
lib_i2s: I²S/TDM library

Publication Date: 2024/11/12
Document Number: XM-007055-UG v6.0.1

lib_i2s: I²S/TDM library

IN THIS DOCUMENT

1 Introduction . 2
2 I²S fundamentals . 2

2.1 Resource usage . 4
2.2 Connecting I²S signals to the xcore device . 4
2.3 I²S controller speeds and performance . 5
2.4 I²S target speeds and performance . 6

3 TDM fundamentals . 7
3.1 Connecting TDM signals to the xcore device . 8
3.2 TDM speeds and performance . 8

4 Usage . 9
4.1 The callback interface . 9
4.2 I²S controller usage . 9
4.3 I²S target usage . 10

5 TDM usage . 10
5.1 TDM channel numbering . 11

6 Callback sequences . 11
6.1 Clock configuration . 12

7 Examples . 12
8 Loopback demos . 12

8.1 Block diagram . 12
8.2 Application CMakeLists.txt . 13
8.3 Includes . 13
8.4 Allocating hardware resources . 13
8.5 The application main() function . 14
8.6 Configuring audio hardware . 14
8.7 The i2s_loopback task . 15
8.8 Running the examples . 16

9 API . 17
9.1 Supporting types . 17
9.2 The I²S callback interface . 18
9.3 The I²S task instances . 20
9.4 The TDM callback interface . 26
9.5 The TDM task instances . 27

10 Further reading . 27

1 Introduction

lib_i2s allows interfacing to I²S or TDM (Time Division Multiplexed) buses via xcore
ports and can act either act as I²S controller (previously termed master) or target (previ-
ously termed slave) or TDM controller.

I²S and TDM are digital data streaming interfaces particularly appropriate for transmis-
sion of audio data.

2 I²S fundamentals

I²S is a protocol between two devices where one is the controller (or master) and one is
the target (or slave) . The protocol is made up of three signals shown in Table 1.

2

lib_i2s: I²S/TDM library

Table 1: I²S protocol lines

SCK Serial clock (or “bit clock”). Clock line controlling data timing.
Driven by the controller.

WS Word select (or “left/right clock”). Channel synchronisation
signal. Driven by the controller.

SD Serial Data, driven either the target or controller depending
on the data direction. There may be several data lines in dif-
fering directions.

The protocol may also include additional lines shown in Table 2.

Table 2: I²S additional lines

MCLK Master clock. (typically 256 x WS); not part of the standard,
but is commonly included for synchronising the internal op-
eration of the analog/digital converters

Key parameters of of a I²S protocol are shown in Table 3.

Table 3: I²S configuration parameters

MCLK_BCLK_RATIO The fixed ratio between the master clock and the bit clock.
MODE The mode - the alignment of the data respective to WS
NUM_DATA_BITS The number of bits in a data word; this is usually 32, but can

be adjusted to any value below 32 if requiredwhen using one
bit ports for I/O.

I²S has several modes based on data alignment and channel configuration:

1. Standard (Philips): Data is alignedwith theWordSelect (WS) signal change, commonly
used with PCM audio.

2. Left-Justified: Data starts immediately with the WS change, aligning MSB (Most Sig-
nificant Bit) with the WS transition.

3. Right-Justified: Data is right-aligned with the WS, with the LSB (Least Significant Bit)
ending at the WS transition.

Note: lib_i2s currently only supports standard” and “left-justified” modes.

The controller signals data transfer should occur by a transition on the WS (LRCLK) line.
In standard mode (shown in Fig. 1) data is transferred on the second falling edge after
the WS transitions.

3

lib_i2s: I²S/TDM library

Fig. 1: I²S Mode

In Left Justified Mode (shown in Fig. 2) the data is transferred on the next falling edge
after the WS transition.

Fig. 2: Left Justified Mode

In either case the signal multiplexes two channels of data onto one data line. When
the WS is low, the left channel is transmitted. When the WS is high, the right channel is
transmitted.

All data is transmitted most significant bit first.

Note: Right Justified mode can be attained by setting the lib_i2s to Left Justified
mode to align data to the WS signal and then the data should be right shifted appropri-
ately by the application before being provided to lib_i2s.

2.1 Resource usage

The I²S and TDM modules use one hardware thread and between 1.6 and 2.1kB of mem-
ory. There may be spare processing time available in the callbacks of I²S and TDM. IO
usage is 1 x 1b port for each signal or 4b ports for data in some cases.

2.2 Connecting I²S signals to the xcore device

The I²S wires need to be connected to the xcore device as shown in Fig. 3 and Fig. 4.
The signals can be connected to any one bit port on the device provided that they do not
overlap any other used ports and are all on the same tile. In addition, four bit ports may
also be used to connect to up to four signals of input or output with the same constraints
as above.

xCORE
device BCLK1 bit

port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

LRCLK1 bit
port

...

...

MCLK1 bit
port

4 bit
port or

4 bit
port or

Fig. 3: I²S connection to the xcore device (xcore as I²S controller)

If only one data direction is required then the DOUT or DIN lines can be omitted.

4

lib_i2s: I²S/TDM library

xCORE
device

BCLK1 bit
port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

LRCLK1 bit
port

...

...

