
AN00136: Example USB Vendor Specific Device

AN00136: Example USB Vendor Specific Device

Publication Date: 2024/9/26
Document Number: XM-006260-AN v3.0.0

IN THIS DOCUMENT

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Application detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Host detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Running the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Advanced example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction

1.1 USB Basics

USB class specifications define standardised protocols for different types of USB de-
vices, ensuring compatibility across various platforms and devices. Each USB class
specification describes howa particular type of device should behave, what descriptors it
should use, and how data transfers should occur. Examples of USB Class Specifications
include Audio, Mass Storage and Human Interface Device.

However, some devices do not naturally fit into this class framework and the USB speci-
fication allows for the creation of completely custom USB devices which do not conform
to any of the USB device class standards.

There are many reasons why a vendor specific implementation might be used over a
standard class, including, but not limited to, the following:

· CustomFunctionality: Unique device features that don’t fitwithin existingUSBclasses.

· Performance: Optimised data transfer and lower latency for specific use cases.

· Proprietary Technology: Protection of intellectual property and confidential protocols.

· Flexibility: Full control over device behavior and protocol, allowing customization.

· Legacy Support: Maintain compatibility with existing systems or protocols.

· Advanced Features: More complex or real-time data handling beyond class limita-
tions.

· Avoid Class Overhead: Simpler implementation by bypassing unnecessary class com-
plexities.

· Differentiation: Create unique product features for competitive advantage.

· Driver Control: Custom drivers allow consistent behavior across platforms.

Examples of such devices might include:

· Adapters which bridge custom debug interfaces to a host PC, for example XMOS xS-
COPE

· Devices which control a variety of custom interfaces from a host PC

1



AN00136: Example USB Vendor Specific Device

· Systems which stream large amounts of captured data to a host PC

These devices typically implement a custom command allowing the host to instruct it to
perform specific operations.

Since the operation of a vendor specific devices is entirely specified by the developer, no
native support can be included with any operating system. The developer is responsible
for building their own driver and host application.

A host’s operating systemwill typically provide amethod of programmatically accessing
USB devices, with libraries such as libusb, pyUSB and openUSB providing cross platform
API’s wrapping these access methods.

Windows operating systems provide a unique obstacle in the requirement of a driver to
be loaded against a device which the host application uses to access the device.

The flexible nature of the xcore architecture lends itself to these custom applications.
Furthermore the xcore allows for high-bandwidth, low-latency communications with a
fast development time.

1.2 This note

This application note describes how to create a vendor specific USB device for a xcore
device. An accompanying example application (app_an00136) is provided that uses
the XMOS USB Device Library (lib_xud).

The example application and associated host application(s) demonstrateUSBbulk trans-
fers running over high speed USB. The example application also deals with the standard
requests associated with this type of USB device.

The application includes simple data transfers, transmitting and receiving buffers
to/from the USB host.

Note: This example uses the open source libusb host library andWindows driver to allow
the device to be accessed from the host machine. On other host platforms supported
by this application example a host driver is not required to interact with libusb.

1.3 Required hardware

The example code accompanying this application note has been written for the XK-EVK-
XU316 board (xcore.ai device), however, since there are no hardware interfaces used
(other than USB), it can be trivially ported to other hardware platforms.

1.4 Prerequisites

· This document assumes familiarity with the XMOS xcore architecture, the Universal
Serial Bus 2.0 Specification (and related specifications), the XMOS tool-chain and the
xc and C languages.

Documentation related to these aspects which are not specific to this application note
are linked to in Further Reading.

· For the full API listing of the XMOS USB Device (XUD) Library and for information of
designing devices using this library please see the document XMOSUSBDevice (XUD)
Library1.

1 http://www.xmos.com/file/lib_xud?version=latest

2

https://www.xmos.com/file/lib_xud
http://www.xmos.com/file/lib_xud?version=latest


AN00136: Example USB Vendor Specific Device

1.5 Block diagram

Fig. 1 depicts a system block diagram showing the fundamental functional units of the
design.

Fig. 1: System block diagram

1.6 Endpoint Types

A vendor specific device can contain a number of endpoints and endpoint types. When
building a vendor specific device some consideration should be given to endpoint type
selection and the transfer mechanisms they employ.

These can be chosen based on the description given in Table 1.

