
sw_usb_audio: USB Audio reference designs

Publication Date: 2024/12/12
Document Number: XM-008854-UG v9.0.0

sw_usb_audio: USB Audio reference designs

IN THIS DOCUMENT

1 Overview . 3
2 USB Audio hardware platforms . 4
3 Driver support . 5

3.1 OS support for UAC 1.0 . 5
3.2 OS support for UAC 2.0 . 5
3.3 Third party Windows drivers . 5

4 Quick start . 7
4.1 USB Audio 2.0 reference software . 8
4.2 USB Audio Class 2.0 evaluation driver for Windows 8
4.3 XMOS XTC development tools . 9
4.4 Building the firmware . 10
4.5 Running the firmware . 10
4.6 Writing the application binary to flash . 10
4.7 Playing audio . 11

5 USB Audio programming guide . 12
5.1 Project structure . 12
5.2 Build configurations . 13
5.3 Configuration naming . 14
5.4 Quality & testing . 15
5.5 A typical USB Audio application . 17
5.6 Adding custom code . 22

6 USB Audio applications . 25
6.1 The xcore.ai Multi-Channel Audio Board . 25
6.2 The xcore-200 Multi-Channel Audio Board . 29

7 USB Audio API reference . 34
7.1 Configuration defines . 34
7.2 User function definitions . 38

8 Frequently Asked Questions . 41

The XMOS USB Audio solution provides USB Audio Class compliant devices over USB
2.0 (high-speed or full-speed). Based on the XMOS xcore-200 (XS2) and xcore.ai (XS3)
architectures, it supports USB Audio Class 2.0 and USB Audio Class 1.0, asynchronous
mode (synchronous as an option) and sample rates up to 384kHz.

The complete source code, together with the free XMOS XTC development tools and
xcore multi-core micro-controller devices, allow the developer to select the exact mix of
interfaces and processing required.

The XMOS USB Audio solution is deployed as a framework (see lib_xua) with reference
design applications extending and customising this framework. These reference designs
have particular qualified feature sets and an accompanying reference hardware platform.

This software user guide assumes the reader is familiar with the XC language and xcore
devices. For more information see XMOS Programming Guide.

The reader should also familiarise themselveswith the XMOSUSB device library (lib_xud)
and the XMOS USB audio library (lib_xua)

Note: The reader should always refer to the supplied CHANGELOG and README files
for known issues relating to a specific release

2

https://www.xmos.com/file/lib_xua
https://www.xmos.com/published/xmos-programming-guide
https://www.xmos.com/file/lib_xud
https://www.xmos.com/file/lib_xua

sw_usb_audio: USB Audio reference designs

1 Overview

Functionality

Provides USB interface to audio I/O.

Supported Standards

USB USB 2.0 (Full-speed and High-speed)
USB Audio Class 1.0
USB Audio Class 2.0
USB Firmware Upgrade (DFU) 1.1
USB MIDI Device Class 1.0

Audio I²S/TDM
S/PDIF (receive may be limited to 96kHz
depending on external hardware)
ADAT
Direct Stream Digital (DSD)
PDM Microphones
MIDI

Supported sample frequencies

16kHz to 384kHz1

Supported devices

XMOS Devices xcore-200 Series
xcore.ai Series

Requirements

Development Tools XTC Development Tools (see readme for
required version)

USB xcore device with integrated USB phy
Audio External audio DAC/ADC/CODECs (and

required supporting componentry) sup-
porting I²S/TDM

Boot/Storage Compatible SPI/QSPI Flash device (or
xcore device with internal flash)

Licensing

Reference code provided without charge under license from XMOS.

1 Not all features may be supported at all sample frequencies, simultaneously or on all devices.

3

https://www.usb.org/sites/default/files/audio10.pdf
https://www.usb.org/sites/default/files/Audio2.0_final.zip
https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/midi10.pdf

sw_usb_audio: USB Audio reference designs

2 USB Audio hardware platforms

This section describes the hardware development platforms supported by the XMOS
USB Audio reference design software.

Board xcore device Analog channels Digital Rx/Tx & MIDI

XK_EVK_XU316 xcore.ai 2 in + 2 out N/A
XK_AUDIO_316_MC_AB xcore.ai 8 in + 8 out Supported
XK_AUDIO_216_MC_AB xcore-200 8 in + 8 out Supported

Each of the platforms supported has a Board Support Package (BSP), the code for which
can be be found in lib_board_support. The code in lib_board_support abstracts
away all of the hardware setup including enabling external hardware blocks and DAC
and ADC configuration and provides a translation layer from the common API supported
by lib_xua for initialising and configuring hardware on a sample rate or stream format
change.

Detailed feature sets for the each of the supported boards can be found in the documen-
tation for lib_board_support.

4

https://www.xmos.com/file/lib_board_support
https://www.xmos.com/file/lib_xua
https://www.xmos.com/file/lib_board_support

sw_usb_audio: USB Audio reference designs

3 Driver support

The XMOS USB Audio Reference design includes support for USB Audio Class (UAC)
versions 1.0 and 2.0. UAC 2.0 includes support for audio over high-speed USB (UAC 1.0
supports full-speed only) and other feature additions.

3.1 OS support for UAC 1.0

Support for USB Audio Class 1.0 has been included inmacOS andWindows for a number
of years. Most Linux distributions also include support.

3.2 OS support for UAC 2.0

Support for USB Audio Class 2.0 is only included inmoremodern versions ofmacOS and
Windows:

· Since version 10.6.4 macOS natively supports USB Audio Class 2.0

· Since version 10, release 1809, Windows natively supports USB Audio Class 2.0

3.3 Third party Windows drivers

For some products it may be desirable to use a third-party driver for Windows. A number
of reasons exist as to why this may be desirable:

· In order to support UAC 2.0 on Windows versions earlier than 10

· The built-in Windows support is typically designed for consumer audio devices, not
for professional audio devices

· The built in drivers support sound APIs such as WASAPI, DirectSound, MME, but not
ASIO.

The XMOS USB Audio Reference design is tested against Thesycon USB Audio Driver for
Windows. This includes the following feature-set/benefits:

· Available for Windows 10 and Windows 11 operating systems

· Designed for professional audio devices and consumer-style devices

· Supports ASIO for transparent and low-latency audio streaming

· Supports Windows sound APIs such as WASAPI, DirectSound, MME

· Supports high-end audio features such as bit-perfect PCM up to 768 kHz sampling
rate, native DSD format (through ASIO) up to DSD1024

· Supports multiple clock sources such as S/PDIF, ADAT or WCLK inputs

· Supports MIDI 1.0 class, including MIDI port sharing

· Supports DFU (Device Firmware Upgrade) and comes with a GUI utility for firmware
update

· Provides a private API for driver control and direct device communication (SDK avail-
able)

· Comes with a control panel application for driver status/control

5

sw_usb_audio: USB Audio reference designs

· Optionally supports virtual channels (channels available at ASIO and Windows APIs
but not implemented in the device)

· Optionally supports mixing and/or signal processing plugin in the kernel-mode driver

· Fully supports driver signing, branding and customization including driver installer
(Customization will be done by Thesycon)

· Technical support and maintenance provided by Thesycon

· Custom features available on request

Note: Many of the benefits listed above apply to both UAC1.0 andUAC2.0 and the Thesy-
con Driver supports both class versions.

6

sw_usb_audio: USB Audio reference designs

4 Quick start

Warning: XMOS development boards are typically supplied with no firmware pre-
programmed.

The following steps explain how to programmed the latest firmware on the board and
use it. Each step is explained in detail in the following sections.

1. Download the latest USB Audio 2.0 Device software release from the XMOS website
USB & Multichannel Audio page, using the DOWNLOAD SOFTWARE link.
· Before downloading the software, review the licence and clickAccept to initiate the

download.
(Section USB Audio 2.0 reference software.)

2. If using aWindowshost computer, download theUSBAudioClass 2.0 EvaluationDriver
for Windows.
· On the XMOSwebsite USB&Multichannel Audio page, follow theDRIVER SUPPORT

link, and click on Download. Once downloaded, run the executable and install the
driver.

(Section USB Audio Class 2.0 evaluation driver for Windows.)

3. Download and install the the XMOS XTC Tools
· The minimum required XTC Tools version for compiling USB Audio applications

can be found in the README. Make sure to download the correct version of the
tools.

