate conversion

GROUP_DELAY = ((INPUT_BLOCK_SIZE - 4) / INPUT_SAMPLE_RATE) + ASRC_FILTER_DELAY + (OUTPUT_FIFO_LENGTH / OUTPUT_
↪→SAMPLE_RATE / 2)

7.3 API & usage

The ASRC Task consists of a task to which various data structuresmust be declared and
passed:

· A pointer to instance of the asrc_in_out_t structure which contains buffers, stream
information and ASRC task state.

· A pointer to the FIFO used at the output side of the ASRC task.

· The length of the FIFO passed in above.

In addition the following two functionsmay be declared in a user C file (note that XC does
not handle function pointers):

· The callback function from ASRC task which receives samples over a channel from
the producer.

· A callback initialisation function which registers the callback function into the
asrc_in_out_t struct

If these are not defined, then a default receive implementation will be used which is
matched with the send_asrc_input_samples_default() function on the user’s
producer side. This should be sufficient for typical usage.

Note: ASRC task must have asrc_task_config.h defined in the user application
which sets various static settings for the ASRC. SeeASRC task API for details or reference
AN02003: SPDIF/ADAT/I2S Receive to I2S Slave Bridge with ASRC as an example.

An example of calling the ASRC task form and XCmain function is provided below. Note
use of unsafe permitting the compiler to allow sharedmemory structures to be accessed
by more than one thread:
chan c_producer;

// FIFO and ASRC I/O declaration. Unsafe to allow producer and consumer to access it from XC
#define FIFO_LENGTH 40 // Example only. Depends on rates and PPM - see docs
int64_t array[ASYNCHRONOUS_FIFO_INT64_ELEMENTS(FIFO_LENGTH, MAX_ASRC_CHANNELS_TOTAL)];

unsafe{
// IO struct for ASRC must be passed to both asrc_proc and consumer
asrc_in_out_t asrc_io = {{{0}}};
asrc_in_out_t * unsafe asrc_io_ptr = &asrc_io;
asynchronous_fifo_t * unsafe fifo = (asynchronous_fifo_t *)array;
setup_asrc_io_custom_callback(asrc_io_ptr); // Optional user rx function

par
{

producer(c_producer);
asrc_task(c_producer, asrc_io_ptr, fifo, FIFO_LENGTH);
consumer(asrc_io_ptr, fifo);

}
} // unsafe region

An example of the user-defined C function for receiving the input samples is shown be-
low along with the user callback registration function. The receive_asrc_input_samples()
function must be as short as possible because it steals cycles from the ASRC task op-
eration. Because this function is not called until the first channel word is received from
the producer, the chanend_in_word() operations will happen straight away and not block
as long as the producer immediately produces all required samples.

40

https://www.xmos.com/file/an02003

lib_src: Sample rate conversion

// Default implementation of receive (called from ASRC) which receives samples and config over a channel. This�
↪→is overridable.
ASRC_TASK_ISR_CALLBACK_ATTR
unsigned receive_asrc_input_samples_cb_default(chanend_t c_asrc_input, asrc_in_out_t *asrc_io, unsigned *new_
↪→input_rate){

static unsigned asrc_in_counter = 0;

// Get format and timing data from channel
*new_input_rate = chanend_in_word(c_asrc_input);
asrc_io->input_timestamp[asrc_io->input_write_idx] = chanend_in_word(c_asrc_input);
asrc_io->input_channel_count = chanend_in_word(c_asrc_input);

// Pack into array properly LRLRLRLR for 2ch or 123412341234 for 4ch etc.
for(int i = 0; i < asrc_io->input_channel_count; i++){

int idx = i + asrc_io->input_channel_count * asrc_in_counter;
asrc_io->input_samples[asrc_io->input_write_idx][idx] = chanend_in_word(c_asrc_input);

}

if(++asrc_in_counter == SRC_N_IN_SAMPLES){
asrc_in_counter = 0;

}

return asrc_in_counter;
}
// END ASRC_TASK_ISR_CALLBACK_ATTR

Note that the producing side of the above transaction must match the channel protocol.
For this example, the producermust send the following items across the channel in order:

· The nominal input sample rate.

· The input time stamp of the last sample received.

· The input channel count of the current frame.

· The samples from 0..n.

Because a streaming channel is used the back-pressure on the producer side will be very
low because the channel outputs will be buffered and the receive callback will always
respond to the received words.

This callback function helps bridge between sample based systems and the block-based
nature of the underlying ASRC functions without consuming an extra thread.

The API for ASRC task is shown below:

typedef unsigned (*asrc_task_produce_isr_cb_t)(chanend_t c_asrc_input,
asrc_in_out_t *asrc_io, unsigned *new_input_rate)

Type definition of the callback function if a user version is required. May only be
used from “C” (XC does not support function pointers).

void asrc_task(chanend c_asrc_input, asrc_in_out_t *asrc_io, asynchronous_fifo_t
*fifo, unsigned fifo_length)

Main ASRC processor task. Runs forever waiting on new samples from the pro-
ducer. Spawns up to MAX_ASRC_THREADS during ASRC processing.

Parameters

· c_asrc_input–The channel end used to connect the producer
to the ASRC task.

· asrc_io – A pointer to the structure used for holding ASRC IO
and state.

· fifo – A pointer to the FIFO used for outputting samples from
the ASRC task to the consumer.

· fifo_length – The length (depth) of the output FIFO. This is
multiplied by channel count internally.

41

lib_src: Sample rate conversion

int pull_samples(asrc_in_out_t *asrc_io, asynchronous_fifo_t *fifo, int32_t *samples,
uint32_t output_frequency, int32_t consume_timestamp)

Helper function called by consumer to provide ASRC output samples. Samples are
populated in the *samples array and the user must provide the current nominal
output frequency and a timestamp of when the last samples were consumed from
the 100 MHz ref clock

Parameters

· asrc_io – A pointer to the structure used for holding ASRC IO
and state.

· fifo – A pointer to the FIFO used for outputting samples from
the ASRC task to the consumer.

· samples – A pointer to a whole output frame (all channels in a
single sample period) to populate.

· output_frequency – The nominal output frequency. Used for
detecting a sample rate change.

· consume_timestamp – The timestamp of the first consumed
sample.

void reset_asrc_fifo_consumer(asynchronous_fifo_t *fifo)
Helper function called by consumer to reset the FIFO. Resets to half full and clears
the contents to zero.

Parameters

· fifo – A pointer to the FIFO used for outputting samples from
the ASRC task to the consumer.

void init_asrc_io_callback(asrc_in_out_t *asrc_io, asrc_task_produce_isr_cb_t
asrc_rx_fp)

Prototype that can optionally be defined by the user to initialise the func-
tion pointer for the ASRC receive produced samples ISR. If this is not called
then receive_asrc_input_samples_cb_default() is used and the you may call
send_asrc_input_samples_default() from the application to send samples to the
ASRC task.
Must be called before running asrc_task()

Parameters

· asrc_io – A pointer to the structure used for holding ASRC IO
and state.

· asrc_rx_fp – A pointer to the user asrc_receive_samples
function. NOTE - This MUST be decorated by
ASRC_TASK_ISR_CALLBACK_ATTR to allow proper
stack calculation by the compiler. See re-
ceive_asrc_input_samples_cb_default() in asrc_task.c for an
example of how to do this.

void send_asrc_input_samples_default(chanend c_asrc_input, unsigned
input_frequency, int32_t
input_timestamp, unsigned
input_channel_count, int32_t
*input_samples)

If the init_asrc_io_callback() function is not called then a default implementation of
the ASRC receive will be used. This send function (called by the user producer side)
mirrors the receive and can be used to push samples into the ASRC.

42

lib_src: Sample rate conversion

Parameters

· c_asrc_input– The chan end on the application producer side
connecting to the ASRC task.

· input_frequency – The sample rate of the input stream
(44100, 48000, …).

· input_timestamp–The ref clock timestamp of latest received
input sample.

· input_channel_count – The number of input audio channels
(1, 2, 3 …).

· input_samples–A pointer to the input samples array (channel
0, 1, …).

ASRC_TASK_ISR_CALLBACK_ATTR
Decorator for user’s ASRC producer receive callback. Must be used to allow stack
usage calculation.

MAX_ASRC_CHANNELS_TOTAL
Maximumnumber of audio channels in total. Used for buffer sizing and FIFO sizing
(statically defined).

MAX_ASRC_THREADS
Maximum number of threads to be spawned by ASRC task. Used for buffer sizing
and FIFO sizing (statically defined).

