
lib_i2c: I²C library

Publication Date: 2024/11/7
Document Number: XM-004927-UG v6.4.0

lib_i2c: I²C library

IN THIS DOCUMENT

1 Introduction . 2
2 External signal description . 2

2.1 Connecting to the xcore device . 5
3 I²C master library usage . 5

3.1 I²C master synchronous operation . 5
3.2 I²C master asynchronous operation . 7
3.3 Repeated start bits . 8

4 I²C slave library usage . 9
5 Master API . 10

5.1 Creating an I²C master instance . 10
5.2 I²C master supporting typedefs . 14
5.3 I²C master synchronous interface . 15
5.4 I²C master asynchronous interface . 19

6 Slave API . 20
6.1 Creating an I²C slave instance . 21
6.2 I²C slave interface . 22

1 Introduction

lib_i2c provides a software defined, industry-standard, I²C library that allows control
of an I²C bus via xcore ports. I²C is a two-wire hardware serial interface, first developed
by Philips. lib_i2c provides both controller (“master”) and peripheral (“slave”) function-
ality.

lib_i2c is compatible with multiple slave devices existing on the same bus. The I²C
master component can be used bymultiple tasks within the xcore device (each address-
ing the same or different slave devices).

lib_i2c can also be used to implement multiple I²C physical interfaces on a single
xcore device simultaneously.

lib_i2c is intended to be used with the XCommon CMake , the XMOS application build
and dependency management system.

To use this library, include lib_i2c in the application’s APP_DEPENDENT_MODULES list
in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_i2c")

Applications should then include the i2c.h header file.

2 External signal description

All signals are designed to comply with the timings in the I²C specification found here:

http://www.nxp.com/documents/user_manual/UM10204.pdf

Note that the following optional parts of the I²C specification are not supported:

· Multi-master arbitration

· 10-bit slave addressing

· General call addressing

· Software reset

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
http://www.nxp.com/documents/user_manual/UM10204.pdf

lib_i2c: I²C library

· START byte

· Device ID

· Fast-mode Plus, High-speed mode, Ultra Fast-mode

I²C consists of two signals: a clock line‘(SCL) and a data line (SDA). Both of these signals
are open-drain and require external resistors to pull the line up if no device is driving the
signal down. The correct value for the resistors can be found in the I²C specification.

Fig. 1: I²C open-drain layout

Transactions on the line occur between a master and a slave. The master always drives
the clock (though the slave can delay the transaction at any point by holding the clock
line down). The master initiates a transaction with a start bit (consisting of driving the
data line from high to low whilst the clock line is high). It will then clock out a seven-bit
device address followed by a read/write bit. The master will then drive one more clock
pulse duringwhich the slave can either ACK (drive the line low), accepting the transaction
or NACK (leave the line high). This sequence is shown in I²C transaction start.

Fig. 2: I²C transaction start

If the read/write bit of the transaction start is 1 then themaster will execute a sequence of
reads. Each read consists of the master driving the clock whilst the slave drives the data
for 8-bits (most significant bit first). At the end of each byte, the master drives another
clock pulse and will either drive either an ACK (0) or NACK (1) signal on the data line.
When the master drives a NACK signal, the sequence of reads is complete. A read byte
sequence is show in I²C read byte

Fig. 3: I²C read byte

3

lib_i2c: I²C library

If the read/write bit of the transaction start is 0 then the master will execute a sequence
of writes. Each write consists of the master driving the clock whilst and also driving
the data for 8-bits (most significant bit first). At the end of each byte, the master drives
another clock pulse and the slave will either drive either an ACK (0) (signalling that it can
accept more data) or a NACK (1) (signalling that it cannot accept more data) on the data
line. After the ACK/NACK signal, the master can complete the transaction with a stop bit
or repeated start. A write byte sequence is show in I²C write byte

Fig. 4: I²C write byte

After a transaction is complete, themastermay start a new transaction (a repeated start)
or will send a stop bit consisting of releasing the data line so that it floats from low to
high whilst the clock line is high (see I²C stop bit).