Table 1: Endpoint type descriptions

Endpoint
type

Description Use case

Control
· Low transfer rate
· No need of new endpoint which

can reduce application foot-
print

Configuration of the device

Bulk
· High (but variable) transfer rate
· Guaranteed data integrity

Large amount of data transfer

Interrupt
· Very low transfer rate
· Frequency guaranteed

Real time constraints and low
bandwidth transfer

Isochronous
· Guarantee of timing
· Data integrity not guaranteed

Streaming application e.g. video

Note: The provided application provides an example usage of a control and two bulk
endpoints (one in each direction).

3



AN00136: Example USB Vendor Specific Device

2 Application detail

The application accompanying this note uses the XMOS USB Device (XUD) library to pro-
vide a simple program that creates a basic vendor specific device which responds to
data transfer requests from the host PC.

The application comprises three tasks running on separate threads of the xcore device.

The tasks perform the following operations:

· A task containing the USB library functionality to communicate over USB

· A task implementing Endpoint 0 responding to standard USB control requests

· A task implementing the application code for our custom bulk interface

Fig. 2 shows the task and communication structure for the application example. Tasks
communicate via xCONNECT channels, denoted by the arrows in the diagram.

Fig. 2: Task diagram for vendor specific device

2.1 CMakeLists.txt additions

XMOS applications use the xcommon-cmake build and dependency management sys-
tem. This is bundled with the XMOS XTC tools.

In order for an application to use the USB library, lib_xudmust be added to the to the
application’s dependency list in CMakeLists.txt:
set(APP_DEPENDENT_MODULES "lib_xud")

The application can then access USB functions via the xud_device.h header file:
#include "xud_device.h"

2.2 Setting up the USB library

app.xc contains the core application implementation for the USB vendor specific de-
vice.

For convenience two defines are created for for the endpoint count of the device. These
are used in various points in the code:

4

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest


AN00136: Example USB Vendor Specific Device

#define EP_COUNT_OUT (2)
#define EP_COUNT_IN (2)

Initially the code declares tables that describe the endpoint types, as required by
lib_xud.

This example has bi-directional communication with the host via the mandatory control
endpoint 0. It also has a bulk endpoint IN and OUT endpoint. Note, USB nomenclature
dictates traffic direction is always described from the point view of the host.
XUD_EpType epTypeTableOut[EP_COUNT_OUT] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_BUL | XUD_STATUS_
↪→ENABLE};
XUD_EpType epTypeTableIn[EP_COUNT_IN] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_BUL | XUD_STATUS_
↪→ENABLE};

These defines and tables are later are passed to the XUD_Main() function from
main().

Following XMOS convention an optional header file, xud_conf.h is used to configure
options for lib_xud. This file is automatically detected by the build system.

The contents of this file simply inform lib_xud what tile it is to be run on. This is not
strictly necessary since it replicates the default value, but is included for completeness.
#define USB_TILE tile[0]

2.3 Application main() function

Like all C and XC programs, application entry is at main(). A source code listing for the
application main() function is shown below:
int main()
{

/* Declare channels for each endpoint */
chan c_ep_out[EP_COUNT_OUT], c_ep_in[EP_COUNT_IN];

par
{

on USB_TILE: XUD_Main(c_ep_out, EP_COUNT_OUT, c_ep_in, EP_COUNT_IN,
null, epTypeTableOut, epTypeTableIn,
XUD_SPEED_HS, XUD_PWR_BUS);

on USB_TILE: Endpoint0(c_ep_out[0], c_ep_in[0]);

#ifdef BENCHMARK
on USB_TILE: bulk_endpoint(c_ep_in[1]);

#else
on USB_TILE: bulk_endpoint(c_ep_out[1], c_ep_in[1]);

#endif
}

return 0;
}

Inspecting this function should yield the following observations:

· The par functionality describes running three separate tasks/threads in parallel, these
are:
· A function to configure and execute the USB library: XUD_Main()
· A function to run the Endpoint 0 code: Endpoint0()
· A function to deal with the custom bulk endpoints bulk_endpoint()

· The define USB_TILE describes the tile on which the individual tasks will run

· All tasks run on the same tile (this is requirement of lib_xud)

· The xCONNECT communication channels used by the application are declared at the
beginning of main()

· The endpoint type tables, discussed earlier, are passed into the function XUD_Main()

· Some additional parameters are also passed to XUD_Main(). Refer to lib_xud for
full documentation.