SRC_N_IN_SAMPLES
Block size of input to the low level asrc_process function. Must be a power of 2
and minimum value is 4, maximum is 16. Used for buffer sizing and FIFO sizing
(statically defined).

SRC_N_OUT_IN_RATIO_MAX

Max ratio between samples out:in per processing step (44.1->192 is worst case).
Used for buffer sizing and FIFO sizing (statically defined).

SRC_DITHER_SETTING
Enables or disables quantisation of output with dithering to 24b.

struct asrc_in_out_t
#include <asrc_task.h>

8 Performance characterisation

The FFT plots in this section provide a visual guide to the performance of the SSRC,
ASRC, DS3 and OS3 sample rate converters. Test signals were created allowing analysis
of the sample rate converter output across different scenarios.

Two input signals were played through a stereo sample rate converter across a range of
input and output sample rates. For Channel 0, a single pure tone was generated ensur-
ing its frequency was well within the overall nyquist rate. For Channel 1, multiple tones
spaced logarithmically were generated with the spacing most dense at higher frequen-
cies.

43

lib_src: Sample rate conversion

The resulting frequency plot output clearly shows the noise floor relative to the sample
rate converted injected tone(s). The plots are annotated with an estimate of the Signal
to Noise Ratio (SNR) as well as Total Harmonic Distortion (THD).

For the case of the ASRC, in addition to the nominal input frequency of 0 PPM deviation,
the +/-100 PPM frequency deviation cases are also shown.

8.1 Pure Tone FFT SRC plots across sample rate combinations

8.1.1 Frequency error: 0.999900Hz

Output Fs : 16,000Hz

· No SRC available for this scenario.

Output Fs : 32,000Hz

· No SRC available for this scenario.

Output Fs : 44,100Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

44

lib_src: Sample rate conversion

Fig. 14: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 15: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

45

lib_src: Sample rate conversion

Fig. 16: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 17: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

46

lib_src: Sample rate conversion

Fig. 18: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 19: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

47

lib_src: Sample rate conversion

Fig. 20: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 21: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

48

lib_src: Sample rate conversion

Fig. 22: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 23: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

49

lib_src: Sample rate conversion

Fig. 24: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 25: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

50

lib_src: Sample rate conversion

Output Fs : 48,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 26: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

51

lib_src: Sample rate conversion

Fig. 27: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 28: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

52

lib_src: Sample rate conversion

Fig. 29: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 30: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

53

lib_src: Sample rate conversion

Fig. 31: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 32: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

54

lib_src: Sample rate conversion

Fig. 33: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 34: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

55

lib_src: Sample rate conversion

Fig. 35: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 36: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

56

lib_src: Sample rate conversion

Fig. 37: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Output Fs : 88,200Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

57

lib_src: Sample rate conversion

Fig. 38: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 39: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

58

lib_src: Sample rate conversion

Fig. 40: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 41: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

59

lib_src: Sample rate conversion

Fig. 42: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 43: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

60

lib_src: Sample rate conversion

Fig. 44: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 45: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

61

lib_src: Sample rate conversion

Fig. 46: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 47: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

62

lib_src: Sample rate conversion

Fig. 48: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 49: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

63

lib_src: Sample rate conversion

Output Fs : 96,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 50: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

64

lib_src: Sample rate conversion

Fig. 51: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 52: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

65

lib_src: Sample rate conversion

Fig. 53: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 54: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

66

lib_src: Sample rate conversion

Fig. 55: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 56: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

67

lib_src: Sample rate conversion

Fig. 57: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 58: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

68

lib_src: Sample rate conversion

Fig. 59: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 60: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

69

lib_src: Sample rate conversion

Fig. 61: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Output Fs : 176,400Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

70

lib_src: Sample rate conversion

Fig. 62: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 63: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

71

lib_src: Sample rate conversion

Fig. 64: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 65: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

72

lib_src: Sample rate conversion

Fig. 66: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 67: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

73

lib_src: Sample rate conversion

Fig. 68: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 69: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

74

lib_src: Sample rate conversion

Fig. 70: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 71: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

75

lib_src: Sample rate conversion

Fig. 72: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 73: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

76

lib_src: Sample rate conversion

Output Fs : 192,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 74: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

77

lib_src: Sample rate conversion

Fig. 75: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 76: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

78

lib_src: Sample rate conversion

Fig. 77: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 78: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

79

lib_src: Sample rate conversion

Fig. 79: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 80: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

80

lib_src: Sample rate conversion

Fig. 81: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 82: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

81

lib_src: Sample rate conversion

Fig. 83: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

Fig. 84: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

82

lib_src: Sample rate conversion

Fig. 85: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 0.999900, Results for: asrc,
xsim-asrc

8.1.2 Frequency error: 1.000000Hz

Output Fs : 16,000Hz

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

83

lib_src: Sample rate conversion

Fig. 86: Input Fs: 48,000Hz, Output Fs: 16,000Hz, Fs error: 1.000000, Results for: ds3

84

lib_src: Sample rate conversion

Fig. 87: Input Fs: 48,000Hz, Output Fs: 16,000Hz, Fs error: 1.000000, Results for: ds3

85

lib_src: Sample rate conversion

Output Fs : 32,000Hz

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

Fig. 88: Input Fs: 96,000Hz, Output Fs: 32,000Hz, Fs error: 1.000000, Results for: ds3

86

lib_src: Sample rate conversion

Fig. 89: Input Fs: 96,000Hz, Output Fs: 32,000Hz, Fs error: 1.000000, Results for: ds3

Output Fs : 44,100Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

87

lib_src: Sample rate conversion

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 90: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 91: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 92: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

88

lib_src: Sample rate conversion

Fig. 93: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 94: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 95: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

89

lib_src: Sample rate conversion

Fig. 96: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 97: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 98: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

90

lib_src: Sample rate conversion

Fig. 99: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 100: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 101: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

91

lib_src: Sample rate conversion

Output Fs : 48,000Hz

· Input Fs: 16,000Hz, channel 0

· Input Fs: 16,000Hz, channel 1

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

92

lib_src: Sample rate conversion

Fig. 102: Input Fs: 16,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: os3

93

lib_src: Sample rate conversion

Fig. 103: Input Fs: 16,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: os3

Fig. 104: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

94

lib_src: Sample rate conversion

Fig. 105: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 106: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 107: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

95

lib_src: Sample rate conversion

Fig. 108: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 109: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 110: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

96

lib_src: Sample rate conversion

Fig. 111: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 112: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 113: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

97

lib_src: Sample rate conversion

Fig. 114: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 115: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

98

lib_src: Sample rate conversion

Output Fs : 88,200Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 116: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 117: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

99

lib_src: Sample rate conversion

Fig. 118: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 119: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 120: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

100

lib_src: Sample rate conversion

Fig. 121: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 122: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 123: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

101

lib_src: Sample rate conversion

Fig. 124: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 125: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 126: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

102

lib_src: Sample rate conversion

Fig. 127: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Output Fs : 96,000Hz

· Input Fs: 32,000Hz, channel 0

· Input Fs: 32,000Hz, channel 1

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

103

lib_src: Sample rate conversion

Fig. 128: Input Fs: 32,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: os3

104

lib_src: Sample rate conversion

Fig. 129: Input Fs: 32,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: os3

Fig. 130: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

105

lib_src: Sample rate conversion

Fig. 131: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 132: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 133: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

106

lib_src: Sample rate conversion

Fig. 134: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 135: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 136: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

107

lib_src: Sample rate conversion

Fig. 137: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 138: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 139: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

108

lib_src: Sample rate conversion

Fig. 140: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 141: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

109

lib_src: Sample rate conversion

Output Fs : 176,400Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 142: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 143: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

110

lib_src: Sample rate conversion

Fig. 144: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 145: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 146: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

111

lib_src: Sample rate conversion

Fig. 147: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 148: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 149: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

112

lib_src: Sample rate conversion

Fig. 150: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

Fig. 151: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 152: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

113

lib_src: Sample rate conversion

Fig. 153: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

Output Fs : 192,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 154: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

114

lib_src: Sample rate conversion

Fig. 155: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 156: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 157: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

115

lib_src: Sample rate conversion

Fig. 158: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 159: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 160: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

116

lib_src: Sample rate conversion

Fig. 161: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for: asrc,
ssrc, xsim-asrc

Fig. 162: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

Fig. 163: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

117

lib_src: Sample rate conversion

Fig. 164: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

Fig. 165: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 1.000000, Results for:
asrc, ssrc, xsim-asrc

8.1.3 Frequency error: 1.000100Hz

Output Fs : 16,000Hz

· No SRC available for this scenario.

Output Fs : 32,000Hz

· No SRC available for this scenario.