4 bit
port or

4 bit
port or

Fig. 4: I²S connection to the xcore device (xcore as I²S target)

Warning: The use of four-bit ports over one-bit ports will lead to some restrictions in
supported frequencies.

2.3 I²S controller speeds and performance

The speed and number of data wires that can be driven by the lib_i2s running as a
I²S controller (master) depends on the speed of the thread that runs the code and the
amount of processing that occurs in the user callbacks for handling the data from the
library.

I²S controller uses hardware clock dividers and an efficient callback interface to achieve
high throughputs. This also permits the use of non-32bit data word lengths if needed.
Table 4 shows the known working configurations when using one-bit ports for the data
lines:

Table 4: Known working I²S controller configurations on a 62.5MHz core
using one bit ports

MCLK FREQ
(MHz)

MCLK/BCLK RATIO DATA
WORD
(bits)

SAMPLE FREQ (Hz) MAX IN
(chans)

MAX OUT
(chans)

12.288 32, 16, 8, 4, 2 32 6000 - 96000 4 (8) 4 (8)
24.576 64, 32, 16, 8, 4, 2 32 6000 - 192000 1 (2) 1 (2)
100 344 24 6056 4 (8) 4 (8)
250 432, 216, 108, 52, 24 24 12056 - 217013 4 (2) 4 (2)
12.288 64, 32, 16, 8, 4, 2 16 6000 - 192000 4 (8) 4 (8)
24.576 128, 64, 32, 16, 8, 4 16 6000 - 192000 1 (2) 1 (2)
12.288 128, 64, 32, 16, 8, 4 8 6000 - 192000 4 (8) 4 (8)
24.576 256, 128, 64, 32, 16, 8 8 6000 - 192000 1 (2) 1 (2)

Table 5 shows the known working configurations when using four-bit ports for the data
lines:

5

lib_i2s: I²S/TDM library

Table 5: Known working I²S controller configurations on a 62.5MHz core
using four bit ports

MCLK FREQ
(MHz)

MCLK/BCLK RATIO DATA
WORD
(bits)

SAMPLE FREQ (Hz) MAX IN
(chans)

MAX OUT
(chans)

12.288 32, 16, 8, 4, 2 32 6000 - 96000 4 (8) 4 (8)
24.576 64, 32, 16, 8, 4, 2 32 6000 - 192000 1 (2) 1 (2)

Note: If running at higher rates such as 768 kHz, it may be necessary to modify the port
timing delays to ensure proper sampling of the data andWS lines. There aremethods for
doing this using I/O pad/pin and/or sampling delays, however, this is beyond the scope
of this document. Please consult I/O timings for xcore-200 and I/O timings for xcore.ai
for further information.

2.4 I²S target speeds and performance

The speed and number of data wires that can be driven by lib_i2s running as a tar-
get (slave) depends on the speed of the thread that runs the code and the amount of
processing that occurs in the user callbacks for handling the data from the library.

The table Table 6 shows the known working configurations when using a one-bit port.
Other configurations may be possible depending on performance:

Table 6: Known working I²S slave configurations on a 62.5MHz core using
one bit ports

BCLK FREQ (MHz) DATA WORD (bits) SAMPLE FREQ
(Hz)

NUM IN (num
channels)

NUM OUT (num
channels)

12.288 32 192000 4 (8) 4 (8)
12.288 16 192000 4 (8) 4 (8)
12.288 8 192000 4 (8) 4 (8)

The table Table 7 shows the known working configurations when using a four-bit port.
Other configurations may be possible depending on performance:

Table 7: Known working I²S target configurations on a 62.5MHz core using
four bit ports

BCLK FREQ (MHz) DATA WORD SAMPLE FREQ NUM IN (num
channels)

NUM OUT (num
channels)

12.288 32 192000 4 (8) 4 (8)

6

https://www.xmos.com/download/I-O-timings-for-xCORE200%281.0%29.pdf
https://www.xmos.com/download/xcore_ai-I-O-Timings%28F%29.pdf

lib_i2s: I²S/TDM library

Note: A master-clock input is not required when operating as an I²S target

3 TDM fundamentals

I²S TDM (Inter-IC Sound Time Division Multiplexing) is a specialised protocol in digital
audio systems used for transmitting audio data. It’s a combination of the I²S protocol,
commonly used for digital audio data transfer, with Time Division Multiplexing (TDM),
which allows multiple audio channels to be sent over a single data line.

It is a protocol between devices where one is the controller (master) and one or more are
the targets (slaves).

In I²S TDMmode, multiple channels (typically 8) are packed within each frame, with each
channel assigned a specific time slot. By using TDM, audio systems can reduce the
number of data lines required, consolidating multiple audio channels onto one I²S bus.

The protocol comprises three signals:

·Bit clock (BCLK)

· The Bit Clock line provides the clock signal for each bit of data.
· It determines the speed at which bits are transmitted across the data line.
· Each cycle of BCLK corresponds to the transmission of one bit in the data

stream.

·Word Clock (WS) or Frame Sync (FS)

· The Word Select (sometimes called Frame Sync) line is used to mark the be-
ginning of each frame in TDM.

· In standard I2S, this line is used to distinguish left and right channels. But in
TDM, it signals the start of a frame that could contain multiple channels.

· Each complete WS cycle (high and low) represents a full frame of multiple
audio channels.