5



AN00136: Example USB Vendor Specific Device

Note: There are two implementations of bulk_endpoint() in the application,
guarded by BENCHMARK. This is discussed later in this document.

2.4 USB device descriptor

A USB device descriptor is a structured data block that provides essential information
about a USB device to the host when the device is connected. This information allows
the host to recognize the device and determine how to communicate with it.

Key details provided by a USB device descriptor include:

1. Vendor ID (VID): A unique identifier assigned to the manufacturer of the USB device.

2. Product ID (PID): A unique identifier assigned to the specific product made by the
manufacturer.

3. Device Class, Subclass, and Protocol: These fields categorize the type of device (e.g.,
mass storage, human interface device like a keyboard or mouse, etc.) and help the
host load the appropriate driver.

4. Device Release Number: The version of the device’s firmware or hardware.

5. Maximum Packet Size: The size of the data packets the device can handle in one
transaction.

6. Number of Configurations: How many different configurations (sets of interfaces
and endpoints) the device supports.

7. Manufacturer, Product, and Serial Number Strings: These fields are optional but pro-
vide human-readable information about the device (e.g., manufacturer name, product
name).

When a USB device is connected, the host reads the device descriptor as part of the
enumeration process, which allows it to load the proper drivers and establish communi-
cation.

The application’s device descriptor is declared in endpoint0.xc and is listed below:
static unsigned char devDesc[] =
{

0x12, /* 0 bLength */
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType */
0x00, /* 2 bcdUSB */
0x02, /* 3 bcdUSB */
USB_CLASS_VENDOR_SPECIFIC,/* 4 bDeviceClass (from xud_std_descriptors.h) */
0x00, /* 5 bDeviceSubClass */
0x00, /* 6 bDeviceProtocol */
0x40, /* 7 bMaxPacketSize */
(VENDOR_ID & 0xFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & 0xFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct */
(0x00), /* 12 bcdDevice: v1.0.0*/
(0x01), /* 13 bcdDevice */
STR_INDEX_MANUFACTURER, /* 14 iManufacturer */
STR_INDEX_PRODUCT, /* 15 iProduct */
0x00, /* 16 iSerialNumber */
0x01 /* 17 bNumConfigurations */

};

Note the use of VENDOR_ID and PRODUCT_ID defines, see below.

2.5 Configuring the USB Device ID’s

The values used for Vendor ID (VID) and Product ID (PID) are defined in the file
endpoint0.xc. These are used by the host machine to identify the product on the
bus.

6



AN00136: Example USB Vendor Specific Device

#define VENDOR_ID 0x20B1
#define PRODUCT_ID 0x00B1

Warning: When developing USB devices, obtaining a Vendor ID (VID) is crucial. A
VID uniquely identifies a company and ensures proper device recognition. VIDs are
issued by the USB Implementers Forum (USB-IF) and must be legally purchased. Us-
ing an unauthorised or duplicate VID can cause device conflicts, malfunction, or legal
repercussions. Always ensure you have a legitimate VID for commercial devices to
avoid potential issues with compatibility, certification, and intellectual property.

2.6 USB class codes

The USB Implementers Forum (USB-IF) define values for each class (https://usb.org/
defined-class-codes). These are used in the bDeviceClass value in the device descriptor.
In the case of a vendor specific device this should the value 0xff. lib_xudmaintains a
list of class codes in xud_standard_descriptors.h.

Typically Each class has various sub-classes (bDeviceSubClass) and protocols (bDevice-
Protocol). For a vendor specific device the developer has the freedom to set these values
as they choose, potentially allowing for multiple custom protocols.

This example code simply uses 0 for both bDeviceSubClass and bDeviceProtocol, a de-
veloper may wish to modify to match their requirements.

2.7 USB configuration descriptor

A USB configuration descriptor is a data structure that provides detailed information
about one specific configuration of a USB device. USB devices can support multiple
configurations, each of which may define different sets of functionality (e.g., different
modes of operation). The configuration descriptor is part of the hierarchy of descriptors
sent to the host during the device enumeration process.

Key elements in a USB configuration descriptor include:

1. Total Length: The total size of the configuration descriptor, including all its subordi-
nate descriptors (such as interface and endpoint descriptors).

