
lib_spdif: S/PDIF library

Publication Date: 2024/10/22
Document Number: XM-006988-UG v6.2.1

lib_spdif: S/PDIF library

IN THIS DOCUMENT

1 Introduction . 2
1.1 Using lib_spdif . 2

2 External signal description . 2
2.1 Connecting to the xcore as transmitter . 2
2.2 Connecting to the xcore as receiver . 3

3 Usage . 4
3.1 S/PDIF transmitter . 4
3.2 S/PDIF receiver . 5

4 API . 8
4.1 Creating an S/PDIF transmitter instance . 8
4.2 S/PDIF transmitter API . 9
4.3 Creating an S/PDIF receiver instance . 10
4.4 S/PDIF receiver API . 11

1 Introduction

S/PDIF (Sony/Philips Digital Interface) is a standard for transmitting digital audio signals
over relatively short distances between devices. It was developed by Sony and Philips
and is used to carry high-quality digital audio without the need for analog conversion,
maintaining the integrity of the audio signal.

S/PDIF can carry two channels of uncompressed PCM (Pulse Code Modulation) audio
or over Optical (TOSLINK) or Coaxial transmission mediums.

lib_spdif provides software defined S/PDIF implementation that allows transmission
and reception of S/PDIF data via xcore ports.

1.1 Using lib_spdif

lib_spdif is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

To use this library, include lib_spdif in the application’s APP_DEPENDENT_MODULES
list, for example:
set(APP_DEPENDENT_MODULES "lib_spdif")

Applications should then include the spdif.h header file.

2 External signal description

The library implements the S/PDIF (Sony/Philips Digital Interface Format) protocol for
transporting uncompressed stereo PCM data of up to 24bits.

Note: The S/PDIF connections shown in the diagrams below are digital representations
of S/PDIF and not an actual signal suitable for external devices (which is 0.5V pk-pk etc).
External circuitry is required to interface with the chosen medium (optical or electrical).

2.1 Connecting to the xcore as transmitter

The precise transmission frequencies supported depend on the availability of an external
clock (e.g. a PLL or a crystal oscillator) that runs at a frequency of channels * sampleRate

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_spdif: S/PDIF library

* 64 or a power-of-2 multiple. For example, for 2 channels at 192 KHz the external clock
has to run at a frequency of 24.576 MHz. This same frequency also supports 2 channels
at 48 KHz (which requires a minimum frequency of 6.144 MHz). If both 44,1 and 48 KHz
frequencies are to be supported, both a 24.576 MHz and a 22.579 MHz master clock is
required.

When using an xcore.ai based device these frequencies can be generated by the on-chip
application/secondary PLL.

The connection of an S/PDIF transmit line to the xcore is shown in Connecting S/PDIF
transmit.

1 bit
port

xCORE device

Clock

D-type flip-flop

D Q
S/PDIF tx

1 bit
port

Fig. 1: Connecting S/PDIF transmit

The output signal will contain jitter at the level of +/-1 core clock (<2ns for a 500 MHz
xcore) this is typically inconsequential but if lower jitter levels are desired the signal can
be re-clocked by the external master clock to reduce the jitter to that of the external mas-
ter clock. A simple D-type flip flop can be used for this purpose.

The incoming clock signal is used to drive an internal clock and can be shared with other
software functions using the same master clock (e.g. ADAT transmit or I2S).

Note: The transmit stream user bits are set to 0. The validity bits are set to 0 (i.e. valid).

2.2 Connecting to the xcore as receiver

The receiver can receive stereo PCM signals up to 192 KHz.

The connection of an S/PDIF receiver line to the xCORE is shown in Connecting S/PDIF
receiver.

Fig. 2: Connecting S/PDIF receiver

Note: Only a single wire is connected - the clock is recovered from the incoming data
stream.

3

lib_spdif: S/PDIF library

3 Usage

All S/PDIF functions can be accessed via the spdif.h header:
#include <spdif.h>

lib_spdif should also be added to the APP_DEPENDENT_MODULES application
XCommon-CMake CMakeLists.txt file.

Note: The receiver and transmitter tasks each require aminimumof 62.5MHz to operate
correctly.

3.1 S/PDIF transmitter

S/PDIF components are instantiated as parallel tasks that run in a par statement. The
application can connect via a channel connection.