·Serial Data (SD) or Data Line

· The Serial Data line carries the actual audio data.
· In TDM, this data line contains time-division multiplexed data from multiple

channels within each frame, with each channel assigned a specific time slot.
· Audio samples from each channel are transmitted sequentially in their desig-

nated slots within a frame.

Unlike I²S there is no formal specification for TDM and implementations vary between
manufacturers. The configuration of a TDM signal depends on the parameters shown
in Table 8. Manipulation of these values allows for compatibility with a large range of
devices.

7

lib_i2s: I²S/TDM library

Table 8: TDM configuration parameters

CHAN-
NELS_PER_FRAME

The number of channels multiplexed into a frame on the data line.

FSYNC_OFFSET The number of bits between the frame sync signal transitioning and data being driven on
the data line(s).

FSYNC_LENGTH The number of bits that the frame sync signal stays high for when signaling frame start.

Fig. 5 and Fig. 6 show example waveforms for TDMwith different offset and sync length
values.

Fig. 5: TDM signal (sync offset 0, sync length 1)

Fig. 6: TDM signal (sync offset 1, sync length 32)

The controller signals a frame by driving the FSYNC signal high. After a delay of
FSYNC_OFFSET bits, data is driven. Data is driven most significant bit first. First, 32
bits of data from Channel 0 is driven, then 32 bits from channel 1 up to channel N (when
N is CHANNELS_PER_FRAME). The next frame is then signaled.

3.1 Connecting TDM signals to the xcore device

The TDM lines need to be connected to the xcore device as shown in Fig. 7. The signals
can be connected to any one bit ports on the device provided they do not overlap any
other used ports and are all on the same tile.

xCORE device

BCLK1 bit
port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

FSYNC1 bit
port

...

...

Fig. 7: TDM connection to the xCORE device

If only one data direction is required then the DOUT or DIN lines can be omitted.

3.2 TDM speeds and performance

The speed and number of data wires that can be driven by the I²S library running as TDM
controller depends on the speed of the thread that runs the code and the amount of pro-
cessing that occurs in the user callbacks for handling the data from the library. Table 9
show configurations that are known to work for small amounts of callback processing.

8

lib_i2s: I²S/TDM library

Other speeds will be achievable depending on the amount of processing in the applica-
tion and the thread speed.

Table 9: Known working TDM configurations on a 62.5MHz core

BCLK FREQ
(MHz)

CHANNELS PER
FRAME

SAMPLE FREQ
(Hz)

NUM IN (num chan-
nels)

NUM OUT (num chan-
nels)

12.288 8 48000 2 (16) 2 (16)
6.144 4 48000 4 (16) 4 (16)

4 Usage

lib_i2s is intended to be used with XCommon CMake, the XMOS application build and
dependency management system.

In order to use lib_i2s it needs to be added to the APP_DEPENDENT_MODULES list in
the application CMakeLists.txt file, for example:
set(APP_DEPENDENT_MODULES "lib_i2s")

Applications should then include the i2s.h header file.

4.1 The callback interface

All major functions in the lib_i2s operate by controlling the I²S or TDM bus in a thread
of a xcore device. The library will then make callbacks to the application when it receives
a frame of samples or requires a frame of samples to send.

I2S or
TDM
task

I2S or
TDM
task

appapp
i2s_callback_if

4.2 I²S controller usage

A template application task is shown below. The specific contents of each callback will
depend on the application.
void my_application(server i2s_frame_callback_if i_i2s) {
while (1) {
select {
case i_i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY / (SAMPLE_FREQUENCY*2*DATA_BITS));
i2s_config.mode = I2S_MODE_LEFT_JUSTIFIED;
// Complete setup
break;

case i_i2s.restart_check() -> i2s_restart_t restart:
// Inform the I2S slave whether it should restart or exit
restart = I2S_NO_RESTART;
break;

case i_i2s.receive(size_t num_in, int32_t samples[num_in]):
// Handle a received sample
break;

case i_i2s.send(size_t num_out, int32_t samples[num_out]):
// Provide a sample to send
break;

(continues on next page)

9

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_i2s: I²S/TDM library

(continued from previous page)
}

}
}

The initialisation callback will provide configuration structures relevant to the communi-
cation bus being used. The application can set the parameters of the bus (MCLK/BCLK
ratio, WS alignment etc.) at this point.

The I²S controller (master) task is instantiated as a parallel task that run in a par state-
ment. The application can connect via the i2s_frame_callback_if interface con-
nection. For example, the following code instantiates an I²S controller component and
connects to it.
int main(void) {
i2s_frame_callback_if i_i2s;

par {
i2s_frame_master(i_i2s, p_dout, 2, p_din, 2, DATA_BITS, p_sck, p_ws, p_mclk, bclk);
my_application(i_i2s);

}
return 0;

}

4.3 I²S target usage

The I²S target (slave) task is instantiated as a parallel task that runs in a par statement.
The application can connect via the i2s_frame_callback_if interface connection.
For example, the following code instantiates an I²S target component and connects to it.
out buffered port:32 p_dout[2] = {XS1_PORT_1D, XS1_PORT_1E};
in buffered port:32 p_din[2] = {XS1_PORT_1I, XS1_PORT_1J};
in port p_bclk = XS1_PORT_1A;
in buffered port:32 p_lrclk = XS1_PORT_1C;

clock bclk = XS1_CLKBLK_1;

int main(void) {
interface i2s_frame_callback_if i_i2s;

par {
i2s_frame_slave(i_i2s, p_dout, 2, p_din, 2, DATA_BITS, p_bclk, p_lrclk, bclk);
my_application(i_i2s);

}
return 0;

}

The target API has an additional configuration option to sample SD andWS on the falling
edge of bit clock, instead of rising edge. Data is then output on rising edge instead of
falling edge. This option is useful with non-standard controllers that invert their bit clock.