2. Number of Interfaces: Specifies how many interfaces are part of the configuration.
Each interface typically represents a functional unit of the device (e.g., a keyboard
interface, a mouse interface, etc.).

3. Configuration Value: A unique number that identifies this configuration. This value is
used by the host to select a particular configuration.

4. Attributes: This field specifies whether the device is bus-powered, self-powered, or
supports remote wakeup (a feature that allows the device to wake up the host system
from sleep).

5. MaximumPower: Indicates themaximumamount of power the device will draw from
the bus when this configuration is active.

The configuration descriptor also points to subordinate descriptors, such as:

· Interface Descriptors: Define specific interfaces within the configuration, each of
which may support a specific function (e.g., a speaker or microphone in an audio de-
vice).

· Endpoint Descriptors: Define communication channels (endpoints) used for data
transfer between the device and the host.

7

https://usb.org/defined-class-codes
https://usb.org/defined-class-codes


AN00136: Example USB Vendor Specific Device

When a host reads the configuration descriptor, it learns about the device’s power re-
quirements, the number of interfaces, and the communication endpoints available for
use in that configuration.

The configuration descriptor used is listed below:
static unsigned char cfgDesc[] =
{

0x09, /* 0 bLength */
USB_DESCTYPE_CONFIGURATION, /* 1 bDescriptortype */
0x20, 0x00, /* 2 wTotalLength */
0x01, /* 4 bNumInterfaces */
0x01, /* 5 bConfigurationValue */
0x00, /* 6 iConfiguration */
0x80, /* 7 bmAttributes (bus-powered) */
0xFA, /* 8 bMaxPower */

0x09, /* 0 bLength */
USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType */
0x00, /* 2 bInterfacecNumber */
0x00, /* 3 bAlternateSetting */
0x02, /* 4: bNumEndpoints */
0xFF, /* 5: bInterfaceClass */
0xFF, /* 6: bInterfaceSubClass */
0xFF, /* 7: bInterfaceProtocol*/
0x00, /* 8 iInterface */

0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
0x01, /* 2 bEndpointAddress */
0x02, /* 3 bmAttributes (bulk) */
0x00, /* 4 wMaxPacketSize */
0x02, /* 5 wMaxPacketSize */
0x01, /* 6 bInterval */

0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
0x81, /* 2 bEndpointAddress */
0x02, /* 3 bmAttributes (bulk) */
0x00, /* 4 wMaxPacketSize */
0x02, /* 5 wMaxPacketSize */
0x01 /* 6 bInterval */

};

It is very basic, describing a single interface with 2 bulk (see bmAttributes) endpoints -
one in each direction (denoted by bit 8 of the endpoint address).

2.8 USB string descriptors

The final table is used to hold strings for the device. It should be noted that the de-
vice descriptor contains indexes into this table for the manufacturer (iManufacturer) and
product (iProduct) strings.
static char * unsafe stringTable[] =
{

"\x09\x04", // Language ID string (US English)
"XMOS", // iManufacturer
"XMOS Simple Bulk Transfer Example", // iProduct

Note: The string table is passed to the function USB_StandardRequests() which
handles the conversion of the raw strings to valid USB string descriptors.

Note: The string at index 0 must always contain the Language ID Descriptor. This de-
scriptor indicates the languages that the device supports for string descriptors.

2.9 Endpoint 0

The function Endpoint0() contains the code for handling control requests from the
host to the mandatory control endpoint 0.

8



AN00136: Example USB Vendor Specific Device

The functionUSB_StandardRequests() fromlib_xud handles all the required stan-
dard requests. These include requests for mandatory descriptors, setting the device ad-
dress etc.

There are no additional requests which need to be handled for a vendor specific device.
However, a developer may choose to add additional requests to control custom device
parameters etc.
void Endpoint0(chanend chan_ep0_out, chanend chan_ep0_in)
{

USB_SetupPacket_t sp;
XUD_BusSpeed_t usbBusSpeed;
XUD_ep ep0_out = XUD_InitEp(chan_ep0_out);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in);

while(1)
{

/* Returns XUD_RES_OKAY on success */
XUD_Result_t result = USB_GetSetupPacket(ep0_out, ep0_in, sp);

if(result == XUD_RES_OKAY)
{

/* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (i.e. STALLed),
* XUD_RES_RST if USB Reset */

result = USB_StandardRequests(ep0_out, ep0_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0,
null, 0,
stringTable, sizeof(stringTable)/sizeof(stringTable[0]),
sp, usbBusSpeed);