Output Fs : 44,100Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

118

lib_src: Sample rate conversion

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 166: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 167: Input Fs: 44,100Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

119

lib_src: Sample rate conversion

Fig. 168: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 169: Input Fs: 48,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

120

lib_src: Sample rate conversion

Fig. 170: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 171: Input Fs: 88,200Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

121

lib_src: Sample rate conversion

Fig. 172: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 173: Input Fs: 96,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

122

lib_src: Sample rate conversion

Fig. 174: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 175: Input Fs: 176,400Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

123

lib_src: Sample rate conversion

Fig. 176: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 177: Input Fs: 192,000Hz, Output Fs: 44,100Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

124

lib_src: Sample rate conversion

Output Fs : 48,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 178: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

125

lib_src: Sample rate conversion

Fig. 179: Input Fs: 44,100Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 180: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

126

lib_src: Sample rate conversion

Fig. 181: Input Fs: 48,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 182: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

127

lib_src: Sample rate conversion

Fig. 183: Input Fs: 88,200Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 184: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

128

lib_src: Sample rate conversion

Fig. 185: Input Fs: 96,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 186: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

129

lib_src: Sample rate conversion

Fig. 187: Input Fs: 176,400Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 188: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

130

lib_src: Sample rate conversion

Fig. 189: Input Fs: 192,000Hz, Output Fs: 48,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Output Fs : 88,200Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

131

lib_src: Sample rate conversion

Fig. 190: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 191: Input Fs: 44,100Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

132

lib_src: Sample rate conversion

Fig. 192: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 193: Input Fs: 48,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

133

lib_src: Sample rate conversion

Fig. 194: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 195: Input Fs: 88,200Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

134

lib_src: Sample rate conversion

Fig. 196: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 197: Input Fs: 96,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

135

lib_src: Sample rate conversion

Fig. 198: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 199: Input Fs: 176,400Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

136

lib_src: Sample rate conversion

Fig. 200: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 201: Input Fs: 192,000Hz, Output Fs: 88,200Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

137

lib_src: Sample rate conversion

Output Fs : 96,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 202: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

138

lib_src: Sample rate conversion

Fig. 203: Input Fs: 44,100Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 204: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

139

lib_src: Sample rate conversion

Fig. 205: Input Fs: 48,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 206: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

140

lib_src: Sample rate conversion

Fig. 207: Input Fs: 88,200Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 208: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

141

lib_src: Sample rate conversion

Fig. 209: Input Fs: 96,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 210: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

142

lib_src: Sample rate conversion

Fig. 211: Input Fs: 176,400Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 212: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

143

lib_src: Sample rate conversion

Fig. 213: Input Fs: 192,000Hz, Output Fs: 96,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Output Fs : 176,400Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

144

lib_src: Sample rate conversion

Fig. 214: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 215: Input Fs: 44,100Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

145

lib_src: Sample rate conversion

Fig. 216: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 217: Input Fs: 48,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

146

lib_src: Sample rate conversion

Fig. 218: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 219: Input Fs: 88,200Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

147

lib_src: Sample rate conversion

Fig. 220: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 221: Input Fs: 96,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

148

lib_src: Sample rate conversion

Fig. 222: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

Fig. 223: Input Fs: 176,400Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

149

lib_src: Sample rate conversion

Fig. 224: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

Fig. 225: Input Fs: 192,000Hz, Output Fs: 176,400Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

150

lib_src: Sample rate conversion

Output Fs : 192,000Hz

· Input Fs: 44,100Hz, channel 0

· Input Fs: 44,100Hz, channel 1

· Input Fs: 48,000Hz, channel 0

· Input Fs: 48,000Hz, channel 1

· Input Fs: 88,200Hz, channel 0

· Input Fs: 88,200Hz, channel 1

· Input Fs: 96,000Hz, channel 0

· Input Fs: 96,000Hz, channel 1

· Input Fs: 176,400Hz, channel 0

· Input Fs: 176,400Hz, channel 1

· Input Fs: 192,000Hz, channel 0

· Input Fs: 192,000Hz, channel 1

Fig. 226: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

151

lib_src: Sample rate conversion

Fig. 227: Input Fs: 44,100Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 228: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

152

lib_src: Sample rate conversion

Fig. 229: Input Fs: 48,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 230: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

153

lib_src: Sample rate conversion

Fig. 231: Input Fs: 88,200Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 232: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

154

lib_src: Sample rate conversion

Fig. 233: Input Fs: 96,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for: asrc,
xsim-asrc

Fig. 234: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

155

lib_src: Sample rate conversion

Fig. 235: Input Fs: 176,400Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

Fig. 236: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

156

lib_src: Sample rate conversion

Fig. 237: Input Fs: 192,000Hz, Output Fs: 192,000Hz, Fs error: 1.000100, Results for:
asrc, xsim-asrc

8.2 Summary table

Table 9: Data table
source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 44100 44100 0.9999 0 2201.030 130.4 -197.2dB
xsim-
asrc

44100 44100 0.9999 0 2201.030 129.4 -196.4dB

asrc 44100 44100 0.9999 1 8967.323-
18000.810

136.1 NA

xsim-
asrc

44100 44100 0.9999 1 8967.323-
18000.810

133.8 NA

asrc 48000 44100 0.9999 0 2204.613 125.1 -189.7dB
xsim-
asrc

48000 44100 0.9999 0 2204.613 124.8 -187.9dB

asrc 48000 44100 0.9999 1 1402.198-
18001.635

131.5 NA

xsim-
asrc

48000 44100 0.9999 1 1402.198-
18001.635

130.8 NA

asrc 88200 44100 0.9999 0 2203.236 129.5 -198.1dB
xsim-
asrc

88200 44100 0.9999 0 2203.236 127.7 -201.4dB

asrc 88200 44100 0.9999 1 8967.323-
18000.810

135.5 NA

xsim-
asrc

88200 44100 0.9999 1 8967.323-
18000.810

131.5 NA

asrc 96000 44100 0.9999 0 2204.613 124.2 -193.8dB
xsim-
asrc

96000 44100 0.9999 0 2204.613 123.5 -195.2dB

continues on next page

157

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 96000 44100 0.9999 1 1402.198-
18001.635