5 TDM usage

The TDM controller task is instantiated as a parallel task that runs in a par statement.
The application can connect via the tdm_callback_if interface connection. For ex-
ample, the following code instantiates a TDM controller component and connects to it.
out buffered port:32 p_dout[2] = {XS1_PORT_1D, XS1_PORT_1E};
in buffered port:32 p_din[2] = {XS1_PORT_1I, XS1_PORT_1K};
in port p_bclk = XS1_PORT_1A;
out buffered port:32 p_fsync = XS1_PORT_1C;

clock bclk = XS1_CLKBLK_1;

int main(void) {
tdm_callback_if i_tdm;
configure_clock_src(bclk, p_bclk);

par {
tdm_master(i_tdm, p_fsync, p_dout, 1, p_din, 1, bclk);
my_application(i_tdm);

}
return 0;

}

10

lib_i2s: I²S/TDM library

The callback interface for TDM numbers the channels being sent/received for the send
and receive callbacks. There is a fixed mapping from these channel indices to the phys-
ical interface being used.

5.1 TDM channel numbering

The data wordswithin TDM frames are assigned sequentially from the start of the frame.
Each data line will have its channel numbers assigned in the order that the ports are
provided in the data in and data out array arguments to the component.

For example, a system with 2 data out ports and 2 data in ports is declared as:
out buffered port:32 p_dout[2] = {XS1_PORT_1A, XS1_PORT_1B};
in buffered port:32 p_din[2] = {XS1_PORT_1E, XS1_PORT_1F};

With the number of channels per frame as 4, the samples will be numbered as indicated
in Fig. 8:

Fig. 8: TDM channel numbering

6 Callback sequences

The I²S implementations have a simple sequence. Table 10 shows an example sequence.

Table 10: Frame-based I²S callback sequence

Initial send: Init, Send All
Frame: Restart check, Send All, Receive All
Frame: Restart check, Send All, Receive All
… …
Frame: Restart check, Send All, Receive All
Final receive: Restart check (I2S_RESTART), Receive All

When using TDM, the receive callbacks for a channel occur after the send callbacks. The
receive callback for the last channel of the frame will occur after the send callback for
the next frame. After a restart request a tail of receive callbacks for the last channel of
the final frame will occur. Table 11 shows an example TDM callback sequence for two
data lines in and out with four channels per frame.

11

lib_i2s: I²S/TDM library

Table 11: Sample TDM callback sequence

S0 S4 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6
S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6
…
S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6
S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6
R3 R7

In both cases the components attempt to distribute the calling of the callbacks evenly
within the frame to allow processing to occur throughout the frame evenly.

The restart_check callback is called once per frame to allow the application to re-
quest a restart/shutdown of the data bus.

6.1 Clock configuration

For the TDM components it is the application’s responsibility to set up and start the in-
ternal clock used for the master clock before calling the component.

For example, the following code configures a clock to be based of an incoming data wire
and starts the clock:
configure_clock_src(mclk, p_mclk);
start_clock(mclk);

For more information on configuring clocks see the XMOS XTC tools user guide

7 Examples

Various example example applications are provided along side thelib_i2s that demon-
strate basic usage. These are located in the examples directory.

8 Loopback demos

Two fully fledged demonstration applications are included in the accompany-
ing examples that implement an audio loopback using I²S. One where xcore
operates as a controller (or master) and another where the xcore operates
as a target (or slave). These are app_i2s_frame_loopback_demo and
app_i2s_frame_slave_loopback_demo respectively.

These example applications run on the XMOS XU316 Multichannel Audio board (XK-
AUDIO-316-MC).

This section documents app_i2s_frame_loopback in detail, however, much of the
detail is shared with app_i2s_frame_slave_loopback_demo.

8.1 Block diagram

The main application fits within one thread with an additional remote I²C task to allow
the audio hardware to be configured remotely from the other tile. This required due to
the IO arrangement of the XK-AUDIO-316-MC board.

A board support library, lib_board_support, provides the code to configure the external
audio DACs and ADCs of the XK-AUDIO-316-MC board.

12

https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/index.html

lib_i2s: I²S/TDM library

Fig. 9: Application block diagram

Note: lib_board_support has the I²C library (lib_i2c) in its dependency list.

The I²S task calls back to the i2s_loopback task and the processing in the
i2s_loopback task is performed in-between the I/O operations of I²S.