}

/* USB bus reset detected, reset EP and get new bus speed */
if(result == XUD_RES_RST)
{

usbBusSpeed = XUD_ResetEndpoint(ep0_out, ep0_in);
}

}
}

2.10 Bulk endpoints

The application endpoints for receiving and transmitting to the host machine are imple-
mented in the file app.xc. This is contained within the function bulk_endpoint(),
shown below:
void bulk_endpoint(chanend chan_ep_from_host, chanend chan_ep_to_host)
{

int host_transfer_buf[BUFFER_SIZE_WORDS];
unsigned host_transfer_length = 0;
XUD_Result_t result;

XUD_ep ep_from_host = XUD_InitEp(chan_ep_from_host);
XUD_ep ep_to_host = XUD_InitEp(chan_ep_to_host);

while(1)
{

/* Receive a buffer (512-bytes) of data from the host */
if((result = XUD_GetBuffer(ep_from_host, (host_transfer_buf, char[BUFFER_SIZE_CHARS]), host_transfer_

↪→length)) == XUD_RES_RST)
{

XUD_ResetEndpoint(ep_from_host, ep_to_host);
continue;

}

/* Perform basic processing (increment data values) */
for (int i = 0; i < host_transfer_length/4; i++)

host_transfer_buf[i]++;

/* Send the modified buffer back to the host */
if((result = XUD_SetBuffer(ep_to_host, (host_transfer_buf, char[BUFFER_SIZE_CHARS]), host_transfer_

↪→length)) == XUD_RES_RST)
{

XUD_ResetEndpoint(ep_from_host, ep_to_host);
}

}
}

Inspection of this function should yield the following observations:

· A buffer is declared to communicate and transfer data with the host
host_transfer_buf of size BUFFER_SIZE.

9



AN00136: Example USB Vendor Specific Device

· This task operates inside a while (1) loop which repeatedly deals with a sequence
of requests from the host to send data to the device and then from the host to then
read data from the device.

· A blocking call is made to lib_xud to receive (using XUD_GetBuffer()) and send
data (using XUD_SetBuffer()) to the host machine at every loop iteration.

· The function performs some basic processing on the received host buffer and simply
increments the values in the buffer received from the host and then sends it back.

· This simple processing could easily be replaced or extended to include access some
external hardware device connected to the xcoreGPIO or communicationwith another
parallel task.

Keeping in sync

Some consideration should be given to handling errors or connection issues, such as
unexpected device disconnection or a host program exception/termination.

The example code runs two endpoints in a single thread to implement a simple re-
quest/response protocol. Consider a scenario where the device receives a request from
the host but is disconnected from the USB bus while preparing it’s response. In the case
of a self-powered device, a naive implementation might have the device attempting to
send a response while the host, recognising the disconnection, sends a new request.
This could result in a deadlock.

While developing a fully robust and error-resilient communication protocol is beyond the
scope of this document, the example code mitigates this issue by registering for bus
updates. If a bus reset is detected, the code waits for a new request. The critical part
to note is the continue statement following the bus reset detection, which ensures the
device properly handles the reset.

There are other approaches that could be considered to allow the host to reset the de-
vice’s state. For instance, a control request to endpoint 0 could serve this purpose.

A simple receive/send loop lends itself to potential synchronisation issues. More ad-
vanced techniques, such as waiting for a new request while concurrently handling re-
sponse transmission, can help avoid these problems. Alternatively, using two separate
threads for each direction of communication—decoupled from one another—could also
be a viable solution, depending on the application’s needs.

It’s worth noting that some devices may not encounter these issues at all. For example,
an endpoint continuously sending data to the host or two independent endpoints running
in separate threads would face fewer synchronization concerns.

10



AN00136: Example USB Vendor Specific Device

3 Hardware setup

To run the demo the following hardware is required:

· xcore.ai Evaluation Kit (XK-EVK-XU316)

· 2 x Micro-B USB cable

Note: The XK-EVK-XU316 has an integrated XTAG debug device, no additional debug
adaptor is required

Fig. 3: XMOS xcore.ai Evaluation Kit

The hardware should be configured as follows:

· Connect the USB receptacle of the XK-EVK-XU316 to the host machine using a USB
cable

· Connect the DEBUG receptacle XK-EVK-XU316 to the host machine using a USB cable

11



AN00136: Example USB Vendor Specific Device

4 Host detail

4.1 Test application

The provided example host program, bulktest, demonstrates bulk transfer between the
host and the xcore device.