130.0 NA

xsim-
asrc

96000 44100 0.9999 1 1402.198-
18001.635

128.6 NA

asrc 176400 44100 0.9999 0 2204.338 128.2 -197.5dB
xsim-
asrc

176400 44100 0.9999 0 2204.338 125.8 -202.2dB

asrc 176400 44100 0.9999 1 8967.323-
18000.810

134.0 NA

xsim-
asrc

176400 44100 0.9999 1 8967.323-
18000.810

129.0 NA

asrc 192000 44100 0.9999 0 2204.562 123.0 -196.2dB
xsim-
asrc

192000 44100 0.9999 0 2204.562 121.9 -200.3dB

asrc 192000 44100 0.9999 1 1402.166-
18001.221

128.6 NA

xsim-
asrc

192000 44100 0.9999 1 1402.166-
18001.221

126.3 NA

asrc 44100 48000 0.9999 0 2398.672 124.9 -189.8dB
xsim-
asrc

44100 48000 0.9999 0 2398.672 124.6 -190.4dB

asrc 44100 48000 0.9999 1 7295.308-
17997.881

132.6 NA

xsim-
asrc

44100 48000 0.9999 1 7295.308-
17997.881

131.9 NA

asrc 48000 48000 0.9999 0 2395.679 130.4 -197.2dB
xsim-
asrc

48000 48000 0.9999 0 2395.679 129.4 -196.4dB

asrc 48000 48000 0.9999 1 2136.427-
21801.160

135.1 NA

xsim-
asrc

48000 48000 0.9999 1 2136.427-
21801.160

133.0 NA

asrc 88200 48000 0.9999 0 2398.542 123.6 -197.9dB
xsim-
asrc

88200 48000 0.9999 0 2398.542 123.1 -198.4dB

asrc 88200 48000 0.9999 1 397.144-
21801.124

129.2 NA

xsim-
asrc

88200 48000 0.9999 1 397.144-
21801.124

128.2 NA

asrc 96000 48000 0.9999 0 2398.080 129.5 -198.1dB
xsim-
asrc

96000 48000 0.9999 0 2398.080 127.7 -201.4dB

asrc 96000 48000 0.9999 1 2136.427-
21801.160

134.3 NA

xsim-
asrc

96000 48000 0.9999 1 2136.427-
21801.160

130.9 NA

asrc 176400 48000 0.9999 0 2399.848 122.9 -196.9dB
continues on next page

158

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

176400 48000 0.9999 0 2399.848 122.1 -200.7dB

asrc 176400 48000 0.9999 1 397.144-
21801.124

127.6 NA

xsim-
asrc

176400 48000 0.9999 1 397.144-
21801.124

126.0 NA

asrc 192000 48000 0.9999 0 2399.280 128.2 -197.5dB
xsim-
asrc

192000 48000 0.9999 0 2399.280 125.8 -202.2dB

asrc 192000 48000 0.9999 1 2136.427-
21801.160

132.7 NA

xsim-
asrc

192000 48000 0.9999 1 2136.427-
21801.160

128.4 NA

asrc 44100 88200 0.9999 0 4393.678 142.8 -197.1dB
xsim-
asrc

44100 88200 0.9999 0 4393.678 140.1 -193.2dB

asrc 44100 88200 0.9999 1 8963.809-
17998.199

145.2 NA

xsim-
asrc

44100 88200 0.9999 1 8963.809-
17998.199

141.0 NA

asrc 48000 88200 0.9999 0 4409.630 126.7 -184.2dB
xsim-
asrc

48000 88200 0.9999 0 4409.630 126.5 -185.5dB

asrc 48000 88200 0.9999 1 5187.801-
21788.762

131.9 NA

xsim-
asrc

48000 88200 0.9999 1 5187.801-
21788.762

131.5 NA

asrc 88200 88200 0.9999 0 4402.060 130.4 -197.2dB
xsim-
asrc

88200 88200 0.9999 0 4402.060 129.4 -196.4dB

asrc 88200 88200 0.9999 1 3863.933-
39997.879

135.1 NA

xsim-
asrc

88200 88200 0.9999 1 3863.933-
39997.879

133.1 NA

asrc 96000 88200 0.9999 0 4409.225 125.1 -189.7dB
xsim-
asrc

96000 88200 0.9999 0 4409.225 124.8 -187.9dB

asrc 96000 88200 0.9999 1 6800.257-
39999.130

131.7 NA

xsim-
asrc

96000 88200 0.9999 1 6800.257-
39999.130

130.9 NA

asrc 176400 88200 0.9999 0 4406.471 129.5 -197.0dB
xsim-
asrc

176400 88200 0.9999 0 4406.471 127.9 -202.1dB

asrc 176400 88200 0.9999 1 3868.344-
40002.290

133.7 NA

continues on next page

159

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

176400 88200 0.9999 1 3868.344-
40002.290

129.8 NA

asrc 192000 88200 0.9999 0 4409.225 124.2 -193.8dB
xsim-
asrc

192000 88200 0.9999 0 4409.225 123.6 -193.8dB

asrc 192000 88200 0.9999 1 6804.310-
40003.183

129.8 NA

xsim-
asrc

192000 88200 0.9999 1 6804.310-
40003.183

127.5 NA

asrc 44100 96000 0.9999 0 4786.893 128.8 -187.4dB
xsim-
asrc

44100 96000 0.9999 0 4786.893 128.6 -187.0dB

asrc 44100 96000 0.9999 1 7295.308-
17997.881

132.9 NA

xsim-
asrc

44100 96000 0.9999 1 7295.308-
17997.881

132.6 NA

asrc 48000 96000 0.9999 0 4782.235 142.8 -197.1dB
xsim-
asrc

48000 96000 0.9999 0 4782.235 140.1 -193.2dB

asrc 48000 96000 0.9999 1 2131.840-
21798.539

145.0 NA

xsim-
asrc

48000 96000 0.9999 1 2131.840-
21798.539

140.9 NA

asrc 88200 96000 0.9999 0 4797.345 124.9 -189.8dB
xsim-
asrc

88200 96000 0.9999 0 4797.345 124.6 -190.4dB

asrc 88200 96000 0.9999 1 18593.629-
39998.775

130.1 NA

xsim-
asrc

88200 96000 0.9999 1 18593.629-
39998.775

129.7 NA

asrc 96000 96000 0.9999 0 4791.358 130.4 -197.2dB
xsim-
asrc

96000 96000 0.9999 0 4791.358 129.4 -196.4dB

asrc 96000 96000 0.9999 1 2669.334-
41998.799

135.5 NA

xsim-
asrc

96000 96000 0.9999 1 2669.334-
41998.799

133.3 NA

asrc 176400 96000 0.9999 0 4797.083 124.4 -196.3dB
xsim-
asrc

176400 96000 0.9999 0 4797.083 123.8 -197.7dB

asrc 176400 96000 0.9999 1 20599.241-
42003.221

128.3 NA

xsim-
asrc

176400 96000 0.9999 1 20599.241-
42003.221

127.4 NA

asrc 192000 96000 0.9999 0 4796.159 129.5 -197.0dB
xsim-
asrc

192000 96000 0.9999 0 4796.159 127.9 -202.1dB

continues on next page

160

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 192000 96000 0.9999 1 2674.135-
42003.600

134.7 NA

xsim-
asrc

192000 96000 0.9999 1 2674.135-
42003.600

131.0 NA

asrc 44100 176400 0.9999 0 8753.817 140.4 -189.6dB
xsim-
asrc

44100 176400 0.9999 0 8753.817 139.1 -189.3dB

asrc 44100 176400 0.9999 1 8965.602-
18001.800

142.7 NA

xsim-
asrc

44100 176400 0.9999 1 8965.602-
18001.800

140.7 NA

asrc 48000 176400 0.9999 0 8820.882 127.6 -180.5dB
xsim-
asrc

48000 176400 0.9999 0 8820.882 127.4 -180.3dB

asrc 48000 176400 0.9999 1 5188.754-
21792.768

133.7 NA

xsim-
asrc

48000 176400 0.9999 1 5188.754-
21792.768

133.4 NA

asrc 88200 176400 0.9999 0 8787.356 142.8 -197.1dB
xsim-
asrc

88200 176400 0.9999 0 8787.356 140.1 -193.2dB

asrc 88200 176400 0.9999 1 3846.674-
39984.234

145.4 NA

xsim-
asrc

88200 176400 0.9999 1 3846.674-
39984.234

140.9 NA

asrc 96000 176400 0.9999 0 8819.261 126.7 -184.2dB
xsim-
asrc

96000 176400 0.9999 0 8819.261 126.5 -185.5dB

asrc 96000 176400 0.9999 1 8786.837-
41988.761

133.0 NA

xsim-
asrc

96000 176400 0.9999 1 8786.837-
41988.761

132.4 NA

asrc 176400 176400 0.9999 0 8804.121 130.4 -197.7dB
xsim-
asrc

176400 176400 0.9999 0 8804.121 129.4 -193.2dB

asrc 176400 176400 0.9999 1 7727.865-
79995.758

134.1 NA

xsim-
asrc

176400 176400 0.9999 1 7727.865-
79995.758

131.8 NA

asrc 192000 176400 0.9999 0 8818.451 125.4 -187.8dB
xsim-
asrc

192000 176400 0.9999 0 8818.451 125.0 -187.4dB

asrc 192000 176400 0.9999 1 13600.515-
79998.260

130.5 NA

xsim-
asrc

192000 176400 0.9999 1 13600.515-
79998.260

129.4 NA

asrc 44100 192000 0.9999 0 9534.054 127.5 -179.5dB
continues on next page

161

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

44100 192000 0.9999 0 9534.054 127.4 -180.1dB

asrc 44100 192000 0.9999 1 7275.989-
17980.892

134.7 NA

xsim-
asrc

44100 192000 0.9999 1 7275.989-
17980.892

134.4 NA

asrc 48000 192000 0.9999 0 9527.964 140.4 -189.6dB
xsim-
asrc

48000 192000 0.9999 0 9527.964 139.1 -189.3dB

asrc 48000 192000 0.9999 1 2074.637-
21745.272

134.3 NA

xsim-
asrc

48000 192000 0.9999 1 2074.637-
21745.272

133.6 NA

asrc 88200 192000 0.9999 0 9573.786 128.8 -187.4dB
xsim-
asrc

88200 192000 0.9999 0 9573.786 128.6 -187.0dB

asrc 88200 192000 0.9999 1 18562.274-
39967.419

131.3 NA

xsim-
asrc

88200 192000 0.9999 1 18562.274-
39967.419

131.1 NA

asrc 96000 192000 0.9999 0 9564.469 142.8 -197.1dB
xsim-
asrc

96000 192000 0.9999 0 9564.469 140.1 -193.2dB

asrc 96000 192000 0.9999 1 2650.395-
41983.794

134.1 NA

xsim-
asrc

96000 192000 0.9999 1 2650.395-
41983.794

133.0 NA

asrc 176400 192000 0.9999 0 9594.689 125.1 -190.0dB
xsim-
asrc

176400 192000 0.9999 0 9594.689 124.8 -187.0dB

asrc 176400 192000 0.9999 1 37187.259-
79997.549

130.3 NA

xsim-
asrc

176400 192000 0.9999 1 37187.259-
79997.549

129.6 NA

asrc 192000 192000 0.9999 0 9582.716 130.4 -197.7dB
xsim-
asrc

192000 192000 0.9999 0 9582.716 129.4 -193.2dB

asrc 192000 192000 0.9999 1 6337.267-
84996.198

134.8 NA

xsim-
asrc

192000 192000 0.9999 1 6337.267-
84996.198

132.7 NA

ds3 48000 16000 1.0 0 800.000 182.3 -195.0dB
ds3 48000 16000 1.0 1 2930.667-

7299.733
146.5 NA

ds3 96000 32000 1.0 0 1600.000 182.3 -195.0dB
ds3 96000 32000 1.0 1 5861.333-

14599.467
146.5 NA

continues on next page

162

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 44100 44100 1.0 0 2205.000 175.8 -188.7dB
ssrc 44100 44100 1.0 0 2205.000 189.5 -193.1dB
xsim-
asrc