8.2 Application CMakeLists.txt

In order for the application to use lib_i2s it is added to the application CMake-
Lists.txt file. As previously described, the demonstration applications also use
lib_board_support, so that is also listed:
set(APP_DEPENDENT_MODULES "lib_i2s"

"lib_board_support")

Note: To ensure consistency of dependencies between examples, all example applica-
tions share a dependency list in a deps.cmake file located in the root of examples

8.3 Includes

Applications typically need to include platform.h and xs1.h to gain access to xcore
specific defines and functions. These are provided as part of the XMOS XTC tools.
#include <platform.h>
#include <xs1.h>

lib_i2s functions and types are defined in i2s.h, which is included by the applica-
tions. A relevant header file from lib_board_support is also included.
#include "i2s.h"
#include "xk_audio_316_mc_ab/board.h"

8.4 Allocating hardware resources

An I²S interface requires both clock and data pins in order to communicate with the ex-
ternal audio hardware devices.

The ports used by the lib_i2s are declared on the tile they reside and with their direc-
tion and buffered nature. The loopback application use four 1-bit ports for data input and
four more for data output:

13

lib_i2s: I²S/TDM library

on tile[1]: in port p_mclk = PORT_MCLK_IN;
on tile[1]: buffered out port:32 p_lrclk = PORT_I2S_LRCLK;
on tile[1]: out port p_bclk = PORT_I2S_BCLK;
on tile[1]: buffered out port:32 p_dac[NUM_I2S_LINES] = {PORT_I2S_DAC0, PORT_I2S_DAC1,

PORT_I2S_DAC2, PORT_I2S_DAC3};
on tile[1]: buffered in port:32 p_adc[NUM_I2S_LINES] = {PORT_I2S_ADC0 ,PORT_I2S_ADC1,

The xcore also provides clock block hardware to efficiently generate clock signal that
can either be driven out on a port or used to control a port. In the loopback applications
one clock block is used:
on tile[1]: clock bclk = XS1_CLKBLK_1;

8.5 The application main() function

The main() function in the program sets up the tasks in the application.

Firstly, the interfaces are declared. In XC interfaces provide a means of concurrent
tasks communicating with each other. In the loopback applications there is an interface
for I²S:

interface i2s_frame_callback_if i_i2s;

and another interface for I²C:
interface i2c_master_if i_i2c[1];

The rest of the main function starts all the tasks in parallel using the XC par construct:
par {
on tile[0]: {

xk_audio_316_mc_ab_board_setup(hw_config); // Setup must be done on tile[0]
xk_audio_316_mc_ab_i2c_master(i_i2c); // Run I2C master server task to allow control from tile[1]

}

on tile[1]: {
interface i2s_frame_callback_if i_i2s;

par {
// The application - loopback the I2S samples - note callbacks are inlined so does not take a thread
[[distribute]] i2s_loopback(i_i2s, i_i2c[0]);
i2s_frame_master(i_i2s, p_dac, NUM_I2S_LINES, p_adc, NUM_I2S_LINES, DATA_BITS, p_bclk, p_lrclk, p_

↪→mclk, bclk);
}

}
}

This code starts the I²S controller, the I²C master, the GPIO control and the loopback
application task.

Before the I²S controller runs, the system configuration is run and the master clock is
connected from the input port to the clock block and then started. The I²S controller task
then starts and consumes a thread on the xcore device.

The remaining i2s_loopback task in the par is marked with the [[distribute]]
attribute. This means they will run on an existing thread if possible. In this case they will
all share the one a thread with i2s_frame_master().

8.6 Configuring audio hardware

All of the external audio hardware is configured using lib_board_support. The hard-
ware targeted is the XMOS XU316 Multichannel Audio board (XK-AUDIO-316-MC). The fol-
lowing lines deal with initialisation, I²C task start and configuration:
xk_audio_316_mc_ab_board_setup(hw_config); // Setup must be done on tile[0]
xk_audio_316_mc_ab_i2c_master(i_i2c); // Run I2C master server task to allow control from tile[1]

14

lib_i2s: I²S/TDM library

and:
xk_audio_316_mc_ab_AudioHwInit(i_i2c, hw_config);
xk_audio_316_mc_ab_AudioHwConfig(i_i2c, hw_config, SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY, 0, DATA_BITS, DATA_
↪→BITS);

The hardware configuration is set by hw_configwhich in this configuration sets up the
xcore to be an I²S controller with the following settings:
#define SAMPLE_FREQUENCY (192000)
#define MASTER_CLOCK_FREQUENCY (24576000)
#define DATA_BITS (32)
#define CHANS_PER_FRAME (2)
#define NUM_I2S_LINES (4)

See lib_board_support documentation for further details and API details.

8.7 The i2s_loopback task

The I²S loopback task (i2s_loopback()) provides the function of a digital loopback
such that all samples received by the device will looped back out unmodified.

The task itself is declared as a[[distributable]] function ensuring that it can share
a thread with other tasks.