Fig. 3: S/PDIF transmit task diagram

For example, the following code instantiates an S/PDIF transmitter component and con-
nects to it:
on tile[1]: out buffered port:32 p_spdif_tx = XS1_PORT_1A;
on tile[1]: in port p_mclk_in = XS1_PORT_1D;
on tile[1]: clock clk_audio = XS1_CLKBLK_1;

int main(void) {

chan c_spdif;
par
{

on tile[0]: {
board_setup();
while(1) {};

}
on tile[1]: {

spdif_tx_port_config(p_spdif_tx, clk_audio, p_mclk_in, 7);
start_clock(clk_audio);
spdif_tx(p_spdif_tx, c_spdif);

}
on tile[1]: generate_samples(c_spdif);

}
return 0;

} // end

The helper function spdif_tx_port_config() clocks the clock-block from the mas-
ter clock port and, in turn, clocks the S/PDIF transmit port from this clock-block.

The application can communicate with the components via API functions that take the
channel end as arguments e.g.:
void generate_samples(chanend c) {

int i = 0;
spdif_tx_reconfigure_sample_rate(c,

SAMPLE_FREQUENCY_HZ,
MCLK_FREQUENCY_48);

while(1) {
// Generate a sine wave
int sample = sine_table[i];
i = (i + 1) % SINE_TABLE_SIZE;
spdif_tx_output(c, sample, sample);

(continues on next page)

4

lib_spdif: S/PDIF library

(continued from previous page)
}

}

Configuring the underlying clock

When using the transmit component, the internal clock needs to be configured to run off
the incoming signal e.g.:
spdif_tx_port_config(p_spdif_tx, clk_audio, p_mclk_in, 7);

This function needs to be called before the spdif_tx() function in the programs par
statement.

In this function the configure_clock_src() is used configure a clock to run off an
incoming port - see the XMOS Programming Guide for more information.

The last parameter is used with the set_clock_fall_delay() function to configure
an internal delay from the incoming clock signal to the internal clock’s falling edge. This
is done to allow for the correct alignment of outgoing data with the master clock at the
external D-type flip-flop.

Note, the delay value shown above is a typical example andmay need to be tuned for the
specific hardware being used.

3.2 S/PDIF receiver

S/PDIF components are instantiated as parallel tasks that run in a par statement. The
application can connect via a channel connection.

Fig. 4: S/PDIF receiver task diagram

For example, the following code instantiates an S/PDIF receiver component and con-
nects to it:
on tile[0]: in port p_coax_rx = XS1_PORT_1N;
on tile[0]: clock audio_clk = XS1_CLKBLK_1;

int main(void)
{

streaming chan c;
par {

on tile[0]: {
board_setup();
spdif_rx(c, p_coax_rx, audio_clk, 96000);

}
on tile[0]: handle_samples(c);

}
return 0;

} // end

The application can communicate with the components via API functions that take the
channel end as arguments e.g.:
void handle_samples(streaming chanend c)
{

int32_t sample;

(continues on next page)

5

https://www.xmos.com/file/xmos-programming-guide

lib_spdif: S/PDIF library

(continued from previous page)
size_t index;
int32_t left_count = 0;
int32_t right_count = 0;

while(1)
{

select
{

case spdif_rx_sample(c, sample, index):
// sample contains the 24bit data
// You can process the audio data here
if (index == 0)

left_count++;
else

right_count++;
break;

}

int32_t total = left_count + right_count;

if (total % 10000 == 0)
{

debug_printf("Received %u left samples and %u right samples\n",
left_count,
right_count);

}
}

}

Note that a program can react to incoming samples using a select statement. More
information on using par and select statements can be found in the XMOS Program-
ming Guide.

Each 32-bit word received from the receive component via the channel has the following
format:

Bit(s) Field

3:0 Preamble
7:4 Auxiliary data
27:8 Audio sample
28 Validity
29 User
30 Control
31 Parity

Note: The four auxilary data bits are typically used to extend the audio sample from 20
to 24 bits.

The spdif_rx_sample() helper function strips away all fields other than the Audio
Sample and Auxiliary data and returns this audio sample data in the upper 24 bits of the
sample variable.

Should other fields be desired - for parity checking, for instance, regular channel commu-
nication syntax can be used. For example:
void my_application(streaming chanend c)
{

int32_t sample;
size_t count = 0;

while(1)
{
c :> spdif_data;

(continues on next page)

6

https://www.xmos.com/file/xmos-programming-guide
https://www.xmos.com/file/xmos-programming-guide

lib_spdif: S/PDIF library

(continued from previous page)
// Check parity
int parity_error = spdif_rx_check_parity(spdif_data);

if (parity_error == 0)
count++;

}
...