The application simply transfers a data buffer to the device and back. The device per-
forms a simple manipulation of the data (increments the data values by 1) before return-
ing the new values to the host. The host program then increments the values and sends
them again. This loop continues for a set number of iterations (nominally 1000).

Pre-compiled host binaries and, where required, setup scripts are provided for each sam-
ple platform in a suitably named directory in the host directory in the supplied software
download.

Since the USB vendor class is specified by the developer, there is no native support with
any operating system. The developer provide their own driver and host application. The
provided examples use libusb to facilitate this.

libusb is a cross-platform, user-space library that provides access to USB deviceswithout
needing kernel-level drivers. It allows developers to communicate with USB hardware
through a consistent API across different operating systems, supporting various USB
transfer types (control, bulk, interrupt, isochronous). libusb is commonly used for device
communication, firmware updates, and creating USB utilities. It’s lightweight, portable,
and simplifies USB programming by abstracting OS-specific details.

libusb is written in C and licensed under the LGPL-2.1 (Lesser General Public License
v2.1).

4.2 Async vs sync API

libusb provides two main modes of operation for handling USB transfers, one syn-
chronous and one asynchronous.

1.Synchronous API:

· Description: In synchronousmode, the program issues a USB transfer request
and waits for the transfer to complete before proceeding. The function calls
block until the data transfer is finished.

· Use Case: Synchronous operations are straightforward and easier to imple-
ment but can cause delays in your application if the transfers take a long time.

2.Asynchronous API:

· Description: In asynchronous mode, the program issues a USB transfer re-
quest and can continue executing other tasks while waiting for the transfer to
complete. Callbacks are used to notify the programwhen the transfer is done.

· Use Case: Asynchronous operations are useful for high-performance applica-
tions where you want to avoid blocking and handle multiple transfers concur-
rently.

For the sake of simplicity, bulktest uses the synchronous scheme. A more advanced
example is also provided, see Bulk read benchmark example.

4.3 Windows driver

For hosts running Windows a driver needs to be installed to support the vendor specific
USB device. This is provided in the driver directory within the Win32 directory. When
starting the device for the first time you will need to point Windows at this directory when
it requests a driver to install for the device.

12



AN00136: Example USB Vendor Specific Device

For more information on driver installation, including the option of a using a Automated
Driver Installer GUI application, see the relevant libusb documentation

4.4 Compilation instructions

Pre-compiled binaries of bulktest are supplied. Example commands below demonstrate
how it might be recompiled for the various platforms. Ensure the relevant compilation
chain is installed on the machine.

Win32:
cl -o bulktest ..\bulktest.cpp -I ..\libusb\Win32 ..\libusb\Win32\libusb.lib

macOS:
g++ -o bulktest ../bulktest.cpp -I ../libusb/macOS ../libusb/macOS/libusb-1.0.0.dylib -m32

macOSARM64:
g++ -o bulktest ../bulktest.cpp -I ../libusb/macOSARM64 ../libusb/macOSARM64/libusb-1.0.0.dylib

Linux32:
g++ -o bulktest ../bulktest.cpp -I ../libusb/Linux32 ../libusb/Linux32/libusb-1.0.a -lpthread -lrt

Linux64:
g++ -o bulktest ../bulktest.cpp -I ../libusb/Linux64 ../libusb/Linux64/libusb-1.0.a -lpthread -lrt

5 Running the example

This section assumes you have downloaded and installed the XMOS XTC tools (see
README for required version). Installation instructions can be found here.

Be sure to pay attention to the section Installation of required third-party tools.

5.1 Building the xcore app

The application uses the xcommon-cmake build system as bundled with the XTC tools.

The an00136 software zip-file should be downloaded and unzipped to a chosen direc-
tory.

The file CMakeLists.txt contains build configurations named BULKTEST and
BENCHMARK.

Initially this document concerns itself wth the BULKTEST configuration. See Bulk read
benchmark example for information relating to the BENCHMARK configuration.