The i2s_loopback() function is listed below.
[[distributable]]
void i2s_loopback(server i2s_frame_callback_if i2s, client i2c_master_if i_i2c)
{
int32_t samples[NUM_I2S_LINES * CHANS_PER_FRAME] = {0};

// Config can be done remotely via i_i2c
xk_audio_316_mc_ab_AudioHwInit(i_i2c, hw_config);

while (1) {
select {
case i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_I2S;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY/(SAMPLE_FREQUENCY * CHANS_PER_FRAME * DATA_BITS));

xk_audio_316_mc_ab_AudioHwConfig(i_i2c, hw_config, SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY,
0, DATA_BITS, DATA_BITS);

break;

case i2s.receive(size_t num_chan_in, int32_t sample[num_chan_in]):
for (size_t i=0; i<num_chan_in; i++) {
samples[i] = sample[i];

}
break;

case i2s.send(size_t num_chan_out, int32_t sample[num_chan_out]):
for (size_t i=0; i<num_chan_out; i++){
sample[i] = samples[i];

}
break;

case i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART;
break;

}
}

}

The interface to the I²S controller is a callback interface that the I²S controller will call
over when it has received a frame data or requires a frame of data to send.

The I²C interface is used to configure the external audio hardware.

The body of the loopback task handles the I²S interface calls.

The I²S controller library calls the init() method before it starts any data streaming.
This allows the application to reset and configure audio hardware, for example when the
sample rate changes.

15

lib_i2s: I²S/TDM library

The receive() interface method is called when the controller has received a frame of
audio samples (all channels in one sample period). The samples are then store in the
samples array.

The send() interface method is called when the controller needs a new frame of sam-
ples to send. In this case the application simply returns the frame of samples previously
received.

Finally, the restart_check()method is called by the I²S controller once per frame and
allows the application to control restart or shutdown of the I²S controller. In this case the
application continues to run “forever” and so always returns I2S_NO_RESTART.

8.8 Running the examples

Building

The following section assumes that the XMOS XTC tools has been download and in-
stalled (see README for required version).

Installation instructions can be found here. Particular attention should be paid to the
section Installation of required third-party tools.

The application uses the XMOS build and dependency system, xcommon-cmake.
xcommon-cmake is bundled with the XMOS XTC tools.

To configure the build run the following from an XTC command prompt:
cd examples
cd app_i2s_frame_loopback_demo
cmake -G "Unix Makefiles" -B build

Anymissing dependencies will be downloaded by the build system at this configure step.

Finally, the application binaries can be built using xmake:
xmake -j -C build

The application uses approximately 3 kB on Tile[0] and 7 kB on Tile[1] of 512 kB on each.

Hardware setup

· Connect a USB cable from a host computer to the DEBUG connector.

· Connect a USB cable from a host computer to the USB DEVICE connector.

· Connect a sound source to the 3.5mm line in. Channels 1-2, 3-4, 5-6 or 7-8 can be
used.

· Connect powered speakers to the corresponding line out.

Running the application

To run the application return to the /examples/app_i2s_frame_loopback_demo
directory and run the following command:
xrun bin/app_i2s_frame_loopback_demo.xe

Audio presented on the analog input jacks will be looped back and audible on a speaker
connected the output jacks.

16

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_i2s: I²S/TDM library

9 API

9.1 Supporting types

enum i2s_mode_t
I2S mode.
This type is used to describe the I2S mode.
Values:

enumerator I2S_MODE_I2S
The LR clock transitions ahead of the data by one bit clock.

enumerator I2S_MODE_LEFT_JUSTIFIED
The LR clock and data are phase aligned.

struct i2s_config_t
I2S configuration structure.
This structure describes the configuration of an I2S bus.

struct tdm_config_t
TDM configuration structure.
This structure describes the configuration of a TDM bus.

enum i2s_restart_t
Restart command type.
Restart commands that can be signalled to the I2S or TDM component.
Values:

enumerator I2S_NO_RESTART
Do not restart.

enumerator I2S_RESTART

Restart the bus (causes the I2S/TDM to stop and a new init callback to occur
allowing reconfiguration of the BUS).

enumerator I2S_SHUTDOWN
Shutdown. This will cause the I2S/TDM component to exit.

17

lib_i2s: I²S/TDM library

9.2 The I²S callback interface

group i2s_frame_callback_if
Interface representing callback events that can occur during the operation of the
I2S task. This is a more efficient interface and reccomended for new designs.

Functions

void init(NULLABLE_REFERENCE_PARAM(i2s_config_t, i2s_config),
NULLABLE_REFERENCE_PARAM(tdm_config_t, tdm_config))

I2S frame-based initialization event callback.
The I2S component will call this when it first initializes on first run of after a
restart.

TDM initialization event callback.
The TDM component will call this when it first initializes on first run of after a
restart.

Parameters

· i2s_config – This structure is provided if the connected
component drives an I2S bus. The members of the structure
should be set to the required configuration.

· tdm_config – This structure is provided if the connected
component drives an TDM bus. The members of the struc-
ture should be set to the required configuration.

· i2s_config – This structure is provided if the connected
component drives an I2S bus. The members of the structure
should be set to the required configuration.

· tdm_config – This structure is provided if the connected
component drives an TDM bus. The members of the struc-
ture should be set to the required configuration.

i2s_restart_t restart_check()
I2S frame-based restart check callback.
This callback is called once per frame. The application must return the re-
quired restart behaviour.

TDM restart check callback.
This callback is called once per frame. The application must return the re-
quired restart behaviour.

Returns
The return value should be set to I2S_NO_RESTART,
I2S_RESTART or I2S_SHUTDOWN.