44100 44100 1.0 0 2205.000 164.9 -177.0dB

asrc 44100 44100 1.0 1 8965.530-
17997.210

154.9 NA

ssrc 44100 44100 1.0 1 8965.530-
17997.210

158.7 NA

xsim-
asrc

44100 44100 1.0 1 8965.530-
17997.210

141.8 NA

asrc 48000 44100 1.0 0 2204.190 125.7 -196.6dB
ssrc 48000 44100 1.0 0 2204.190 107.9 -176.9dB
xsim-
asrc

48000 44100 1.0 0 2204.190 125.2 -194.8dB

asrc 48000 44100 1.0 1 1401.929-
17998.181

131.1 NA

ssrc 48000 44100 1.0 1 1401.929-
17998.181

112.8 NA

xsim-
asrc

48000 44100 1.0 1 1401.929-
17998.181

130.4 NA

asrc 88200 44100 1.0 0 2205.000 177.8 -195.5dB
ssrc 88200 44100 1.0 0 2205.000 181.0 -193.3dB
xsim-
asrc

88200 44100 1.0 0 2205.000 164.4 -177.2dB

asrc 88200 44100 1.0 1 8967.735-
17999.415

153.3 NA

ssrc 88200 44100 1.0 1 8967.735-
17999.415

154.6 NA

xsim-
asrc

88200 44100 1.0 1 8967.735-
17999.415

137.2 NA

asrc 96000 44100 1.0 0 2204.190 124.6 -194.9dB
ssrc 96000 44100 1.0 0 2204.190 106.9 -180.2dB
xsim-
asrc

96000 44100 1.0 0 2204.190 123.8 -198.1dB

asrc 96000 44100 1.0 1 1401.929-
17998.181

130.2 NA

ssrc 96000 44100 1.0 1 1401.929-
17998.181

111.4 NA

xsim-
asrc

96000 44100 1.0 1 1401.929-
17998.181

128.7 NA

asrc 176400 44100 1.0 0 2205.000 174.9 -194.2dB
ssrc 176400 44100 1.0 0 2205.000 176.3 -190.4dB
xsim-
asrc

176400 44100 1.0 0 2205.000 162.3 -176.8dB

asrc 176400 44100 1.0 1 8967.735-
17999.415

149.8 NA

continues on next page

163

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

ssrc 176400 44100 1.0 1 8967.735-
17999.415

151.1 NA

xsim-
asrc

176400 44100 1.0 1 8967.735-
17999.415

136.0 NA

asrc 192000 44100 1.0 0 2204.139 123.6 -196.9dB
ssrc 192000 44100 1.0 0 2204.139 106.0 -185.4dB
xsim-
asrc

192000 44100 1.0 0 2204.139 122.3 -200.1dB

asrc 192000 44100 1.0 1 1403.923-
17999.793

128.9 NA

ssrc 192000 44100 1.0 1 1403.923-
17999.793

110.4 NA

xsim-
asrc

192000 44100 1.0 1 1403.923-
17999.793

126.5 NA

os3 16000 48000 1.0 0 2390.639 126.7 -202.5dB
os3 16000 48000 1.0 1 3600.360-

7287.129
124.1 NA

asrc 44100 48000 1.0 0 2398.171 127.5 -172.0dB
ssrc 44100 48000 1.0 0 2398.171 106.1 -151.6dB
xsim-
asrc

44100 48000 1.0 0 2398.171 126.8 -171.3dB

asrc 44100 48000 1.0 1 7299.009-
17999.347

132.7 NA

ssrc 44100 48000 1.0 1 7299.009-
17999.347

110.2 NA

xsim-
asrc

44100 48000 1.0 1 7299.009-
17999.347

131.9 NA

asrc 48000 48000 1.0 0 2400.000 175.8 -188.7dB
ssrc 48000 48000 1.0 0 2400.000 189.5 -193.1dB
xsim-
asrc

48000 48000 1.0 0 2400.000 164.9 -177.0dB

asrc 48000 48000 1.0 1 2136.000-
21796.800

155.3 NA

ssrc 48000 48000 1.0 1 2136.000-
21796.800

158.9 NA

xsim-
asrc

48000 48000 1.0 1 2136.000-
21796.800

141.8 NA

asrc 88200 48000 1.0 0 2398.041 125.4 -176.8dB
ssrc 88200 48000 1.0 0 2398.041 103.9 -159.0dB
xsim-
asrc

88200 48000 1.0 0 2398.041 124.6 -176.6dB

asrc 88200 48000 1.0 1 399.673-
21799.184

129.8 NA

ssrc 88200 48000 1.0 1 399.673-
21799.184

110.2 NA

continues on next page

164

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

88200 48000 1.0 1 399.673-
21799.184

128.5 NA

asrc 96000 48000 1.0 0 2400.000 177.8 -195.5dB
ssrc 96000 48000 1.0 0 2400.000 181.0 -193.3dB
xsim-
asrc

96000 48000 1.0 0 2400.000 164.4 -177.2dB

asrc 96000 48000 1.0 1 2138.400-
21799.200

153.1 NA

ssrc 96000 48000 1.0 1 2138.400-
21799.200

154.6 NA

xsim-
asrc

96000 48000 1.0 1 2138.400-
21799.200

137.2 NA

asrc 176400 48000 1.0 0 2399.347 125.8 -174.6dB
ssrc 176400 48000 1.0 0 2399.347 102.5 -151.0dB
xsim-
asrc

176400 48000 1.0 0 2399.347 124.0 -174.3dB

asrc 176400 48000 1.0 1 399.673-
21799.184

128.3 NA

ssrc 176400 48000 1.0 1 399.673-
21799.184

109.3 NA

xsim-
asrc

176400 48000 1.0 1 399.673-
21799.184

126.2 NA

asrc 192000 48000 1.0 0 2400.000 174.9 -194.2dB
ssrc 192000 48000 1.0 0 2400.000 176.3 -190.4dB
xsim-
asrc

192000 48000 1.0 0 2400.000 162.3 -176.8dB

asrc 192000 48000 1.0 1 2138.400-
21799.200

149.8 NA

ssrc 192000 48000 1.0 1 2138.400-
21799.200

151.2 NA

xsim-
asrc

192000 48000 1.0 1 2138.400-
21799.200

136.0 NA

asrc 44100 88200 1.0 0 4410.000 166.7 -169.5dB
ssrc 44100 88200 1.0 0 4410.000 156.0 -156.5dB
xsim-
asrc

44100 88200 1.0 0 4410.000 161.9 -167.8dB

asrc 44100 88200 1.0 1 8961.120-
17992.800

155.1 NA

ssrc 44100 88200 1.0 1 8961.120-
17992.800

155.4 NA

xsim-
asrc

44100 88200 1.0 1 8961.120-
17992.800

146.3 NA

asrc 48000 88200 1.0 0 4408.379 127.2 -183.8dB
ssrc 48000 88200 1.0 0 4408.379 108.7 -168.3dB
xsim-
asrc

48000 88200 1.0 0 4408.379 126.8 -184.0dB

continues on next page

165

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 48000 88200 1.0 1 5202.536-
21798.787

131.8 NA

ssrc 48000 88200 1.0 1 5202.536-
21798.787

115.1 NA

xsim-
asrc

48000 88200 1.0 1 5202.536-
21798.787

131.4 NA

asrc 88200 88200 1.0 0 4410.000 175.8 -188.7dB
ssrc 88200 88200 1.0 0 4410.000 189.5 -193.1dB
xsim-
asrc