(Section XMOS XTC development tools)

4. Compile the firmware relavant to the available reference hardware platform .
(Section: Building the firmware)

5. Connect the board to the development system using (using the supplied xTAG if re-
quired), and program the firmware onto the board.
(Section Running the firmware)

6. Connect audio input and output devices, and play audio.
(Section Playing audio)

7

http://www.xmos.com/develop/usb-multichannel-audio
http://www.xmos.com/develop/usb-multichannel-audio
http://www.xmos.com/develop/usb-multichannel-audio
http://www.xmos.com/software-tools

sw_usb_audio: USB Audio reference designs

4.1 USB Audio 2.0 reference software

The latest USB Audio 2.0 Reference Design software is available free of charge from
XMOS.

When downloading the software for the first time, the user needs to register at http://
www.xmos.com/.

To download the firmware:

1. On the XMOS website USB & Multichannel Audio page, follow the DOWNLOAD SOFT-
WARE link

2. Review the licence agreement and click Accept.

3. Download and save the software when prompted.

The software is distributed as a zip archive containing pre-compiled binaries and source
code that can be built using the XMOS XTC Tools.

Alternatively, contact a local sales representative for further details:

4.2 USB Audio Class 2.0 evaluation driver for Windows

Note: Since version 10.6.4, macOS natively supports USB Audio Class 2.0 – no driver
install is required.

Note: Since version 10, release 1703, Windows natively supports USB Audio Class 2.0 –
no driver install is required.

Earlier Window versions only provides support for USB Audio Class 1.0. To use a USB
Audio Class 2.0 device under these Windows versions requires a third party driver.

Developers may also wish to use a third party driver for reasons including:

· ASIO support

· Advanced clocking options and controls

· Improved latency

· Native DSD (via ASIO)

· Branding customisation and custom control panels

· Large channel count devices

· Etc

XMOS therefore provides a free Windows USB Audio driver for evaluation and prototyp-
ing and a path to a more feature-rich multichannel production driver from our partner
Thesycon.

The evaluation driver is available from the XMOS website:

8

http://www.xmos.com/
http://www.xmos.com/
http://www.xmos.com/develop/usb-multichannel-audio
https://www.xmos.com/find-a-distributor/
http://www.xmos.com/published/usb-audio-class-20-evaluation-driver-windows

sw_usb_audio: USB Audio reference designs

Further information about the evaluation and production drivers is available in the USB
Audio Class 2.0 Windows Driver Overview document available on the website:

4.3 XMOS XTC development tools

The XMOS XTC tools provide everything required to develop applications for xcore mul-
ticore microcontrollers and can be downloaded, free of charge, from XMOS XTC tools.
Installation instructions can be found here. Be sure to pay attention to the section Instal-
lation of required third-party tools.

The XMOS XTC tools make it easy to define real-time tasks as a parallel system. They
comewith standards compliant C and C++ compilers, language libraries, simulator, sym-
bolic debugger, and runtime instrumentation and trace libraries. Multicore support offers
features for task based parallelism and communication, accurate timing and I/O, and
safe memory management. All components work off the real-time multicore functional-
ity, giving a fully integrated approach.

The XTC tools are required by anyone developing or deploying applications on an xcore
processor. The tools include:

· “Tile-level” toolchain (Compiler, assembler, etc)

· System libraries

· “Network-level” tools (Multi-tile mapper etc)

· XSIM simulator

· XGDB debugger

· Deployment tools

The tools as delivered are to be used within a command line environment, though may
also be integrated with VS Code graphical code editor.

Warning: USB Audio applications are compiled using the XCommon CMake build
system. The minimum XTC tools version that supports XCommon CMake can be
found in the README file. Ensure that the firmware is compiled using the correct XTC
Tools version.

9

http://www.xmos.com/published/usb-audio-20-stereo-driver-windows-overview
https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html#installation-of-the-vs-code-graphical-code-editor
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

sw_usb_audio: USB Audio reference designs

4.4 Building the firmware

Note: For convenience the release zips provided fromXMOScontain precompiled binary
(xe) files.

From a command prompt with the XMOS tools available, follow these steps:

1. Unzip the package zip to a known location

2. From the relevant application directory (e.g. app_usb_aud_xk_audio_316_mc),
execute the commands:

cmake -G "Unix Makefiles" -B build
xmake -C build

The above steps will configure and build all of the available and supported build config-
urations for the application.

The applications are compiled using XCommon CMake which is a CMake based build
system. The primary configuration file for the application is the CMakeLists.txt. It is
present in the application directory (e.g. app_usb_aud_xk_audio_316_mc). This file
specifies build configs, sources, build options and dependencies.

Note: See Build system for more details.

4.5 Running the firmware

Typically during development the developer wishes to program the device’s internal RAM
with the application binary directly via JTAG and then execute this application.

To run one of the compiled binaries complete the following steps:

1. Connect the USB Audio board to the host computer.

2.Connect the xTAG to the USB Audio board and connect it to the host machine on
which the application binary is present via a separate USB cable.

note, some boards have integrated xTAGs.

3. Ensure any required external power jacks are connected

Finally, to run the binary on the target, execute a command similar to the following:
xrun path/to/binary.xe

The device should now present itself as a USB Audio Device on the connected host com-
puter. It will continue to operate as a USB Audio Device until the target board is power
cycled.

4.6 Writing the application binary to flash

Optionally a binary can be programmed into the boot flash. To do this:

1. Connect the USB Audio board to the host computer.

2. Connect the xTAG to the USB Audio board and connect the it to the host machine on
which the application binary is present via a separate USB cable

10

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

sw_usb_audio: USB Audio reference designs

3. Ensure any required external power jacks are connected

From a command prompt with the XMOS tools available, run the following command:
xflash path/to/binary.xe

Once flashed the target device will reboot and execute the binary. Power cycling the
target board will cause the device to reboot the flashed binary.

4.7 Playing audio

1. Connect the board to any power supply provided (note, some boards will be USB bus
powered)

2. Connect the board to a host with driver support for USBAudio Class using a USB cable

3. Install the Windows USB Audio 2.0 demonstration driver, if required.

4. Connect audio input/output devices to the connectors on the board e.g powered
speakers

5. In the audio application, select the XMOS USB Audio device.

6. Start playing and recording.

11

sw_usb_audio: USB Audio reference designs

5 USB Audio programming guide

The following sections provide a guide on how to program the USB Audio applications
including information on project structure, build configurations and creating customUSB
audio applications.

5.1 Project structure

Build system

The XMOS USB Audio Reference Design software and associated libraries employ the
XCommon CMake build system. The XCommon CMake build system uses CMake to
configure and generate the build environment which can then be built using xmake. As
part of configuring the build environment, if there are any missing dependencies, XCom-
mon CMake fetches them using git.

Note: All required dependencies are included in the sw_usb_audio zip download.

Applications and libraries

The sw_usb_audio GIT repository includesmultiple application directories. Each applica-
tion directory contains aCMakeLists.txt filewhich describes the build configs for that
application. The format of the CMakeLists.txt is described here XCommon CMake
uses the CMakeLists.txt to generate Makefiles that can be compiled using xmake
into executables. Typically, there’s one application directory per hardware platform. Ap-
plications and their respective hardware platforms are listed in Table 2.

Table 2: USB Audio Reference Applications

Application Hardware platform

app_usb_aud_xk_316_mc xcore.ai USB Audio 2.0 Multi-channel Audio
Board

app_usb_aud_xk_216_mc xcore-200 USB Audio 2.0 Multi-channel Audio
Board

app_usb_aud_xk_evk_xu316 xcore.ai Evaluation Kit

The applications depend on several modules (or libraries), each of which have their own
GIT repository. The immediate dependency libraries for the applications are specified by
setting the APP_DEPENDENT_MODULES variable in the deps.cmake file. deps.cmake
lists the common dependencies for all the applications and is included in each applica-
tion’s CMakeLists.txt.

The dependency list specified in the deps.cmake can be extended to add new depen-
dencies. Refer to the XCommon CMake Dependency Format documentation for more
information about adding dependencies.

A shared file containing common dependencies ensures a consistent set of dependen-
cies between all of the applications.

Each library has a lib_build_info.cmake which lists the library source, com-
pile flags and dependencies. The library dependencies are specified in the
LIB_DEPENDENT_MODULES variable in the lib_build_info.cmake. This allows de-
pendency trees and nesting. XCommon CMake builds up a tree which is traversed depth-

12

https://www.xmos.ai/documentation/XM-014363-PC-7/html/tools-guide/tools-ref/cmd-line-tools/xmake-manual/xmake-manual.html#xmake
https://github.com/xmos/sw_usb_audio
https://www.xmos.com/documentation/XM-015090-PC-2/html/doc/config_files.html
https://github.com/xmos/sw_usb_audio/blob/develop/deps.cmake
https://www.xmos.com/documentation/XM-015090-PC-2/html/doc/api_reference/dependency_format.html#dependency-format

sw_usb_audio: USB Audio reference designs

first, and populates the sandbox, fetching any missing dependencies by cloning them
from github.