7

lib_spdif: S/PDIF library

4 API

4.1 Creating an S/PDIF transmitter instance

void spdif_tx_port_config(out_buffered_port_32_t p, clock clk, in_port_t p_mclk,
unsigned delay)

S/PDIF transmit configure port function
This function configures a port to be used by the SPDIF transmit function.
This function takes a delay for the clock that is to be passed into the S/PDIF trans-
mitter component. It sets the clock such that output data is slightly delayed. This
will work if I2S is clocked off the same clock but ensures S/PDIF functions cor-
rectly.

Parameters

· p – the port that the S/PDIF component will use
· clk – the clock that the S/PDIF component will use
· p_mclk – The clock connected to the master clock frequency.

Usually this should be configured to be driven by an incoming
master system clock.

· delay – delay to uses to sync the SPDIF signal at the external
flip-flop

void spdif_tx(out_buffered_port_32_t p_spdif, chanend c)
S/PDIF transmit function.
This function provides an S/PDIF transmit component. It is capable of 44100,
48000, 88200, 96000, and 192000 Hz sample rates.
The sample rate can be dynamically changes during the operation of the compo-
nent. Note that the first API call to this component should be to reconfigure the
sample rate (using the spdif_tx_reconfigure_sample_rate() function).

Parameters

· p_spdif – The output port to transmit to
· c – chanend to connect to the application

8

lib_spdif: S/PDIF library

4.2 S/PDIF transmitter API

void spdif_tx_reconfigure_sample_rate(chanend c_spdif_tx, unsigned
sample_frequency, unsigned
master_clock_frequency)

Reconfigure the S/PDIF tx component to a new sample rate.
This function instructs the S/PDIF transmitter component to change sample rate.

Parameters

· c_spdif_tx – chanend connected to the S/PDIF transmitter
· sample_frequency – The required new sample frequency in

Hz.
· master_clock_frequency – The master_clock_frequency

that the S/PDIF transmitter is using

void spdif_tx_output(chanend c_spdif_tx, unsigned lsample, unsigned rsample)
Output a sample pair to the S/PDIF transmitter component.
This function will output a left channel and right channel sample to the S/PDIF
transmitter.

Parameters

· c_spdif_tx – chanend connected to the S/PDIF transmitter
· lsample – left sample to transmit
· rsample – right sample to transmit

void spdif_tx_shutdown(chanend c)
Shutdown the S/PDIF transmitter component.
This function shuts down the SPDIF Tx component causing the call to spdif_tx() to
return.

Parameters

· c – chanend connected to the S/PDIF transmitter component

9

lib_spdif: S/PDIF library

4.3 Creating an S/PDIF receiver instance

void spdif_rx(streaming_chanend_t c, in_port_t p, clock clk, unsigned
sample_freq_estimate)

S/PDIF receive function.
This function provides an S/PDIF receiver component. It is capable of receiving
44100, 48000, 88200, 96000, 176400 and 192000 Hz sample rates.
The receiver will modifiy the divider of the clock-block to lock to the incoming sam-
ple rate.

Parameters

· c – Channel to connect to the application.
· p – S/PDIF input port.
· clk – A clock block used internally to clock data.
· sample_freq_estimate – The initial expected sample rate (in

Hz).

10

lib_spdif: S/PDIF library

4.4 S/PDIF receiver API

void spdif_rx_sample(streaming_chanend_t c, REFERENCE_PARAM(int32_t,
sample), REFERENCE_PARAM(size_t, index))

Receive a sample from the S/PDIF component.
This function receives a sample from the S/PDIF component. It is a “select handler”
so can be used within a select e.g.

int32_t sample;
size_t index;
select {
case spdif_rx_sample(c, sample, index):

// use sample and index here...
...
break;

...

The case in this select will fire when the S/PDIF component has data ready.

Parameters

· c – chanend connected to the S/PDIF receiver component
· sample – This reference parameter gets set with the incoming

sample data
· index – This is the index of the same in the current frame (i.e. 0

for left channel and 1 for right channel).

void spdif_rx_shutdown(streaming_chanend_t c)
Shutdown the S/PDIF receiver component.
This function shuts down the SPDIF RX component causing the call to spdif_rx()
to return.

Parameters

· c – chanend connected to the S/PDIF receiver component

static inline int spdif_rx_check_parity(unsigned sample)
Checks the parity of a received S/PDIF sample

Parameters

· sample – Received sample to be checked
Returns

Non-zero for error parity, otherwise 0

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

11

	Introduction
	Using lib_spdif

	External signal description
	Connecting to the xcore as transmitter
	Connecting to the xcore as receiver

	Usage
	S/PDIF transmitter
	S/PDIF receiver

	API
	Creating an S/PDIF transmitter instance
	S/PDIF transmitter API
	Creating an S/PDIF receiver instance
	S/PDIF receiver API