88200 88200 1.0 0 4410.000 164.9 -177.0dB

asrc 88200 88200 1.0 1 3871.980-
39998.700

155.1 NA

ssrc 88200 88200 1.0 1 3871.980-
39998.700

159.1 NA

xsim-
asrc

88200 88200 1.0 1 3871.980-
39998.700

141.7 NA

asrc 96000 88200 1.0 0 4408.379 125.7 -196.6dB
ssrc 96000 88200 1.0 0 4408.379 107.9 -176.9dB
xsim-
asrc

96000 88200 1.0 0 4408.379 125.2 -194.8dB

asrc 96000 88200 1.0 1 6807.056-
39999.559

131.8 NA

ssrc 96000 88200 1.0 1 6807.056-
39999.559

113.2 NA

xsim-
asrc

96000 88200 1.0 1 6807.056-
39999.559

131.0 NA

asrc 176400 88200 1.0 0 4410.000 176.1 -189.7dB
ssrc 176400 88200 1.0 0 4410.000 181.0 -193.3dB
xsim-
asrc

176400 88200 1.0 0 4410.000 164.6 -174.8dB

asrc 176400 88200 1.0 1 3871.980-
39998.700

151.0 NA

ssrc 176400 88200 1.0 1 3871.980-
39998.700

154.7 NA

xsim-
asrc

176400 88200 1.0 1 3871.980-
39998.700

137.6 NA

asrc 192000 88200 1.0 0 4408.379 124.6 -198.1dB
ssrc 192000 88200 1.0 0 4408.379 107.1 -181.9dB
xsim-
asrc

192000 88200 1.0 0 4408.379 123.8 -194.5dB

asrc 192000 88200 1.0 1 6807.056-
39999.559

130.0 NA

ssrc 192000 88200 1.0 1 6807.056-
39999.559

111.5 NA

xsim-
asrc

192000 88200 1.0 1 6807.056-
39999.559

127.5 NA

continues on next page

166

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

os3 32000 96000 1.0 0 4781.278 126.7 -202.5dB
os3 32000 96000 1.0 1 7200.720-

14574.257
124.1 NA

asrc 44100 96000 1.0 0 4786.414 130.7 -190.4dB
ssrc 44100 96000 1.0 0 4786.414 108.3 -163.7dB
xsim-
asrc

44100 96000 1.0 0 4786.414 130.1 -188.7dB

asrc 44100 96000 1.0 1 7294.579-
17996.081

133.5 NA

ssrc 44100 96000 1.0 1 7294.579-
17996.081

111.7 NA

xsim-
asrc

44100 96000 1.0 1 7294.579-
17996.081

133.0 NA

asrc 48000 96000 1.0 0 4800.000 166.7 -169.5dB
ssrc 48000 96000 1.0 0 4800.000 156.0 -156.5dB
xsim-
asrc

48000 96000 1.0 0 4800.000 161.9 -167.8dB

asrc 48000 96000 1.0 1 2131.200-
21792.000

154.4 NA

ssrc 48000 96000 1.0 1 2131.200-
21792.000

154.9 NA

xsim-
asrc

48000 96000 1.0 1 2131.200-
21792.000

144.0 NA

asrc 88200 96000 1.0 0 4796.343 127.5 -172.0dB
ssrc 88200 96000 1.0 0 4796.343 106.1 -151.6dB
xsim-
asrc

88200 96000 1.0 0 4796.343 126.8 -171.3dB

asrc 88200 96000 1.0 1 18589.746-
39990.421

129.3 NA

ssrc 88200 96000 1.0 1 18589.746-
39990.421

108.6 NA

xsim-
asrc

88200 96000 1.0 1 18589.746-
39990.421

128.9 NA

asrc 96000 96000 1.0 0 4800.000 175.8 -188.7dB
ssrc 96000 96000 1.0 0 4800.000 189.5 -193.1dB
xsim-
asrc

96000 96000 1.0 0 4800.000 164.9 -177.0dB

asrc 96000 96000 1.0 1 2678.400-
42000.000

155.2 NA

ssrc 96000 96000 1.0 1 2678.400-
42000.000

158.8 NA

xsim-
asrc

96000 96000 1.0 1 2678.400-
42000.000

141.9 NA

asrc 176400 96000 1.0 0 4796.082 125.0 -177.1dB
ssrc 176400 96000 1.0 0 4796.082 104.6 -156.9dB

continues on next page

167

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

176400 96000 1.0 0 4796.082 124.3 -177.3dB

asrc 176400 96000 1.0 1 20600.163-
41999.673

128.4 NA

ssrc 176400 96000 1.0 1 20600.163-
41999.673

108.8 NA

xsim-
asrc

176400 96000 1.0 1 20600.163-
41999.673

127.4 NA

asrc 192000 96000 1.0 0 4800.000 176.1 -189.7dB
ssrc 192000 96000 1.0 0 4800.000 181.0 -193.3dB
xsim-
asrc

192000 96000 1.0 0 4800.000 164.6 -174.8dB

asrc 192000 96000 1.0 1 2678.400-
42000.000

152.6 NA

ssrc 192000 96000 1.0 1 2678.400-
42000.000

154.7 NA

xsim-
asrc

192000 96000 1.0 1 2678.400-
42000.000

139.4 NA

asrc 44100 176400 1.0 0 8820.000 165.3 -169.5dB
ssrc 44100 176400 1.0 0 8820.000 163.6 -166.5dB
xsim-
asrc

44100 176400 1.0 0 8820.000 161.3 -168.6dB

asrc 44100 176400 1.0 1 8961.120-
17992.800

154.3 NA

ssrc 44100 176400 1.0 1 8961.120-
17992.800

152.1 NA

xsim-
asrc

44100 176400 1.0 1 8961.120-
17992.800

146.1 NA

asrc 48000 176400 1.0 0 8816.759 127.6 -182.1dB
ssrc 48000 176400 1.0 0 8816.759 110.0 -163.9dB
xsim-
asrc

48000 176400 1.0 0 8816.759 127.4 -181.7dB

asrc 48000 176400 1.0 1 5186.329-
21782.580

133.7 NA

ssrc 48000 176400 1.0 1 5186.329-
21782.580

115.8 NA

xsim-
asrc

48000 176400 1.0 1 5186.329-
21782.580

133.4 NA

asrc 88200 176400 1.0 0 8820.000 166.7 -169.5dB
ssrc 88200 176400 1.0 0 8820.000 156.0 -156.5dB
xsim-
asrc

88200 176400 1.0 0 8820.000 161.9 -167.8dB

asrc 88200 176400 1.0 1 3845.520-
39972.240

154.4 NA

ssrc 88200 176400 1.0 1 3845.520-
39972.240

154.9 NA

continues on next page

168

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

88200 176400 1.0 1 3845.520-
39972.240

144.0 NA

asrc 96000 176400 1.0 0 8816.759 127.2 -183.8dB
ssrc 96000 176400 1.0 0 8816.759 108.7 -168.3dB
xsim-
asrc

96000 176400 1.0 0 8816.759 126.8 -184.0dB

asrc 96000 176400 1.0 1 8784.344-
41976.847

133.8 NA

ssrc 96000 176400 1.0 1 8784.344-
41976.847

114.6 NA

xsim-
asrc

96000 176400 1.0 1 8784.344-
41976.847

133.1 NA

asrc 176400 176400 1.0 0 8820.000 176.1 -189.0dB
ssrc 176400 176400 1.0 0 8820.000 189.5 -193.1dB
xsim-
asrc

176400 176400 1.0 0 8820.000 170.2 -181.8dB

asrc 176400 176400 1.0 1 7743.960-
79997.400

153.1 NA

ssrc 176400 176400 1.0 1 7743.960-
79997.400

159.1 NA

xsim-
asrc

176400 176400 1.0 1 7743.960-
79997.400

139.9 NA

asrc 192000 176400 1.0 0 8816.759 125.6 -195.7dB
ssrc 192000 176400 1.0 0 8816.759 107.8 -180.8dB
xsim-
asrc

192000 176400 1.0 0 8816.759 125.1 -192.7dB

asrc 192000 176400 1.0 1 13614.112-
79999.118

130.6 NA

ssrc 192000 176400 1.0 1 13614.112-
79999.118

112.7 NA

xsim-
asrc

192000 176400 1.0 1 13614.112-
79999.118

129.4 NA

asrc 44100 192000 1.0 0 9533.101 127.6 -181.9dB
ssrc 44100 192000 1.0 0 9533.101 107.6 -166.0dB
xsim-
asrc