Fig. 5: I²C stop bit

4

lib_i2c: I²C library

2.1 Connecting to the xcore device

When the xcore is the I²C master, the normal configuration is to connect the clock and
data lines to different 1-bit ports as shown in I²C master (1-bit ports).

Fig. 6: I²C master (1-bit ports)

It is possible to connect both lines to different bits of a multi-bit port as shown in I²C
master (single n-bit port). This is useful if other constraints limit the use of one bit ports.
However the following should be taken into account:

· L-series and U-series devices do not support this configuration,

· The other bits of the multi-bit port cannot be used for any other function.

Fig. 7: I²C master (single n-bit port)

When the xcore is acting as I²C slave the two lines must be connected to two 1-bit ports
(as shown in I²C slave connection).

Fig. 8: I²C slave connection

3 I²C master library usage

There are two types of interface for I²C masters: synchronous and asynchronous.

3.1 I²C master synchronous operation

The synchronous API provides blocking operation. Whenever a client makes a read or
write call the operation will complete before the client can move on - this will occupy
the core that the client code is running on until the end of the operation. This method is
easy to use, has low resource use and is very suitable for applications such as setup and
configuration of attached peripherals.

I²C masters are instantiated as parallel tasks that run in a par statement. For syn-
chronous operation, the application can connect via an interface connection using the
i2c_master_if interface type:

For example, the following code instantiates an I²C master and connects to it
port p_scl = XS1_PORT_1E;
port p_sda = XS1_PORT_1F;

(continues on next page)

5

lib_i2c: I²C library

Fig. 9: I²C master task diagram

(continued from previous page)
int main(void) {
i2c_master_if i2c[1];
static const uint8_t target_device_addr = 0x3c;

par {
i2c_master(i2c, 1, p_scl, p_sda, 100);
my_application(i2c[0], target_device_addr);

}
return 0;

}

For the single multi-bit port version of I²C the top level instantiation would look like
port p_i2c = XS1_PORT_4C;

int main(void) {
i2c_master_if i2c[1];
static const uint8_t target_device_addr = 0x3c;

par {
i2c_master_single_port(i2c, 1, p_i2c, 100, 1, 3, 0);
my_application(i2c[0], target_device_addr);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the
same master.

6

lib_i2c: I²C library

The application can use the client end of the interface connection to perform I²C bus
operations e.g.
void my_application(client i2c_master_if i2c, uint8_t target_device_addr) {

uint8_t data[2];
i2c.read(target_device_addr, data, 2, 1);
printf("Read data %d, %d from the bus.\n", data[0], data[1]);

}

Here the operations such as i2c.readwill block until the operation is completed on the
bus. More information on interfaces and tasks can be be found in the XMOS Program-
ming Guide. By default the I²C synchronous master mode component does not use any
logical cores of its own. It is a distributed task which means it will perform its function
on the logical core of the application task connected to it (provided the application task
is on the same tile as the I²C ports).

3.2 I²C master asynchronous operation

The synchronous API will block the application until the bus operation is complete. In
cases where the application cannot afford to wait for this long the asynchronous API
can be used.

The asynchronous API offloads operations to another task. Calls are provided to initi-
ate reads and writes. Notifications are provided when the operation completes. This
API requires more management in the application but can provide much more efficient
operation. It is particularly suitable for applications where the I²C bus is being used for
continuous data transfer.

Setting up an asynchronous I²C master component is done in the same manner as the
synchronous component.
port p_scl = XS1_PORT_1E;
port p_sda = XS1_PORT_1F;

#define BUFFER_BYTES 100

int main(void) {
i2c_master_async_if i2c[1];
static const uint8_t target_device_addr = 0x3c;

par {
i2c_master_async(i2c, 1, p_scl, p_sda, 100, BUFFER_BYTES);
my_application(i2c[0], target_device_addr);

}
return 0;

}

7

https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf
https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf

lib_i2c: I²C library

The application can then use the asynchronous API to offload bus operations to the I²C
master. For example, the following code repeatedly calculates BUFFER_BYTES bytes to
send over the bus.
void my_application(client i2c_master_async_if i2c, uint8_t target_device_addr) {
uint8_t buffer[BUFFER_BYTES];