Most of the core code is contained in the XMOS USB Audio Library (lib_xua). A full list of
core dependencies is shown in Table 3.

Table 3: Core dependencies of USB Audio

Library Description

lib_xua Common code for USB audio applications
lib_xud Low level USB device library
lib_spdif S/PDIF transmit and receive code
lib_adat ADAT transmit and receive code
lib_mic_array PDMmicrophone interface and decimator
lib_xassert Lightweight assertions library

Note: Some of these core dependencies will have their own dependencies, for example
lib_mic_array depnds on lib_xassert (see above), lib_logging (a lightweight
print library) and lib_xcore_math (a DSP library).

5.2 Build configurations

Due to the flexibility of the reference design software there are a large number of build
options. For example input and output channel counts, Audio Class version, interface
types etc. A “build configuration” is a set of build options that combine to produce a
binary with a certain feature set.

The build configurations are listed in the application CMakeLists.txt file. The build
config names are appended to the APP_COMPILER_FLAGS variable to list the options
for the compiler to use when compiling all source files for the given build configuration
(APP_COMPILER_FLAGS_<build config>). For example:
set(APP_COMPILER_FLAGS_2AMi10o10xssxxx ${SW_USB_AUDIO_FLAGS}

-DXUA_SPDIF_TX_EN=1
-DXUA_SPDIF_RX_EN=1)

specifies that the compiler flags used when compiling the 2AMi10o10xssxxx build
config are everything defined in theSW_USB_AUDIO_FLAGS variable plus two extra com-
piler options for enabling S/PDIF transmit and receive.

To configure the build configurations, run the cmake command from the application (e.g.
app_usb_aud_xk_audio_316_mc) directory:
cmake -G "Unix Makefiles" -B build

This will create a directory called build within the application directory. The output
displayed on stdout for the cmake command will contain the list of all the build configu-
rations for that application. For example,
-- Configuring application: app_usb_aud_xk_evk_xu316
-- Found build configs:
-- 1AMi2o2xxxxxx
-- 2AMi2o2xxxxxx

13

https://www.xmos.com/file/lib_xua

sw_usb_audio: USB Audio reference designs

The cmake command generates theMakefile for compiling the different build configura-
tions. The Makefile is created in the build directory.

The next step is to run the xmake command which executes the commands in the
Makefile to build the executables corresponding to the build configs. To build all
supported configurations for a given application, from the application directory (e.g.
app_usb_aud_xk_audio_316_mc), run:
xmake -C build

This will run the xmake command in the build directory. The built executables
are stored in the <app name>/bin/<config name> directories. For exam-
ple, the app_usb_aud_xk_316_mc/bin/2AMi8o8xxxxxx directory contains the
app_usb_aud_xk_316_mc_2ASi8o8xxxxxx.xe executable. Note how the name of
the executable is set to <app_name>_<config_name>.xe:
<app name>/bin/<config name>/<app_name>_<config_name>.xe

To build a specific build configuration, after running the cmake command, run xmake
with the build config specified:
xmake -C build <build config>

For example:
xmake -C build 2AMi10o10xssxxx

5.3 Configuration naming

A naming scheme is employed in each application to link features to a build configura-
tion/binary. Depending on the hardware interfaces available variations of the same basic
scheme are used.

Each relevant build option is assigned a position in the configuration name, with a char-
acter denoting the options value (normally ‘x’ is used to denote “off” or “disabled”)

Some example build options are listed in Table 4.

Table 4: Example build options and naming

Build Option Name Options Denoted by

Audio Class Version 1 or 2 1 or 2
USB synchronisation type Asynchronous or Syn-

chronous
A or S

Device I2S role Master or Slave M or S
USB IN channels i<number>
USB OUT channels i<number>
MIDI on or off m or x
S/PDIF Output on or off s or x
S/PDIF Input on or off s or x
ADAT Input on or off a or x
ADAT Output on or off a or x
DSD on or off d or x

14

sw_usb_audio: USB Audio reference designs

For example, in this scheme, a configuration named 2AMi8o8msxxax would indicate
Audio Class 2.0, USB asynchronousmode, xcore is I²S master, 8 USB IN channels, 8 USB
OUT channels, MIDI enabled, S/PDIF input enabled, S/PDIF output disabled, ADAT input
disabled, ADAT output enabled and DSD disabled.

See comments in the application CMakeLists.txt for details.

5.4 Quality & testing

It is not practical for all build option permutations to be exhaustively tested. The XMOS
USB Audio Reference Design software therefore defines three levels of quality:

· Fully Tested - the configuration is fully supported. A product based on it can be imme-
diately put into to a production environment with high confidence. Quality assurance
(QA) should cover any customised code/functionality.

· Partially Tested - the configuration is partially tested. A product based on it can be
put into a production environment with medium confidence. Some additional QA is
recommended.

· Build Tested - the configuration is guaranteed to build but has not been tested. Full
QA is required.

Note: Typically disabling a function should have no effect on QA. For example, disabling
S/PDIF on a fully-tested configuration with it enabled should not affect its quality.

XMOS aims to provide fully tested configurations for popular device configurations and
common customer requirements and use cases.

Note: It is advised that full QA is applied to any product regardless of the quality level of
the configuration it is based on.

Fully tested configurations can be found in the application CMakeLists.txt. Partially
and build tested configurations can be found in the configs_partial.cmake and
configs_build.cmake files respectively.

Running cmake -G "Unix Makefiles" -B buildwill only configure the fully tested
configurations and following this upwith the xmake -C build commandwill build only
these.

To configure and build the partially tested configs in addition to the fully tested ones, run
cmake with the PARTIAL_TESTED_CONFIGS variable set to 1:
cmake -G "Unix Makefiles" -B build -DPARTIAL_TESTED_CONFIGS=1

Following this with the xmake -C build command will build both fully and partially
tested configs.

Similarly to also build the build tested configs along with the fully tested ones, run cmake
with BUILD_TESTED_CONFIGS set to 1, followed by the xmake command:
cmake -G "Unix Makefiles" -B build -DBUILD_TESTED_CONFIGS=1

Note that setting BUILD_TESTED_CONFIGS to 1 internally also set the
PARTIAL_TESTED_CONFIGS to 1. So running cmake with BUILD_TESTED_CONFIGS

15

sw_usb_audio: USB Audio reference designs

set to 1 will configure the fully tested, partially tested and build-only configs and following
this up with an xmake -C build will build all the 3 types of configs.

Note: Pre-release (i.e. alpha, beta or RC) firmware should not be used as basis for a pro-
duction device and may not be representative of the final release firmware. Additionally,
some releases may include features of lesser quality level. For example a beta release
may contain a feature still at alpha level quality. See application README for details of
any such features.

Note: Due to the similarities between the xcore-200 and xcore.ai series feature sets, it
is fully expected that all listed xcore-200 series configurations will operate as expected
on the xcore.ai series and vice versa. It is therefore expected that a quality level of a
configuration will migrate between XMOS device series.

16

sw_usb_audio: USB Audio reference designs

5.5 A typical USB Audio application

This section provides a walk through of a typical USB Audio application. Where spe-
cific examples are required, code is used from the application for XK-AUDIO-316-MC
(app_usb_aud_xk_316_mc).

Note: The applications in sw_usb_audio use the “Codeless Programming Model” as
documented in lib_xua. Briefly, the main() function is used from lib_xuawith build-
time defines in the application configuring the framework provided by lib_xua. Various
functions from lib_xua are then overridden to provide customisation. See lib_xua
for full details.

Each application directory contains:

1. A CMakeLists.txt

2. A src directory

The src directory is arranged into two directories:

1. A core directory containing source items that must be made available to the USB
Audio framework i.e. lib_xua.

2. Anextensions directory that includes extensions to the framework such as external
device configuration etc

The core folder for each application contains:

1. A .xn file to describe the hardware platform the application will run on

2. An optional header file to customise the framework provided by lib_xua named
xua_conf.h

lib_xua configuration

The xua_conf.h file contains all the build-time #defines required to tailor the frame-
work provided by lib_xua to the particular application at hand. Typically these override
default values in xua_conf_default.h in lib_xua/api.