Returns
The return value should be set to I2S_NO_RESTART,
I2S_RESTART or I2S_SHUTDOWN.

void receive(size_t num_in, int32_t samples[num_in])
Receive an incoming frame of samples.
This callback will be called when a new frame of samples is read in by the I2S
frame-based component.

Parameters

· num_in – The number of input channels contained within the
array.

18

lib_i2s: I²S/TDM library

· samples – The samples data array as signed 32-bit values.
The component may not have 32-bits of accuracy (for exam-
ple, many I2S codecs are 24-bit), in which case the bottom bits
will be arbitrary values.

void send(size_t num_out, int32_t samples[num_out])
Request an outgoing frame of samples.
This callback will be called when the I2S frame-based component needs a
new frame of samples.

Parameters

· num_out – The number of output channels contained within
the array.

· samples – The samples data array as signed 32-bit values.
The component may not have 32-bits of accuracy (for exam-
ple, many I2S codecs are 24-bit), in which case the bottom bits
will be arbitrary values.

19

lib_i2s: I²S/TDM library

9.3 The I²S task instances

void i2s_frame_master(CLIENT_INTERFACE(i2s_frame_callback_if, i2s_i),
NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out), static_const_size_t num_out,
NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t, p_din,
num_in), static_const_size_t num_in, static_const_size_t
num_data_bits, out_port_t p_bclk, out_buffered_port_32_t
p_lrclk, in_port_t p_mclk, clock bclk)

I2S master (controller) component
This task performs I2S on the provided pins. It will perform callbacks over the
i2s_frame_callback_if interface to get/receive frames of data from the application
using this component.
The component performs I2Smaster sowill drive theword clock and bit clock lines.

Parameters

· i2s_i – The I2S frame callback interface to connect to the ap-
plication

· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· num_data_bits – The number of bits per data word
· p_bclk – The bit clock output port
· p_lrclk – The word clock output port
· p_mclk – Input port which supplies the master clock
· bclk – A clock that will get configured for use with the bit clock

20

lib_i2s: I²S/TDM library

void i2s_frame_master_4b(CLIENT_INTERFACE(i2s_frame_callback_if, i2s_i),
NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out), static_const_size_t num_out,
NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t,
p_din, num_in), static_const_size_t num_in, out_port_t
p_bclk, out_buffered_port_32_t p_lrclk, in_port_t
p_mclk, clock bclk)

I2S master (controller) component with 4-bit ports
This task performs I2S on the provided 4-bit ports. It will perform callbacks over the
i2s_frame_callback_if interface to get/receive frames of data from the application
using this component.
The component performs I2Smaster sowill drive theword clock and bit clock lines.
This component can only operate with a 32-bit data word length.

Parameters

· i2s_i – The I2S frame callback interface to connect to the ap-
plication

· p_dout – A 4-bit data output port
· num_out – The number of output data streams
· p_din – A 4-bit data input port
· num_in – The number of input data streams
· p_bclk – The bit clock output port
· p_lrclk – The word clock output port
· p_mclk – Input port which supplies the master clock
· bclk – A clock that will get configured for use with the bit clock

21

lib_i2s: I²S/TDM library

void i2s_frame_master_external_clock(CLIENT_INTERFACE(i2s_frame_callback_if,
i2s_i), NUL-
LABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out), static_const_size_t
num_out, NUL-
LABLE_ARRAY_OF_SIZE(in_buffered_port_32_t,
p_din, num_in), static_const_size_t
num_in, static_const_size_t
num_data_bits, out_port_t p_bclk,
out_buffered_port_32_t p_lrclk,
in_port_t p_mclk, clock bclk)

I2S master (controller) component
This task performs I2S on the provided pins. It will perform callbacks over the
i2s_frame_callback_if interface to get/receive frames of data from the application
using this component.
The component performs I2Smaster sowill drive theword clock and bit clock lines.
This “external_clock” version expects the application to configure the bit-clock port
to be clocked from the master clock outside of this call.

Parameters

· i2s_i – The I2S frame callback interface to connect to the ap-
plication

· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· num_data_bits – The number of bits per data word
· p_bclk – The bit clock output port
· p_lrclk – The word clock output port
· bclk – A clock that is configured externally to be used as the bit

clock

22

lib_i2s: I²S/TDM library

void i2s_frame_master_external_clock_4b(CLIENT_INTERFACE(i2s_frame_callback_if,
i2s_i), NUL-
LABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out),
static_const_size_t num_out, NUL-
LABLE_ARRAY_OF_SIZE(in_buffered_port_32_t,
p_din, num_in), static_const_size_t
num_in, out_port_t p_bclk,
out_buffered_port_32_t p_lrclk,
in_port_t p_mclk, clock bclk)

I2S master (controller) component with 4-bit ports
This task performs I2S on the provided 4-bit ports. It will perform callbacks over the
i2s_frame_callback_if interface to get/receive frames of data from the application
using this component.
The component performs I2Smaster sowill drive theword clock and bit clock lines.
This “external_clock” version expects the application to configure the bit-clock port
to be clocked from the master clock outside of this call.
This component can only operate with a 32-bit data word length.