To configure the build run the following from an XTC command prompt:
cd an00136
cd app_an00136
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software download, however, if any are
missing it is at this configure step that they will be downloaded by the build system.

Finally, the application binaries can be built using xmake:
xmake -j -C build

This command will cause two binaries (.xe files) to be generated in relevant subdirecto-
ries of the app_an00136/bin directory, one for each of the build configurations previously
mentioned.

13

https://github.com/libusb/libusb/wiki/Windows#user-content-How_to_use_libusb_on_Windows
https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest


AN00136: Example USB Vendor Specific Device

Blocks of code are optionally compiled based on a BENCHMARK define, set by the relevant
build configuration, for example:
#ifdef BENCHMARK

// Some code
#endif

This accounts for the differences in the functionality between the two binaries.

5.2 Launching the xcore app

From a XTC command prompt run the following command:
xrun ./bin/BULKTEST/app_an02003_BULKTEST.xe

Once this command has executed the device should have enumerated on the host ma-
chine.

5.3 Running the host app

Source the appropriate provided setup script for the platform and then execute the ‘bulk-
test’ application from the command line.

This will connect to the USB device and transfer data buffers back and forth.

The output should be similar the following:
XMOS Bulk USB device opened .....
Timing write/read of 1000 512-byte buffers.....
125 ms (7.81 MB/s)
XMOS Bulk USB device data processed correctly .....
XMOS Bulk USB device closed .....

This application is intended as a simple demonstration application and has not been
programmed for efficient data transfer. The performance reported for this simple appli-
cation will vary depending on the capabilities of your USB host, operating system and
other bus activity.

14



AN00136: Example USB Vendor Specific Device

6 Advanced example

6.1 Bulk read benchmark example

Includedwith the example host code is a bulk read benchmark demo. This demonstrates
high performance data throughput from the device to the host. The main difference is in
the host code which uses asynchronous, non blocking libusb calls to utilise the USB bus
more effectively. The rest of this section lists the steps required to run this benchmark
application.

Note: Currently the optimized bulk read benchmark is only supported on macOS and
Linux, Windows is not supported at this time.

Device code changes

An alternative implementation for bulk_endpoint() is used in the BENCHMARK build
configuration.

This function is a simplified version of the one used in the BULKTEST configuration. It
only deals with transmitting packets to USB host. It also doesn’t concern itself with re-
ceiving bus state updates.

This alternative implementation of bulk_endpoint() is listed below:
/* An optimised endpoint for the read benchmark test */
void bulk_endpoint(chanend chan_ep_to_host)
{

char host_transfer_buf[BUFFER_SIZE_WORDS*4];
unsigned host_transfer_length = 512;

XUD_ep ep_to_host = XUD_InitEp(chan_ep_to_host);

while(1)
{

XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);
XUD_SetBuffer(ep_to_host, host_transfer_buf, host_transfer_length);

}
}

Notable differences include:

· The host transfer length is set to 512 bytes to match the host application

· The while loop has been unrolled to contain 8 calls to XUD_SetBuffer()

· The “from host” channel-end is not used

Host code changes

A separate host application is provided to work with the BENCHMARK build configuration.
See the file bulk_read_benchmark.cpp.

Steps for building follow that already provided for bulktest, replacing the file bulktest.cpp
with bulk_read_benchmark.cpp.

This example runs forever and will need to be terminated with a ctrl-C when required.

The output will look as follows, with the performance depending on host platform, USB
hardware and other bus traffic:
XMOS Bulk USB device opened .....
Read transfer rate 32.19 MB/s
Read transfer rate 34.94 MB/s

(continues on next page)

15



AN00136: Example USB Vendor Specific Device

(continued from previous page)
Read transfer rate 39.56 MB/s
Read transfer rate 39.62 MB/s
Read transfer rate 39.56 MB/s
Read transfer rate 39.56 MB/s
Read transfer rate 39.56 MB/s
Read transfer rate 39.56 MB/s
Read transfer rate 39.56 MB/s

16



AN00136: Example USB Vendor Specific Device

7 Further reading

· XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

· XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

· USB 2.0 Specification
https://www.usb.org/sites/default/files/usb_20_20240604.zip

· XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

17

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.usb.org/sites/default/files/usb_20_20240604.zip
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

	Introduction
	Application detail
	Hardware setup
	Host detail
	Running the example
	Advanced example
	Further reading