Firstly in app_usb_aud_xk_316_mc the xua_conf.h file sets defines to determine
overall capability. For this application most of the optional interfaces are disabled by de-
fault. This is because the applications provide a large number build configurations in the
CMakeLists.txt enabling various interfaces. For a product with a fixed specification
this almost certainly would not be the case and setting in this file may be the preferred
option.

Note that ifndef is used to check that the option is not already defined in the
CMakeLists.txt.
/* Enable/Disable MIDI - Default is MIDI off */
#ifndef MIDI
#define MIDI (0)
#endif

/* Enable/Disable S/PDIF output - Default is S/PDIF off */
#ifndef XUA_SPDIF_TX_EN
#define XUA_SPDIF_TX_EN (0)
#endif

/* Enable/Disable S/PDIF input - Default is S/PDIF off */
#ifndef XUA_SPDIF_RX_EN
#define XUA_SPDIF_RX_EN (0)

(continues on next page)

17

sw_usb_audio: USB Audio reference designs

(continued from previous page)
#endif

/* Enable/Disable ADAT output - Default is ADAT off */
#ifndef XUA_ADAT_TX_EN
#define XUA_ADAT_TX_EN (0)
#endif

/* Enable/Disable ADAT input - Default is ADAT off */
#ifndef XUA_ADAT_RX_EN
#define XUA_ADAT_RX_EN (0)
#endif

/* Enable/Disable Mixing core(s) - Default is on */
#ifndef MIXER
#define MIXER (1)
#endif

/* Set the number of mixes to perform - Default is 0 i.e mixing disabled */
#ifndef MAX_MIX_COUNT
#define MAX_MIX_COUNT (0)
#endif

/* Audio Class version - Default is 2.0 */
#ifndef AUDIO_CLASS
#define AUDIO_CLASS (2)
#endif

Next, the file defines properties of the audio channels including counts and arrange-
ments. By default the application provides 8 analogue channels for input and output.

The total number of channels exposed to the USB host (set via NUM_USB_CHAN_OUT
and NUM_USB_CHAN_IN) are calculated based on the audio interfaces enabled. Again,
this is due to the multiple build configurations in the application CMakeLists.txt and
likely to be hard-coded for a product.
/* Number of I2S channels to DACs*/
#ifndef I2S_CHANS_DAC
#define I2S_CHANS_DAC (8)
#endif

/* Number of I2S channels from ADCs */
#ifndef I2S_CHANS_ADC
#define I2S_CHANS_ADC (8)
#endif

/* Number of USB streaming channels - by default calculate by counting audio interfaces */
#ifndef NUM_USB_CHAN_IN
#define NUM_USB_CHAN_IN (I2S_CHANS_ADC + 2*XUA_SPDIF_RX_EN + 8*XUA_ADAT_RX_EN) /* Device to Host */
#endif

#ifndef NUM_USB_CHAN_OUT
#define NUM_USB_CHAN_OUT (I2S_CHANS_DAC + 2*XUA_SPDIF_TX_EN + 8*XUA_ADAT_TX_EN) /* Host to Device */
#endif

/*** Defines relating to channel arrangement/indices ***/

Channel indices/offsets are set based on the audio interfaces enabled. Channels are
indexed from 0. Setting SPDIF_TX_INDEX to 0 would cause the S/PDIF channels to
duplicate analogue channels 0 and 1. Note, the offset for analogue channels is always 0.
/* Channel index of S/PDIF Tx channels: separate channels after analogue channels (if they fit) */
#ifndef SPDIF_TX_INDEX

#if (I2S_CHANS_DAC + 2*XUA_SPDIF_TX_EN) <= NUM_USB_CHAN_OUT
#define SPDIF_TX_INDEX (I2S_CHANS_DAC)

#else
#define SPDIF_TX_INDEX (0)

#endif
#endif

/* Channel index of S/PDIF Rx channels: separate channels after analogue channels */
#ifndef SPDIF_RX_INDEX
#define SPDIF_RX_INDEX (I2S_CHANS_ADC)
#endif

/* Channel index of ADAT Tx channels: separate channels after S/PDIF channels (if they fit) */
#ifndef ADAT_TX_INDEX

#define ADAT_TX_INDEX (I2S_CHANS_DAC + 2*XUA_SPDIF_TX_EN)
#endif

/* Channel index of ADAT Rx channels: separate channels after S/PDIF channels */
#ifndef ADAT_RX_INDEX
#define ADAT_RX_INDEX (I2S_CHANS_ADC + 2*XUA_SPDIF_RX_EN)

(continues on next page)

18

sw_usb_audio: USB Audio reference designs

(continued from previous page)
#endif

The file then sets some frequency related defines for the audio master clocks and the
maximum sample-rate for the device.
/* Master clock defines (in Hz) */
#ifndef MCLK_441
#define MCLK_441 (512*44100) /* 44.1, 88.2 etc */
#endif

#ifndef MCLK_48
#define MCLK_48 (512*48000) /* 48, 96 etc */
#endif

/* Minumum sample frequency device runs at */
#ifndef MIN_FREQ
#define MIN_FREQ (44100)
#endif

/* Maximum sample frequency device runs at */
#ifndef MAX_FREQ
#define MAX_FREQ (192000)
#endif

Due to themulti-tile nature of the xcore architecture the framework needs to be informed
as to which tile various interfaces should be placed on, for example USB, S/PDIF etc.
#define XUD_TILE (0)
#define PLL_REF_TILE (0)

#define AUDIO_IO_TILE (1)
#define MIDI_TILE (1)

The file also sets some defines for general USB IDs and strings. These are set for the
XMOS reference design but vary per manufacturer:
#define VENDOR_ID (0x20B1) /* XMOS VID */
#ifndef PID_AUDIO_2
#define PID_AUDIO_2 (0x0016)
#endif
#ifndef PID_AUDIO_1
#define PID_AUDIO_1 (0x0017)
#endif

#ifndef DFU_PID
#if (AUDIO_CLASS == 1)
#define DFU_PID (0xD000 + PID_AUDIO_1)
#else
#define DFU_PID (0xD000 + PID_AUDIO_2)
#endif
#endif

#define PRODUCT_STR_A2 "XMOS xCORE.ai MC (UAC2.0)"
#define PRODUCT_STR_A1 "XMOS xCORE.ai MC (UAC1.0)"

For a full description of all the defines that can be set in xua_conf.h see Configuration
defines.

User functions

In addition to the xua_conf.h file, the application needs to provide implementations of
some overridable user functions in lib_xua to provide custom functionality.

For app_usb_aud_xk_316_mc the implementations can be found in src/
extensions/audiohw.xc and src/extensions/audiostream.xc

The two functions it overrides in audiohw.xc are AudioHwInit() and
AudioHwConfig(). These are run from lib_xua on startup and sample-rate
change respectively. Note, the default implementations in lib_xua are empty. These
functions have parameters for sample frequency, sample depth, etc.

19

sw_usb_audio: USB Audio reference designs

In the case of app_usb_aud_xk_316_mc these functions configure the external DACs
and ADCs via an I²C bus and configure the xcore secondary PLL to generate the required
master clock frequencies.

Due to the complexity of the hardware on the XK-AUDIO-316-MC the source code is not
included here.

The application also overrides UserAudioStreamStart() and
UserAudioStreamStop(). These are called from lib_xua when the audio
stream to the device is started or stopped respectively. The application uses these
functions to enable/disable the on board LEDs based on whether an audio stream is
active (input or output).
// Copyright 2022-2024 XMOS LIMITED.
// This Software is subject to the terms of the XMOS Public Licence: Version 1.
#include <platform.h>

on tile[0]: out port p_leds = XS1_PORT_4F;

void UserAudioStreamStart(void)
{

/* Turn all LEDs on */
p_leds <: 0xF;

}

void UserAudioStreamStop(void)
{

/* Turn all LEDs off */
p_leds <: 0x0;

}

Note: A media player application may choose to keep an audio stream open and active
and simply send zero data when paused.

The main program

The main() function is the entry point to an application. In the XMOS USB Audio Refer-
ence Design software it is shared by all applications and is therefore part of the frame-
work.

This section is largely informational as most developers should not need to modify the
main() function. main() is located in main.xc in lib_xua, this file contains:

· A declaration of all the ports used in the framework. These clearly vary depending on
the hardware platform the application is running on.

· A main() function which declares some channels and then has a par statement
which runs the required cores in parallel.