44100 192000 1.0 0 9533.101 127.4 -181.2dB

asrc 44100 192000 1.0 1 7275.261-
17979.094

134.7 NA

ssrc 44100 192000 1.0 1 7275.261-
17979.094

111.3 NA

xsim-
asrc

44100 192000 1.0 1 7275.261-
17979.094

134.3 NA

asrc 48000 192000 1.0 0 9600.000 165.3 -169.5dB
ssrc 48000 192000 1.0 0 9600.000 163.6 -166.5dB
xsim-
asrc

48000 192000 1.0 0 9600.000 161.3 -168.6dB

continues on next page

169

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 48000 192000 1.0 1 2073.600-
21734.400

153.7 NA

ssrc 48000 192000 1.0 1 2073.600-
21734.400

152.5 NA

xsim-
asrc

48000 192000 1.0 1 2073.600-
21734.400

146.0 NA

asrc 88200 192000 1.0 0 9572.828 130.7 -190.4dB
ssrc 88200 192000 1.0 0 9572.828 108.3 -163.7dB
xsim-
asrc

88200 192000 1.0 0 9572.828 130.1 -188.7dB

asrc 88200 192000 1.0 1 18560.418-
39963.423

131.5 NA

ssrc 88200 192000 1.0 1 18560.418-
39963.423

109.2 NA

xsim-
asrc

88200 192000 1.0 1 18560.418-
39963.423

131.3 NA

asrc 96000 192000 1.0 0 9600.000 166.7 -169.5dB
ssrc 96000 192000 1.0 0 9600.000 156.0 -156.5dB
xsim-
asrc

96000 192000 1.0 0 9600.000 161.9 -167.8dB

asrc 96000 192000 1.0 1 2649.600-
41971.200

154.3 NA

ssrc 96000 192000 1.0 1 2649.600-
41971.200

155.0 NA

xsim-
asrc

96000 192000 1.0 1 2649.600-
41971.200

143.9 NA

asrc 176400 192000 1.0 0 9592.685 126.1 -170.2dB
ssrc 176400 192000 1.0 0 9592.685 105.5 -151.0dB
xsim-
asrc

176400 192000 1.0 0 9592.685 125.8 -169.8dB

asrc 176400 192000 1.0 1 37179.493-
79980.842

129.2 NA

ssrc 176400 192000 1.0 1 37179.493-
79980.842

108.6 NA

xsim-
asrc

176400 192000 1.0 1 37179.493-
79980.842

128.6 NA

asrc 192000 192000 1.0 0 9600.000 176.1 -189.0dB
ssrc 192000 192000 1.0 0 9600.000 189.5 -193.1dB
xsim-
asrc

192000 192000 1.0 0 9600.000 170.2 -181.8dB

asrc 192000 192000 1.0 1 6355.200-
84998.400

154.2 NA

ssrc 192000 192000 1.0 1 6355.200-
84998.400

158.8 NA

xsim-
asrc

192000 192000 1.0 1 6355.200-
84998.400

141.2 NA

continues on next page

170

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 44100 44100 1.0001 0 2204.780 130.4 -197.3dB
xsim-
asrc

44100 44100 1.0001 0 2204.780 129.3 -195.1dB

asrc 44100 44100 1.0001 1 8964.634-
17995.410

136.6 NA

xsim-
asrc

44100 44100 1.0001 1 8964.634-
17995.410

134.1 NA

asrc 48000 44100 1.0001 0 2203.767 125.2 -176.9dB
xsim-
asrc

48000 44100 1.0001 0 2203.767 124.9 -177.1dB

asrc 48000 44100 1.0001 1 1401.660-
17994.728

132.4 NA

xsim-
asrc

48000 44100 1.0001 1 1401.660-
17994.728

131.4 NA

asrc 88200 44100 1.0001 0 2204.669 129.6 -197.6dB
xsim-
asrc

88200 44100 1.0001 0 2204.669 127.7 -202.2dB

asrc 88200 44100 1.0001 1 8966.390-
17996.715

134.9 NA

xsim-
asrc

88200 44100 1.0001 1 8966.390-
17996.715

131.3 NA

asrc 96000 44100 1.0001 0 2203.767 124.0 -178.6dB
xsim-
asrc

96000 44100 1.0001 0 2203.767 123.4 -179.0dB

asrc 96000 44100 1.0001 1 1403.686-
17996.753

130.4 NA

xsim-
asrc

96000 44100 1.0001 1 1403.686-
17996.753

128.7 NA

asrc 176400 44100 1.0001 0 2204.614 128.1 -197.8dB
xsim-
asrc

176400 44100 1.0001 0 2204.614 125.8 -202.3dB

asrc 176400 44100 1.0001 1 8967.268-
17997.368

132.3 NA

xsim-
asrc

176400 44100 1.0001 1 8967.268-
17997.368

128.1 NA

asrc 192000 44100 1.0001 0 2204.729 123.0 -194.4dB
xsim-
asrc

192000 44100 1.0001 0 2204.729 121.9 -195.6dB

asrc 192000 44100 1.0001 1 1404.666-
17997.353

128.7 NA

xsim-
asrc

192000 44100 1.0001 1 1404.666-
17997.353

126.4 NA

asrc 44100 48000 1.0001 0 2397.671 124.9 -180.3dB
xsim-
asrc

44100 48000 1.0001 0 2397.671 124.7 -181.2dB

asrc 44100 48000 1.0001 1 7297.485-
17995.588

133.6 NA

continues on next page

171

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

44100 48000 1.0001 1 7297.485-
17995.588

132.6 NA

asrc 48000 48000 1.0001 0 2399.520 130.4 -197.0dB
xsim-
asrc

48000 48000 1.0001 0 2399.520 129.3 -195.2dB

asrc 48000 48000 1.0001 1 2140.372-
21797.240

135.7 NA

xsim-
asrc

48000 48000 1.0001 1 2140.372-
21797.240

133.5 NA

asrc 88200 48000 1.0001 0 2397.671 123.8 -180.8dB
xsim-
asrc

88200 48000 1.0001 0 2397.671 123.3 -181.3dB

asrc 88200 48000 1.0001 1 399.612-
21795.818

130.2 NA

xsim-
asrc

88200 48000 1.0001 1 399.612-
21795.818

128.9 NA

asrc 96000 48000 1.0001 0 2399.520 129.5 -197.3dB
xsim-
asrc

96000 48000 1.0001 0 2399.520 127.7 -201.6dB

asrc 96000 48000 1.0001 1 2140.372-
21797.240

134.2 NA

xsim-
asrc

96000 48000 1.0001 1 2140.372-
21797.240

130.8 NA

asrc 176400 48000 1.0001 0 2398.911 122.6 -196.5dB
xsim-
asrc

176400 48000 1.0001 0 2398.911 121.8 -198.6dB

asrc 176400 48000 1.0001 1 400.907-
21796.531

129.2 NA

xsim-
asrc

176400 48000 1.0001 1 400.907-
21796.531

126.9 NA

asrc 192000 48000 1.0001 0 2399.520 128.0 -197.5dB
xsim-
asrc

192000 48000 1.0001 0 2399.520 125.7 -203.7dB

asrc 192000 48000 1.0001 1 2140.372-
21797.240

131.5 NA

xsim-
asrc

192000 48000 1.0001 1 2140.372-
21797.240

127.7 NA

asrc 44100 88200 1.0001 0 4409.559 132.2 -170.4dB
xsim-
asrc

44100 88200 1.0001 0 4409.559 131.6 -170.9dB

asrc 44100 88200 1.0001 1 8960.224-
17991.001

137.7 NA

xsim-
asrc

44100 88200 1.0001 1 8960.224-
17991.001

136.2 NA

asrc 48000 88200 1.0001 0 4407.938 127.2 -189.5dB
xsim-
asrc

48000 88200 1.0001 0 4407.938 126.9 -189.7dB

continues on next page

172

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 48000 88200 1.0001 1 5202.016-
21796.608