Parameters

· i2s_i – The I2S frame callback interface to connect to the ap-
plication

· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· p_bclk – The bit clock output port
· p_lrclk – The word clock output port
· bclk – A clock that will get configured for use with the bit clock

23

lib_i2s: I²S/TDM library

void i2s_frame_slave(CLIENT_INTERFACE(i2s_frame_callback_if, i2s_i),
NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out), static_const_size_t num_out,
NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t, p_din,
num_in), static_const_size_t num_in, static_const_size_t
num_data_bits, in_port_t p_bclk, in_buffered_port_32_t
p_lrclk, clock bclk)

I2S high efficiency slave (target) component.
This task performs I2S on the provided 1-bit ports. It will perform callbacks over the
i2s_callback_if interface to get/receive data from the application using this compo-
nent.
The component performs I2S slave so expects the word clock and bit clock to be
driven externally.

Parameters

· i2s_i – The I2S callback interface to connect to the application
· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· num_data_bits – The number of bits per data word
· p_bclk – The bit clock input port
· p_lrclk – The word clock input port
· bclk – A clock that will get configured for use with the bit clock

24

lib_i2s: I²S/TDM library

void i2s_frame_slave_4b(CLIENT_INTERFACE(i2s_frame_callback_if, i2s_i),
NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t,
p_dout, num_out), static_const_size_t num_out,
NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t,
p_din, num_in), static_const_size_t num_in, out_port_t
p_bclk, out_buffered_port_32_t p_lrclk, clock bclk)

I2S high efficiency slave (target) component.
This task performs I2S on the provided 4-bit ports. It will perform callbacks over the
i2s_callback_if interface to get/receive data from the application using this compo-
nent.
The component performs I2S slave so will expect the word clock and bit clock to
be driven externally.

Parameters

· i2s_i – The I2S callback interface to connect to the application
· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· p_bclk – The bit clock input port
· p_lrclk – The word clock input port
· bclk – A clock that will get configured for use with the bit clock

25

lib_i2s: I²S/TDM library

9.4 The TDM callback interface

group tdm_callback_if

Functions

void receive(size_t index, int32_t sample)
Receive an incoming sample.
This callback will be called when a new sample is read in by the TDM compo-
nent.

Parameters

· index – The index of the sample in the frame.
· sample – The sample data as a signed 32-bit value.

int32_t send(size_t index)
Request an outgoing sample.
This callback will be called when the TDM component needs a new sample.

Parameters

· index – The index of the requested sample in the frame.
Returns

The sample data as a signed 32-bit value.

26

lib_i2s: I²S/TDM library

9.5 The TDM task instances

void tdm_master(CLIENT_INTERFACE(tdm_callback_if, tdm_i),
out_buffered_port_32_t p_fsync,
NULLABLE_ARRAY_OF_SIZE(out_buffered_port_32_t, p_dout,
num_out), static_const_size_t num_out,
NULLABLE_ARRAY_OF_SIZE(in_buffered_port_32_t, p_din, num_in),
static_const_size_t num_in, clock clk)

TDM master (controller) component.
This task performs TDM on the provided ports. It will perform callbacks over the
tdm_callback_if interface to get/receive data from the application using this com-
ponent.
The component performs as TDM master so will drive the fsync signal.

Parameters

· tdm_i–TheTDMcallback interface to connect to the application
· p_fsync – The frame sync output port
· p_dout – An array of data output ports
· num_out – The number of output data ports
· p_din – An array of data input ports
· num_in – The number of input data ports
· clk – The clock connected to the bit/master clock frequency.

Usually this should be configured to be driven by an incoming
master system clock.

10 Further reading

· XMOS tools user guide
https://www.xmos.com/documentation/XM-014363-PC-9/html/

· XMOS xcore programming guide
https://www.xmos.com/published/xmos-programming-guide

· xcommon-cmake build and dependency management system
https://www.xmos.com/documentation/XM-015090-PC/html/

· I²S bus specification
https://www.nxp.com/docs/en/user-manual/UM11732.pdf

· xcore.ai Multichannel Audio Platform hardware manual
https://www.xmos.com/file/xcore_ai-multichannel-audio-platform-1v1-hardware-manual/
?version=latest

27

https://www.xmos.com/documentation/XM-014363-PC-9/html/
https://www.xmos.com/published/xmos-programming-guide
https://www.xmos.com/documentation/XM-015090-PC/html/
https://www.nxp.com/docs/en/user-manual/UM11732.pdf
https://www.xmos.com/file/xcore_ai-multichannel-audio-platform-1v1-hardware-manual/?version=latest
https://www.xmos.com/file/xcore_ai-multichannel-audio-platform-1v1-hardware-manual/?version=latest

lib_i2s: I²S/TDM library

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

28

	Introduction
	I²S fundamentals
	Resource usage
	Connecting I²S signals to the xcore device
	I²S controller speeds and performance
	I²S target speeds and performance

	TDM fundamentals
	Connecting TDM signals to the xcore device
	TDM speeds and performance

	Usage
	The callback interface
	I²S controller usage
	I²S target usage

	TDM usage
	TDM channel numbering

	Callback sequences
	Clock configuration

	Examples
	Loopback demos
	Block diagram
	Application CMakeLists.txt
	Includes
	Allocating hardware resources
	The application main() function
	Configuring audio hardware
	The i2s_loopback task
	Running the examples

	API
	Supporting types
	The I²S callback interface
	The I²S task instances
	The TDM callback interface
	The TDM task instances

	Further reading