Full documentation can be found in lib_xua.

The first items in the par include running tasks for the Endpoint 0 implementaton and
buffering tasks for audio and endpoint buffering:

{
unsigned x;
thread_speed();

/* Attach mclk count port to mclk clock-block (for feedback) */
//set_port_clock(p_for_mclk_count, clk_audio_mclk);

#if(AUDIO_IO_TILE != XUD_TILE)
set_clock_src(clk_audio_mclk_usb, p_mclk_in_usb);
set_port_clock(p_for_mclk_count, clk_audio_mclk_usb);
start_clock(clk_audio_mclk_usb);

#else
/* Clock port from same clock-block as I2S */
/* TODO remove asm() */
asm("ldw %0, dp[clk_audio_mclk]":"=r"(x));

(continues on next page)

20

https://www.xmos.com/file/lib_xua

sw_usb_audio: USB Audio reference designs

(continued from previous page)
asm("setclk res[%0], %1"::"r"(p_for_mclk_count), "r"(x));

#endif
/* Endpoint & audio buffering cores - buffers all EP's other than 0 */
XUA_Buffer(

#if (NUM_USB_CHAN_OUT > 0)
c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO], /* Audio Out*/

#endif
#if (NUM_USB_CHAN_IN > 0)

c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /* Audio In */
#endif
#if (NUM_USB_CHAN_OUT > 0) && ((NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP))

c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /* Audio FB */
#endif
#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI Out */ // 2
c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI In */ // 4
c_midi,

#endif
#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

/* Audio Interrupt - only used for interrupts on external clock change */
c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],
c_clk_int,

#endif
c_sof, c_aud_ctl, p_for_mclk_count

#if (XUA_HID_ENABLED)
, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif
, c_mix_out

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)
, c_audio_rate_change

#if (!XUA_USE_SW_PLL)
, i_pll_ref

#else
, c_sw_pll

#endif
#endif

);
//:

}
#endif

/* Endpoint 0 Core */
{

thread_speed();
XUA_Endpoint0(c_xud_out[0], c_xud_in[0], c_aud_ctl, c_mix_ctl, c_clk_ctl, c_EANativeTransport_

↪→ctrl, dfuInterface VENDOR_REQUESTS_PARAMS_);
}

It also runs a task for the USB interfacing thread (XUD_Main()):
XUD_Main(c_xud_out, ENDPOINT_COUNT_OUT, c_xud_in, ENDPOINT_COUNT_IN,

The specification of the channel arrays connecting to this driver are described in the
documentation for lib_xud.

The channels connected to XUD_Main() are passed to the XUA_Buffer() function
which implements audio buffering and also buffering for other Endpoints.

XUA_Buffer(
#if (NUM_USB_CHAN_OUT > 0)

c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO], /* Audio Out*/
#endif
#if (NUM_USB_CHAN_IN > 0)

c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /* Audio In */
#endif
#if (NUM_USB_CHAN_OUT > 0) && ((NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP))

c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /* Audio FB */
#endif
#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI Out */ // 2
c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI In */ // 4
c_midi,

#endif
#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

/* Audio Interrupt - only used for interrupts on external clock change */
c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],
c_clk_int,

#endif
c_sof, c_aud_ctl, p_for_mclk_count

#if (XUA_HID_ENABLED)
, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif
, c_mix_out

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)
, c_audio_rate_change

(continues on next page)

21

https://www.xmos.com/file/lib_xud

sw_usb_audio: USB Audio reference designs

(continued from previous page)
#if (!XUA_USE_SW_PLL)

, i_pll_ref
#else

, c_sw_pll
#endif

#endif
);

A channel connects this buffering task to the audio driver which controls the I²S output.
It also forwards and receives audio samples from other interfaces e.g. S/PDIF, ADAT, as
required:

usb_audio_io(
#if (NUM_USB_CHAN_OUT > 0) || (NUM_USB_CHAN_IN > 0)

/* Connect audio system to XUA_Buffer(); */
c_mix_out

#else
/* Connect to XUA_Endpoint0() */
c_aud_ctl

#endif
#if (XUA_SPDIF_TX_EN) && (SPDIF_TX_TILE != AUDIO_IO_TILE)

, c_spdif_tx
#endif
#if (MIXER)

, c_mix_ctl
#endif

, c_spdif_rx, c_adat_rx, c_clk_ctl, c_clk_int
#if (XUD_TILE != 0) && (AUDIO_IO_TILE == 0) && (XUA_DFU_EN == 1)

, dfuInterface
#endif
#if (XUA_NUM_PDM_MICS > 0)

, c_pdm_pcm
#endif
#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

, i_pll_ref
#endif
#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change
#endif
#if ((XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN) && XUA_USE_SW_PLL)

, p_for_mclk_count_audio
, c_sw_pll

#endif
);

}

Finally, other tasks are created for various interfaces, for example, if MIDI is enabled a
core is required to drive the MIDI input and output.

on tile[MIDI_TILE]:
{

thread_speed();
usb_midi(p_midi_rx, p_midi_tx, clk_midi, c_midi, 0);

}

5.6 Adding custom code

The flexibility of the XMOS USB Audio Reference Design software is such that the refer-
ence applications can be modified to change the feature set or add extra functionality.
Any part of the software can be altered since full source code is supplied.

Note: The reference designs have been verified against a variety of host operating sys-
tems at different samples rates. Modifications to the code may invalidate the results of
this verification and fully retesting the resulting software is strongly recommended.

Note: Developers are encouraged to use a version control system, i.e. GIT, to track
changes to the codebase, however, this is beyond the scope of this document.

The general steps to producing a custom codebase are as follows:

22

sw_usb_audio: USB Audio reference designs

1. Make a copy of the reference application directory (e.g. app_usb_aud_xk_316_mc
or app_usb_aud_xk_216_mc) to a separate directory with a different name. Modify
the new application to suit the custom requirements. For example:
· Provide the .xn file for the target hardware platform by setting the
APP_HW_TARGET in the application’s CMakeLists.txt.

· Update xua_conf.h with specific defines for the custom application.
· Add any other custom code in the files as needed.
· Update the main.xc to add any custom tasks.

2. Make a copy of any dependencies that require modification (in most cases, this step
is unnecessary). Update the custom application’s CMakeLists.txt to use these
new modules.

3. After making appropriate changes to the code, rebuild and re-flash the device for test-
ing.

Note: Whilst a developer may directly change the code in main.xc to add custom
tasks this may not always be desirable. Doing this may make taking updates from
XMOS non-trivial (the same can be said for any custom modifications to any core li-
braries). Since adding tasks is considered reasonably common, customisation defines
USER_MAIN_CORES and USER_MAIN_DECLARATIONS are made available.

An example usage is shown in app_usb_aud_xk_316_mc/src/extensions/
user_main.h In reality the developer must weigh up the inconvenience of using these
defines versus the inconvenience of merging updates from XMOS into a modified code-
base.

The following sections show some example changes with a high level overview of how
to change the code.

Example: Changing output format

Customising the digital output format may be required, for example, to support a CODEC
that expects sample data right-justified with respect to the word clock.

To achieve this, alter the main audio driver loop in xua_audiohub.xc. After making
the alteration, re-test the functionality to ensure proper operation.

Hint, a naive approach would simply include right-shifting the audio data by 7 bits before
it is output to the port. This would of course lose LSB data depending on the sample-
depth.

Example: Adding DSP to the output stream

To add some DSP requires an extra thread of computation. Depending on the xcore
device being used, some existing functionality might need to be disabled to free up a
thread (e.g. disable S/PDIF). There are many ways that DSP processing can be added,
the steps below outline one approach:

1. Remove some functionality using the defines in Configuration defines to free up a
thread as required.

2. Add another thread to do the DSP. This core will probably have a single XC chan-
nel. This channel can be used to send and receive audio samples from the
XUA_AudioHub() task. A benefit of modifying samples here is that samples from
all inputs are collected into one place at this point. Optionally, a second channel could

23

sw_usb_audio: USB Audio reference designs

be used to accept control messages that affect the DSP. This could be from Endpoint
0 or some other task with user input - a thread handling button presses, for example.

3. Implement the DSP in this thread. This needs to be synchronous (i.e. for every sample
received from the XUA_AudioHub(), a sample needs to be output back).

24

sw_usb_audio: USB Audio reference designs

6 USB Audio applications

The reference applications supplied in sw_usb_audio use the framework provided in
lib_xua and provide qualified configurations of the framework which support, and are
validated, on an accompanying reference hardware platform.