132.4 NA

xsim-
asrc

48000 88200 1.0001 1 5202.016-
21796.608

132.0 NA

asrc 88200 88200 1.0001 0 4409.559 130.4 -197.3dB
xsim-
asrc

88200 88200 1.0001 0 4409.559 129.3 -195.1dB

asrc 88200 88200 1.0001 1 3871.593-
39994.701

135.6 NA

xsim-
asrc

88200 88200 1.0001 1 3871.593-
39994.701

133.5 NA

asrc 96000 88200 1.0001 0 4407.534 125.2 -176.9dB
xsim-
asrc

96000 88200 1.0001 0 4407.534 124.9 -177.1dB

asrc 96000 88200 1.0001 1 6805.750-
39991.885

132.3 NA

xsim-
asrc

96000 88200 1.0001 1 6805.750-
39991.885

131.4 NA

asrc 176400 88200 1.0001 0 4409.339 129.5 -198.4dB
xsim-
asrc

176400 88200 1.0001 0 4409.339 127.9 -203.5dB

asrc 176400 88200 1.0001 1 3871.399-
39992.701

133.3 NA

xsim-
asrc

176400 88200 1.0001 1 3871.399-
39992.701

129.6 NA

asrc 192000 88200 1.0001 0 4407.534 124.2 -178.1dB
xsim-
asrc

192000 88200 1.0001 0 4407.534 123.6 -177.7dB

asrc 192000 88200 1.0001 1 6809.801-
39995.936

131.0 NA

xsim-
asrc

192000 88200 1.0001 1 6809.801-
39995.936

128.0 NA

asrc 44100 96000 1.0001 0 4784.894 129.0 -184.8dB
xsim-
asrc

44100 96000 1.0001 0 4784.894 128.6 -184.7dB

asrc 44100 96000 1.0001 1 7292.262-
17990.365

133.5 NA

xsim-
asrc

44100 96000 1.0001 1 7292.262-
17990.365

132.9 NA

asrc 48000 96000 1.0001 0 4799.520 132.2 -170.4dB
xsim-
asrc

48000 96000 1.0001 0 4799.520 131.6 -170.9dB

asrc 48000 96000 1.0001 1 2130.987-
21789.821

135.4 NA

xsim-
asrc

48000 96000 1.0001 1 2130.987-
21789.821

134.0 NA

asrc 88200 96000 1.0001 0 4795.341 124.9 -180.3dB
continues on next page

173

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

88200 96000 1.0001 0 4795.341 124.7 -181.2dB

asrc 88200 96000 1.0001 1 18596.312-
39992.518

131.0 NA

xsim-
asrc

88200 96000 1.0001 1 18596.312-
39992.518

130.4 NA

asrc 96000 96000 1.0001 0 4799.040 130.4 -197.0dB
xsim-
asrc

96000 96000 1.0001 0 4799.040 129.3 -195.2dB

asrc 96000 96000 1.0001 1 2677.864-
41991.601

136.2 NA

xsim-
asrc

96000 96000 1.0001 1 2677.864-
41991.601

133.9 NA

asrc 176400 96000 1.0001 0 4795.341 123.7 -181.1dB
xsim-
asrc

176400 96000 1.0001 0 4795.341 123.3 -181.5dB

asrc 176400 96000 1.0001 1 20596.983-
41993.189

128.3 NA

xsim-
asrc

176400 96000 1.0001 1 20596.983-
41993.189

127.4 NA

asrc 192000 96000 1.0001 0 4799.040 129.5 -197.7dB
xsim-
asrc

192000 96000 1.0001 0 4799.040 127.8 -202.9dB

asrc 192000 96000 1.0001 1 2677.864-
41991.601

134.2 NA

xsim-
asrc

192000 96000 1.0001 1 2677.864-
41991.601

130.7 NA

asrc 44100 176400 1.0001 0 8819.118 130.7 -165.8dB
xsim-
asrc

44100 176400 1.0001 0 8819.118 130.2 -165.8dB

asrc 44100 176400 1.0001 1 8960.224-
17991.001

136.3 NA

xsim-
asrc

44100 176400 1.0001 1 8960.224-
17991.001

135.3 NA

asrc 48000 176400 1.0001 0 8815.877 127.5 -188.7dB
xsim-
asrc

48000 176400 1.0001 0 8815.877 127.4 -187.2dB

asrc 48000 176400 1.0001 1 5185.810-
21780.402

134.2 NA

xsim-
asrc

48000 176400 1.0001 1 5185.810-
21780.402

133.9 NA

asrc 88200 176400 1.0001 0 8819.118 132.2 -170.4dB
xsim-
asrc

88200 176400 1.0001 0 8819.118 131.6 -170.9dB

asrc 88200 176400 1.0001 1 3845.135-
39968.243

135.4 NA

continues on next page

174

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

xsim-
asrc

88200 176400 1.0001 1 3845.135-
39968.243

134.0 NA

asrc 96000 176400 1.0001 0 8815.877 127.2 -189.5dB
xsim-
asrc

96000 176400 1.0001 0 8815.877 126.9 -189.7dB

asrc 96000 176400 1.0001 1 8783.466-
41972.649

134.3 NA

xsim-
asrc

96000 176400 1.0001 1 8783.466-
41972.649

133.5 NA

asrc 176400 176400 1.0001 0 8819.118 130.4 -198.5dB
xsim-
asrc

176400 176400 1.0001 0 8819.118 129.4 -195.1dB

asrc 176400 176400 1.0001 1 7743.186-
79989.401

134.3 NA

xsim-
asrc

176400 176400 1.0001 1 7743.186-
79989.401

132.0 NA

asrc 192000 176400 1.0001 0 8815.067 125.0 -176.7dB
xsim-
asrc

192000 176400 1.0001 0 8815.067 124.7 -176.5dB

asrc 192000 176400 1.0001 1 13611.501-
79983.770

131.2 NA

xsim-
asrc

192000 176400 1.0001 1 13611.501-
79983.770

129.9 NA

asrc 44100 192000 1.0001 0 9527.998 127.5 -180.3dB
xsim-
asrc

44100 192000 1.0001 0 9527.998 127.4 -179.6dB

asrc 44100 192000 1.0001 1 7271.367-
17969.470

134.9 NA

xsim-
asrc

44100 192000 1.0001 1 7271.367-
17969.470

134.5 NA

asrc 48000 192000 1.0001 0 9599.040 130.7 -165.8dB
xsim-
asrc

48000 192000 1.0001 0 9599.040 130.2 -165.8dB

asrc 48000 192000 1.0001 1 2073.393-
21732.227

136.2 NA

xsim-
asrc

48000 192000 1.0001 1 2073.393-
21732.227

135.1 NA

asrc 88200 192000 1.0001 0 9569.787 129.0 -184.8dB
xsim-
asrc

88200 192000 1.0001 0 9569.787 128.6 -184.7dB

asrc 88200 192000 1.0001 1 18596.312-
39992.518

132.0 NA

xsim-
asrc

88200 192000 1.0001 1 18596.312-
39992.518

131.6 NA

asrc 96000 192000 1.0001 0 9599.040 132.2 -170.4dB
xsim-
asrc

96000 192000 1.0001 0 9599.040 131.6 -170.9dB

continues on next page

175

lib_src: Sample rate conversion

Table 9 – continued from previous page

source ipRate(Hz) opRate(Hz)fDev ch signals(Hz) SNR(dB) THD(dB)

asrc 96000 192000 1.0001 1 2649.335-
41967.003

142.2 NA

xsim-
asrc

96000 192000 1.0001 1 2649.335-
41967.003

139.4 NA

asrc 176400 192000 1.0001 0 9590.682 124.8 -180.8dB
xsim-
asrc

176400 192000 1.0001 0 9590.682 124.6 -180.8dB

asrc 176400 192000 1.0001 1 37192.624-
79985.036

129.9 NA

xsim-
asrc

176400 192000 1.0001 1 37192.624-
79985.036

129.2 NA

asrc 192000 192000 1.0001 0 9598.080 130.3 -197.9dB
xsim-
asrc

192000 192000 1.0001 0 9598.080 129.4 -194.9dB

asrc 192000 192000 1.0001 1 6353.929-
84981.403

135.0 NA

xsim-
asrc

192000 192000 1.0001 1 6353.929-
84981.403

132.9 NA

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

176

	Introduction
	lib_src components
	Using lib_src

	HiFi quality multi-rate SRC
	Initialisation
	Processing
	Buffer formats
	Performance and resource utilisation
	Implementation detail
	File structure and overview
	SSRC API
	ASRC API

	HiFi quality fixed factor of 3 SRC
	Shared API items
	HiFi quality DS3 API
	HiFi quality OS3 API

	Voice quality fixed factor of 3 SRC
	Voice quality DS3 API
	Voice quality US3 API

	Voice quality fixed factor of 3 and 3/2 SRC optimised for XS3
	Fixed factor of 3 VPU implementation
	Voice quality DS3 VPU API
	Voice quality US3 VPU API
	Fixed factor of 3/2 VPU implementation
	Voice quality DS3/2 API
	Voice quality US3/2 API

	Asynchronous FIFO
	Using the asynchronous FIFO
	Design parameters
	Controller settings
	API
	Implementation detail

	ASRC Task
	Operation
	Latency characterisation
	API & usage

	Performance characterisation
	Pure Tone FFT SRC plots across sample rate combinations
	Summary table

