
lib_locks: Lock handling library

Publication Date: 2024/10/15
Document Number: XM-006390-UG v2.3.1

lib_locks: Lock handling library

IN THIS DOCUMENT

1 Introduction . 2
2 Basic use . 2

2.1 Declaration & allocation . 2
2.2 Acquisition and release . 2
2.3 Freeing . 3

3 Example application . 3
4 Hardware lock API . 4
5 Software lock API . 5

1 Introduction

This library provides access to hardware and software locks for use in concurrent C pro-
grams. In general it is not safe to use these tomarshall within XC due to the assumptions
XC makes about safe concurrent data access.

Two types of locks are provided. Hardware locks are fast and power efficient but there
are a limited number per tile. Software locks are slower but you can use an unlimited
number of them.

lib_locks is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

2 Basic use

2.1 Declaration & allocation

Before using a lock it first must be declared.

Software based locks should be initialised to a specific value:
swlock_t swlock = SWLOCK_INITIAL_VALUE;

Hardware locks relate to a physical resource in the device and so need to be properly
allocated:
hwlock_t hwlock;

hwlock = hwlock_alloc();

Locks are typically used to protect critical sections of code when multiple threads are
involved, so they are often declared globally for shared access.

2.2 Acquisition and release

Hardware and software based locks use a similar API for acquisition and release. For
software based locks the following is used:
swlock_acquire(&swlock);

// Perform critical code section..

swlock_release(&swlock);

Similarly, for hardware based locks:

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_locks: Lock handling library

hwlock_acquire(&hwlock);

// Perform critical code section..

hwlock_release(&hwlock);

In all cases these are blocking calls.

2.3 Freeing

Once an application no longer requires a hardware lock it should be freed to allow the
underlying hardware resource to be reused:
hwlock_free(hwlock);

3 Example application

An example is provided in examples/app_locks_example that demonstrates basic lock
allocation, freeing, acquiring and releasing.

3

lib_locks: Lock handling library

4 Hardware lock API

typedef unsigned hwlock_t
This type represents a hardware lock.

inline hwlock_t hwlock_alloc(void)
Allocate a hardware lock.
This function will allocate a new hardware lock from the pool of hardware locks
available on the xCORE. The hardware has a limited number of hardware locks (for
example, current L and S series devices have 4 locks per tile).

Returns
the allocated lock if allocation is successful or the value
HWLOCK_NOT_ALLOCATED if not.

inline void hwlock_free(hwlock_t lock)
Free a hardware lock.
This function frees a given hardware lock and returns it to the hardware pool to be
reallocated elsewhere.

Parameters

· lock – the hardware lock to be freed. If this is an invalid lock id
or not an currently allocated lock then the function will trap.

inline void hwlock_acquire(hwlock_t lock)
Acquire a hardware lock.
This function acquires a lock for the current logical core. If another core holds the
lock the function will pause until the lock is released.

Parameters

· lock – the hardware lock to acquire

inline void hwlock_release(hwlock_t lock)
Release a hardware lock.
This function releases a lock from the current logical core. The lock should have
been previously claimed by hwlock_acquire().

Parameters

· lock – the hardware lock to release

4

lib_locks: Lock handling library

5 Software lock API

typedef unsigned swlock_t
Type that represents a software lock

SWLOCK_INITIAL_VALUE
This define should be used to initialize a software lock e.g.

swlock_t my_lock = SWLOCK_INITIAL_VALUE;

If you intialize this way there is no need to call swlock_init().

void swlock_init(REFERENCE_PARAM(swlock_t, lock))
Initialize a software lock.
This function will initialize a software lock for use. Note that unlike hardware locks,
there is no need to allocate or free a software lock from a limited pool.

int swlock_try_acquire(REFERENCE_PARAM(swlock_t, lock))
Try and acquire a software lock.
This function tries to acquire a lock for the current logical core. If another core
holds the lock then the function will fail and return.

Parameters

· lock – the software lock to acquire.
Returns

a value that is equal toSWLOCK_NOT_ACQUIRED if the attempt fails.
Any other value indicates that the acquisition has succeeded.

void swlock_acquire(REFERENCE_PARAM(swlock_t, lock))
Acquire a software lock.
This function acquires a lock for the current logical core. If another core holds the
lock then the function will wait until it becomes available.

Parameters

· lock – the software lock to acquire.

void swlock_release(REFERENCE_PARAM(swlock_t, lock))
Release a software lock.
This function releases a previously acquired software lock for other cores to use.

Parameters

· lock – the software lock to release.

5

lib_locks: Lock handling library

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

6

	Introduction
	Basic use
	Declaration & allocation
	Acquisition and release
	Freeing

	Example application
	Hardware lock API
	Software lock API