These reference design applications customise and extend this framework to provide
the required functionality. This document will now examine in detail how each of the
provided applications customise and extend the framework.

The applications contained in this repo use lib_xua in a “code-less” manner. That is,
they use the main() function from lib_xua and customise the code-base as required
using build time defines and by providing implementations to the various required func-
tions in order to support their hardware.

Refer to lib_xua <https://www.xmos.com/file/lib_xua>‘_ documentation for full details.

6.1 The xcore.ai Multi-Channel Audio Board

An application of the USB audio framework is provided specifically for the
XK_AUDIO_316_MC hardware described in USB Audio hardware platforms and is
implemented on an xcore.ai series dual tile device. The related code can be found in
app_usb_aud_xk_316_mc.

The design supports upto 8 channels of analogue audio input/output at sample-rates up
to 192 kHz (assuming the use of I²S). This can be further increased by utilising TDM. It
also supports S/PDIF, ADAT andMIDI input and output as well as the mixing functionalty
of lib_xua.

The design uses the following tasks:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint Buffer

· Decoupler

· AudioHub Driver

· Mixer

· S/PDIF Transmitter

· S/PDIF Receiver

· ADAT Transmitter

· ADAT Receiver

· Clockgen

· MIDI

The software layout of theUSBAudio 2.0 ReferenceDesign running on the xcore.ai device
is shown in Fig. 1.

Each circle depicts a task running in a single core concurrently with the other tasks. The
lines show the communication between each task.

25

https://www.xmos.com/file/lib_xua

sw_usb_audio: USB Audio reference designs

Fig. 1: xcore.ai multichannel audio system/task diagram

Audio hardware

Clocking and clock selection Aswell as the secondary (application) PLL of the xcore.ai
device the board includes two options for master clock generation:

· A Cirrus Logic CS2100 fractional-N clock multiplier allowing the master clock to be
generated from a xcore derived reference clock.

· A Skyworks Si5351A-B-GT CMOS clock generator.

The master clock source is chosen by driving two control signals as shown below:

Control Signal Master Clock Source
EXT_PLL_SEL MCLK_DIR

0 0 Cirrus CS2100
1 0 Skyworks SI5351A-B-GT
X 1 xcore.ai secondary (application) PLL

Each of the sources have potential benefits, some of which are discussed below:

· The Cirrus CS2100 simplifies generating a master clock locked to an external clock
(such as S/PDIF in or word clock in).
· Itmultiplies up thePLL_SYNC signal which is generated by the xcore.ai device based

on the desired external source (so S/PDIF in frame signal or word clock in).

26

sw_usb_audio: USB Audio reference designs

· The Si5351A-B-GT offers very low jitter performance at a relatively lower cost than the
CS2100. Locking to an external source is more difficult.

· The xcore.ai secondary PLL is obviously the lowest cost and significantly lowest power
solution, however its jitter performance can not match the Si5351A which may be im-
portant in demanding applications. Locking to an external clock is possible but in-
volves more complicated firmware and more MIPS.

The master clock source is controlled by a mux which, in turn, is controlled by bit 5 of
PORT 8C:

Table 5: Master Clock Source Selection

Value Source

0 Master clock is sourced from PhaseLink PLL
1 Master clock is source from Cirrus Clock Multiplier

The clock-select from the phaselink part is controlled via bit 7 of PORT 8C:

Table 6: Master Clock Frequency Select

Value Frequency

0 24.576MHz
1 22.579MHz

DAC and ADC The board is equipped with four PCM5122 stereo DACs from Texas
instruments and two quad-channel PCM1865 ADCs from Texas Instruments, giving 8
channels of analogue output and 8 channels of analogue input. Configuration of both
the DAC and the ADC takes place over I²C.

Configuring audio hardware

All of the external audio hardware is configured using lib_board_support.

Note: lib_board_support has the I²C library (lib_i2c) in its dependency list.

The hardware targeted is the XMOS XU316 Multichannel Audio board (XK-AUDIO-
316-MC). The lib_board_support functions xk_audio_316_mc_ab_board_setup(),
xk_audio_316_mc_ab_i2c_master(),xk_audio_316_mc_ab_AudioHwInit()
and xk_audio_316_mc_ab_AudioHwConfig() are called at various points during
initialisation and runtime to start the I²C master, initialise and configure the audio
hardware.

The audio hardware configuration is set in the config
structure of type xk_audio_316_mc_ab_config_t which
is passed to the xk_audio_316_mc_ab_board_setup(),
xk_audio_316_mc_ab_AudioHwInit() andxk_audio_316_mc_ab_AudioHwConfig()
functions.
static xk_audio_316_mc_ab_config_t config =
{

// clk_mode
(XUA_SYNCMODE == XUA_SYNCMODE_SYNC || XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

(continues on next page)

27

https://www.xmos.com/file/lib_board_support

sw_usb_audio: USB Audio reference designs

(continued from previous page)
? (XUA_USE_SW_PLL

? CLK_PLL : CLK_CS2100)
: CLK_FIXED,

// dac_is_clk_master
CODEC_MASTER,

// default_mclk
(DEFAULT_FREQ % 22050 == 0) ? MCLK_441 : MCLK_48,

// pll_sync_freq
PLL_SYNC_FREQ,

// pcm_format
XUA_PCM_FORMAT,

// i2s_n_bits
XUA_I2S_N_BITS,

// i2s_chans_per_frame
I2S_CHANS_PER_FRAME

};

xk_audio_316_mc_ab_board_setup() function is called from the wrapper func-
tion board_setup() as part of the application’s initialisation process. It performs the
required port operations to enable the audio hardware on the platform.

xk_audio_316_mc_ab_i2c_master() function is called after board_setup()
during initialisation and it starts the I²C master task. This is required to allow the audio
hardware to be configured over I²C, remotely from the other tile, due to the IO arrange-
ment of the XK-AUDIO-316-MC board.
#define USER_MAIN_CORES on tile[0]: {\

board_setup();\
xk_audio_316_mc_ab_i2c_master(i2c);\

The AudioHwInit() function is implemented to make a call to the
lib_board_support function xk_audio_316_mc_ab_AudioHwInit() to power
up and initialise the audio hardware ready for a configuration.

The AudioHwConfig() function configures the audio hardware post initialisa-
tion. It is typically called each time a sample rate or stream format change
occurs. It is implmented to make a call to the lib_board_support function
xk_audio_316_mc_ab_AudioHwConfig().

For further details on the hardware platform and the functions available for configuring
it refer to lib_board_support documentation.

Validated build options

The reference design can be built in several ways by changing the build options. These
are described in Configuration defines.

The design has only been fully validated against the build options as set in the applica-
tion as distributed in the CMakeLists.txt. See Build configurations for details and general
information on build configuration naming scheme.

These fully validated build configurations are enumerated in the supplied CMakeLists.txt.

The build configuration naming scheme employed in the CMakeLists.txt is shown in Ta-
ble 7.

28

https://www.xmos.com/file/lib_board_support

sw_usb_audio: USB Audio reference designs

Table 7: Build config naming scheme

Feature Option 1 Option 2

Audio Class 1 2
USB Sync Mode async: A sync: S
I²S Role slave: S master: M
Input enabled: i (channel count) disabled: x
Output enabled: i (channel count) disabled: x
MIDI enabled: m disabled: x
S/PDIF input enabled: s disabled: x
S/PDIF input enabled: s disabled: x
ADAT input enabled: a disabled: x
ADAT output enabled: a disabled: x
DSD output enabled: d disabled: x

e.g. A build configuration named 2AMi10o10xsxxxx would signify: Audio Class 2.0 run-
ning in asynchronousmode. The xcore is I²S master. Input and output enabled (10 chan-
nels each), no MIDI, S/PDIF input, no S/PDIF output, no ADAT or DSD.

In addition to this some terms may be appended onto a build configuration name to
signify additional options. For example, tdmmay be appended to the build configuration
name to indicate the I²S mode employed.

6.2 The xcore-200 Multi-Channel Audio Board

An application of the USB audio framework is provided specifically for the
XK_AUDIO_216_MC_AB hardware described in USB Audio hardware platforms and
is implemented on an xcore-200 series dual tile device. The related code can be found
in app_usb_aud_xk_216_mc.

The design supports upto 8 channels of analogue audio input/output at sample-rates up
to 192kHz (assuming the use of I²S). This can be further increased by utilising TDM. It
also supports S/PDIF, ADAT andMIDI input and output as well as the mixing functionalty
of lib_xua.

The design uses the following tasks:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint Buffer

· Decoupler

· AudioHub Driver

· Mixer

· S/PDIF Transmitter

· S/PDIF Receiver

· ADAT Receiver

29

sw_usb_audio: USB Audio reference designs

· Clockgen

· MIDI

The software layout of theUSBAudio 2.0 ReferenceDesign running on the xcore.ai device
is shown in Fig. 2.

Each circle depicts a task running in a single core concurrently with the other tasks. The
lines show the communication between each task.

Fig. 2: xcore-200 Multichannel Audio system/task diagram

The app_usb_aud_xk_216_mc application uses the functions provided in
lib_board_support for master clock generation and audio hardware con-
figuration. The functions xk_audio_216_mc_ab_AudioHwInit() and
xk_audio_216_mc_ab_AudioHwConfig() are called at various points during
initialisation and runtime to initialise and configure the audio hardware.

For further details on the hardware platform and the functions available for configuring
it refer to lib_board_support documentation.

30

https://www.xmos.com/file/lib_board_support

sw_usb_audio: USB Audio reference designs

Audio hardware

Clocking and Clock Selection The board includes two options for master clock gener-
ation:

· A single oscillator with a Phaselink PLL to generate fixed 24.576MHz and 22.5792MHz
master-clocks.

· A Cirrus Logic CS2100 clockmultiplier allowing themaster clock to be generated from
a xcore derived reference clock.

The master clock source is controlled by a mux which, in turn, is controlled by bit 5 of
PORT 8C:

Table 8: Master Clock Source Selection

Value Source

0 Master clock is sourced from PhaseLink PLL
1 Master clock is source from Cirrus Clock Multiplier

The clock-select from the phaselink part is controlled via bit 7 of PORT 8C:

Table 9: Master Clock Frequency Select

Value Frequency

0 24.576MHz
1 22.579MHz

DAC and ADC The board is equipped with a single multi-channel audio DAC (Cirrus
Logic CS4384) and a single multi-channel ADC (Cirrus Logic CS5368) giving 8 channels
of analogue output and 8 channels of analogue input. Configuration of both the DAC and
the ADC takes place over I²C.

Configuring audio hardware

All of the external audio hardware is configured using lib_board_support.

Note: lib_board_support has the I²C library (lib_i2c) in its dependency list.

The hardware targeted is the XMOS XU216 Multichannel Audio board (XK-
AUDIO-216-MC). The functions xk_audio_216_mc_ab_AudioHwInit() and
xk_audio_216_mc_ab_AudioHwConfig() are called at various points during
initialisation and runtime to initialise and configure the audio hardware.

The audio hardware configuration is set in the config struc-
ture of type xk_audio_216_mc_ab_config_t which is
passed to the xk_audio_216_mc_ab_AudioHwInit() and
xk_audio_216_mc_ab_AudioHwConfig() functions.
static const xk_audio_216_mc_ab_config_t config = {

// clk_mode
CLK_MODE,

// codec_is_clk_master

(continues on next page)

31

sw_usb_audio: USB Audio reference designs

(continued from previous page)
CODEC_MASTER,

// usb_sel
(USB_SEL_A ? AUD_216_USB_A : AUD_216_USB_B),

// pcm_format
XUA_PCM_FORMAT,

// pll_sync_freq
PLL_SYNC_FREQ

};

The AudioHwInit() function is implemented to make a call to the
lib_board_support function xk_audio_216_mc_ab_AudioHwInit() to power
up and initialise the audio hardware ready for a configuration.

The AudioHwConfig() function configures the audio hardware post initialisa-
tion. It is called each time a sample rate or stream format change oc-
curs. It is implemented to make a call to the lib_board_support function
xk_audio_216_mc_ab_AudioHwConfig().

For further details on the hardware platform and the functions available for configuring
it refer to lib_board_support documentation.

Validated build options

The reference design can be built in several ways by changing the build options. These
are described in Configuration defines.

The design has only been fully validated against the build options as set in the applica-
tion as distributed in the CMakeLists.txt. See Build configurations for details and general
information on build configuation naming scheme.

These fully validated build configurations are enumerated in the supplied CMakeLists.txt.

In practise, due to the similarities between the xcore-200 and xcore.ai series feature set,
it is fully expected that all listed xcore-200 series configurations will operate as expected
on the xcore.ai series and vice versa.

The build configuration naming scheme employed in the CMakeLists.txt is shown in Ta-
ble 10.

Table 10: Build config naming scheme

Feature Option 1 Option 2

Audio Class 1 2
USB Sync Mode async: A sync: S
I²S Role slave: S master: M
Input enabled: i (channel count) disabled: x
Output enabled: i (channel count) disabled: x
MIDI enabled: m disabled: x
S/PDIF input enabled: s disabled: x
S/PDIF input enabled: s disabled: x
ADAT input enabled: a disabled: x
ADAT output enabled: a disabled: x
DSD output enabled: d disabled: x

32

https://www.xmos.com/file/lib_board_support

sw_usb_audio: USB Audio reference designs

e.g. A build configuration named 2AMi10o10xsxxxx would signify: Audio class 2.0 run-
ning in asynchronousmode. The xcore is I²S master. Input and output enabled (10 chan-
nels each), no MIDI, S/PDIF input, no S/PDIF output, no ADAT or DSD.

In addition to this some terms may be appended onto a build configuration name to
signify additional options. For example, tdmmay be appended to the build configuration
name to indicate the I²S mode employed.

33

sw_usb_audio: USB Audio reference designs

7 USB Audio API reference

7.1 Configuration defines

An application using the USB audio framework provided by lib_xua needs to
be configured via defines. Defaults for these defines are found in lib_xua in
xua_conf_default.h.

An application should override these defines in an optional xua_conf.h file or in the
CMakeLists.txt for the relevant build configuration.

This section documents commonly used defines, for full listings and documentation see
the lib_xua.

Code location (tile)

AUDIO_IO_TILE

Location (tile) of audio I/O. Default: 0.

XUD_TILE

Location (tile) of audio I/O. Default: 0.

MIDI_TILE

Location (tile) of MIDI I/O. Default: AUDIO_IO_TILE.

PLL_REF_TILE

Location (tile) of reference signal to CS2100. Default: AUDIO_IO_TILE.

SPDIF_TX_TILE

Location (tile) of SPDIF Tx. Default: AUDIO_IO_TILE.

Channel counts

NUM_USB_CHAN_OUT

Number of output channels (host to device). Default: NONE (Must be defined by
app)

NUM_USB_CHAN_IN

Number of input channels (device to host). Default: NONE (Must be defined by
app)

I2S_CHANS_DAC
Number of I2S channesl to DAC/CODEC. Must be a multiple of 2.
Default: NONE (Must be defined by app)

I2S_CHANS_ADC
Number of I2S channels from ADC/CODEC. Must be a multiple of 2.
Default: NONE (Must be defined by app)

34

sw_usb_audio: USB Audio reference designs

DSD_CHANS_DAC
Number of DSD output channels.
Default: 0 (disabled)

Frequencies and clocks

MAX_FREQ

Max supported sample frequency for device (Hz).
Default: 192000Hz

MIN_FREQ

Min supported sample frequency for device (Hz).
Default: 44100Hz

MCLK_441

Master clock defines for 44100 rates (in Hz).
Default: NONE (Must be defined by app)

MCLK_48

Master clock defines for 48000 rates (in Hz).
Default: NONE (Must be defined by app)

Audio Class

AUDIO_CLASS
USB Audio Class Version.
Default: 2 (Audio Class version 2.0)

System feature configuration

MIDI

MIDI
Enable MIDI functionality including buffering, descriptors etc. Default: DISABLED.

MIDI_RX_PORT_WIDTH

MIDI Rx port width (1 or 4bit). Default: 1.

S/PDIF

XUA_SPDIF_TX_EN

Enables SPDIF Tx. Default: 0 (Disabled)

SPDIF_TX_INDEX

Defines which output channels (stereo) should be output on S/PDIF. Note, Output
channels indexed from 0.
Default: 0 (i.e. channels 0 & 1)

35

sw_usb_audio: USB Audio reference designs

XUA_SPDIF_RX_EN

Enables SPDIF Rx. Default: 0 (Disabled)

SPDIF_RX_INDEX
S/PDIF Rx first channel index, defineswhich channels S/PDIFwill be input on. Note,
indexed from 0.
Default: NONE (Must be defined by app when SPDIF_RX enabled)

ADAT

XUA_ADAT_TX_EN

Enables ADAT Tx. Default: 0 (Disabled)

ADAT_TX_INDEX

Defines which output channels (8) should be output on ADAT. Note, Output chan-
nels indexed from 0.
Default: 0 (i.e. channels [0:7])

XUA_ADAT_RX_EN

Enables ADAT Rx. Default: 0 (Disabled)

ADAT_RX_INDEX
ADAT Rx first channel index. defines which channels ADAT will be input on. Note,
indexed from 0.
Default: NONE (Must be defined by app when XUA_ADAT_RX_EN is true)

PDM Microphones

XUA_NUM_PDM_MICS
Number of PDM microphones in the design.
Default: 0

DFU

XUA_DFU_EN
Enable DFU functionality.
Default: 1 (Enabled)

HID

HID_CONTROLS
Enable HID playback controls functionality.
1 for enabled, 0 for disabled.
Default 0 (Disabled)

CODEC Interface

36

sw_usb_audio: USB Audio reference designs

CODEC_MASTER

Defines whether XMOS device runs as master (i.e. drives LR and Bit clocks)
0: XMOS is I2S master. 1: CODEC is I2s master.
Default: 0 (XMOS is master)

USB device configuration

VENDOR_STR
Vendor String used by the device. This is also pre-pended to various strings used
by the design.
Default: “XMOS”

VENDOR_ID

USB Vendor ID (or VID) as assigned by the USB-IF.
Default: 0x20B1 (XMOS)

PRODUCT_STR
USB Product String for the device. If defined will be used for both PROD-
UCT_STR_A2 and PRODUCT_STR_A1.
Default: Undefined

PRODUCT_STR_A2
Product string for Audio Class 2.0 mode.
Default: “XMOS xCORE (UAC2.0)”

PRODUCT_STR_A1
Product string for Audio Class 1.0 mode.
Default: “XMOS xCORE (UAC1.0)”

PID_AUDIO_1

USB Product ID (PID) for Audio Class 1.0 mode. Only required if AUDIO_CLASS ==
1 or AUDIO_CLASS_FALLBACK is enabled.
Default: 0x0003

PID_AUDIO_2

USB Product ID (PID) for Audio Class 2.0 mode.
Default: 0x0002

BCD_DEVICE
Device firmware version number in Binary Coded Decimal format: 0xJJMN where
JJ: major, M: minor, N: sub-minor version number.
NOTE: User code should not modify this but should modify BCD_DEVICE_J,
BCD_DEVICE_M, BCD_DEVICE_N instead
Default: XMOS USB Audio Release version (e.g. 0x0651 for 6.5.1).

37

sw_usb_audio: USB Audio reference designs

Volume control

OUTPUT_VOLUME_CONTROL
Enable/disable output volume control including all processing and descriptor sup-
port.
Default: 1 (Enabled)

INPUT_VOLUME_CONTROL
Enable/disable input volume control including all processing and descriptor sup-
port.
Default: 1 (Enabled)

Mixing parameters

MIXER
Enable “mixer” core.
Default: 0 (Disabled)

MAX_MIX_COUNT
Number of seperate mixes to perform.
Default: 8 if MIXER enabled, else 0

MIX_INPUTS
Number of channels input into the mixer.
Note, total number of mixer nodes is MIX_INPUTS * MAX_MIX_COUNT
Default: 18

Power

XUA_POWERMODE
Report as self or bus powered device. This affects descriptors and XUD usage and
is important for USB compliance.
Default: XUA_POWERMODE_BUS

7.2 User function definitions

The following functions can be optionally defined by an application to override default
(empty) implementations in lib_xua.

External audio hardware configuration

The functions listed below should be implemented to configure external audio hardware.

void AudioHwInit(void)
User audio hardware initialisation code.
This function is called when the device starts up and should contain user code to
perform any required audio hardware initialisation

38

sw_usb_audio: USB Audio reference designs

void AudioHwConfig(unsigned samFreq, unsigned mClk, unsigned dsdMode,
unsigned sampRes_DAC, unsigned sampRes_ADC)

User audio hardware configuration code.
This function is called when on sample rate change and should contain user code
to configure audio hardware (clocking, CODECs etc) for a specific mClk/Sample
frequency

Parameters

· samFreq – The new sample frequency (in Hz)
· mClk – The new master clock frequency (in Hz)
· dsdMode–DSDmode, DSD_MODE_NATIVE, DSD_MODE_DOP or

DSD_MODE_OFF
· sampRes_DAC – Playback sample resolution (in bits)
· sampRes_ADC – Record sample resolution (in bits)

void AudioHwConfig_Mute(void)
User code mute audio hardware.
This function is called before AudioHwConfig() and should contain user code to
mute audio hardware before a sample rate change in order to reduced audible pop-
s/clicks
Note, if using the application PLL of a xcore.ai device this function will be called
before the master-clock is changed

void AudioHwConfig_UnMute(void)
User code to un-mute audio hardware.
This function is called after AudioHwConfig() and should contain user code to un-
mute audio hardware after a sample rate change

Audio streaming notification

The functions listed below can be useful for mute lines, indication LEDs etc.

void UserAudioStreamStart(void)
User stream start code.
User code to perform any actions required at every stream start - either input or
output

void UserAudioStreamStop(void)
User stream stop code.
User code to perform any actions required on every stream stop - either input or
output

void UserAudioInputStreamStart(void)
User input stream stop code.
User code to perform any actions required on input stream start i.e. device to host

void UserAudioInputStreamStop(void)
User input stream stop code.
User code to perform any actions required on input stream stop i.e. device to host

void UserAudioOutputStreamStart(void)
User output stream start code.
User code to performany actions required on output streamstart i.e. host to device

39

sw_usb_audio: USB Audio reference designs

void UserAudioOutputStreamStop(void)
User output stream stop code.
User code to perfrom any actions required on output stream stop i.e. host to device

HID controls

The following function is called when the device wishes to read physical user input (but-
tons etc). The function should write relevant HID bits into this array. The bit ordering and
functionality is defined by the HID report descriptor used.

size_t UserHIDGetData(const unsigned id, unsigned char
hidData[HID_MAX_DATA_BYTES])

Get the data for the next HID Report.

Parameters

· id– [in] TheHID Report ID (see 5.6, 6.2.2.7, 8.1 and 8.2 of the USB
Device Class Definition for HID 1.11) Set to zero if the application
provides only one HID Report which does not include a Report ID

· hidData – [out] The HID data If using Report IDs, this function
places the Report ID in the first element; otherwise the first ele-
ment holds the first byte of HID event data.

Return values
Zero – means no new HID event data has been recorded for the
given id

Returns
The length of the HID Report in the hidData argument

40

sw_usb_audio: USB Audio reference designs

8 Frequently Asked Questions

Why does the USBView tool from Microsoft show errors in the devices descriptors?

The USBView tool supports USB Audio Class 1.0 only

How do I set the maximum sample rate of the device?

See MAX_FREQ define in Configuration defines

What is the maximum channel count the device can support?

Themaximum channel count of a device is a function of sample-rate and sample-depth.
A standard high-speed USB Isochronous endpoint can handle a 1024 byte packet every
microframe (125uS).

It follows then that at 192 kHz the device/hosts expects 24 samples per frame
(192000/8000). When using Asynchronous mode we must allow for +/- one sample,
so 25 samples per microframe in this case.

Assuming 4 byte (32 bit) sample size, the bus expects ((192000/8000)+1) * 4 = 100 bytes
per channel per microframe. Dividing the maximum packet size by this value yields the
theoretical maximum channel count at the given frequency, that is 1024/100 = 10.24.
Clearly this must be rounded down to 10 whole channels.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

41

	Overview
	USB Audio hardware platforms
	Driver support
	OS support for UAC 1.0
	OS support for UAC 2.0
	Third party Windows drivers

	Quick start
	USB Audio 2.0 reference software
	USB Audio Class 2.0 evaluation driver for Windows
	XMOS XTC development tools
	Building the firmware
	Running the firmware
	Writing the application binary to flash
	Playing audio

	USB Audio programming guide
	Project structure
	Build configurations
	Configuration naming
	Quality & testing
	A typical USB Audio application
	Adding custom code

	USB Audio applications
	The xcore.ai Multi-Channel Audio Board
	The xcore-200 Multi-Channel Audio Board

	USB Audio API reference
	Configuration defines
	User function definitions

	Frequently Asked Questions