// Create and send initial block of data
my_application_fill_buffer(buffer);
i2c.write(target_device_addr, buffer, BUFFER_BYTES, 1);

// Start computing the next block of data
my_application_fill_buffer(buffer);

while (1) {
select {
case i2c.operation_complete():
size_t num_bytes_sent;
i2c_res_t result = i2c.get_write_result(num_bytes_sent);
if (num_bytes_sent != BUFFER_BYTES) {

my_application_handle_bus_error(result);
}

// Offload the next data bytes to be sent
i2c.write(target_device_addr, buffer, BUFFER_BYTES, 1);

// Compute the next block of data
my_application_fill_buffer(buffer);

break;
}

}
}

Here the calculation of my_application_fill_bufferwill overlap with the sending
of data by the other task.

3.3 Repeated start bits

The library supports repeated start bits. The read and write functions allow the appli-
cation to specify whether to send a stop bit at the end of the transaction. If this is set to
0 then no stop bit is sent and the next transaction will begin with a repeated start bit e.g.
void my_application(client i2c_master_if i2c, uint8_t target_device_addr) {
uint8_t data[2] = { 0x1, 0x2 };
size_t num_bytes_sent = 0;

// Do a write operation with no stop bit
i2c.write(target_device_addr, data, 2, num_bytes_sent, 0);

// This operation will begin with a repeated start bit
i2c.read(target_device_addr, data, 2, 1);
printf("Read data %d, %d from the bus.\n", data[0], data[1]);

}

Note that if no stop bit is sent then no other client using the same I²C master can send
or receive data. They will block until a stop bit is sent.

8

lib_i2c: I²C library

4 I²C slave library usage

I²C slaves are instantiated as parallel tasks that run in a par statement. The application
can connect via an interface connection.

Fig. 10: I²C slave task diagram

For example, the following code instantiates an I²C slave and connects to it.
port p_scl = XS1_PORT_1E;
port p_sda = XS1_PORT_1F;

int main(void) {
static const uint8_t device_addr = 0x3c;
i2c_slave_callback_if i2c;

par {
i2c_slave(i2c, p_scl, p_sda, device_addr);
my_application(i2c);

}

return 0;
}

9

lib_i2c: I²C library

The slave acts as the client of the interface connection. This means it can “callback”
to the application to respond to requests from the bus master. For example, the
my_application function above needs to respond to the calls e.g.
void my_application(server i2c_slave_callback_if i2c) {
while (1) {
select {
case i2c.ack_read_request() -> i2c_slave_ack_t response:
response = I2C_SLAVE_ACK;
break;

case i2c.ack_write_request() -> i2c_slave_ack_t response:
response = I2C_SLAVE_ACK;
break;

case i2c.master_sent_data(uint8_t data) -> i2c_slave_ack_t response:
// handle write to device here, set response to NACK for the
// last byte of data in the transaction.
break;

case i2c.master_requires_data() -> uint8_t data:
// handle read from device here
break;

case i2c.stop_bit():
break;

}
}

}

More information on interfaces and tasks can be be found in the XMOS Programming
Guide.

5 Master API

All I²C master functions can be accessed via the i2c.h header:
#include "i2c.h"

lib_i2c should also be included in the application’s APP_DEPENDENT_MODULES list
in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_i2c")

5.1 Creating an I²C master instance

void i2c_master(SERVER_INTERFACE(i2c_master_if, i[n]), size_t n, port_t p_scl,
port_t p_sda, static_const_unsigned kbits_per_second)

Implements I2C on the i2c_master_if interface using two ports.

Parameters

· i – an array of server interface connections for clients to connect
to

· n – the number of clients connected
· p_scl – the SCL port of the I2C bus
· p_sda – the SDA port of the I2C bus
· kbits_per_second – the speed of the I2C bus

10

https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf
https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf

lib_i2c: I²C library

void i2c_master_single_port(SERVER_INTERFACE(i2c_master_if, c[n]),
static_const_size_t n, port_t p_i2c,
static_const_unsigned kbits_per_second,
static_const_unsigned scl_bit_position,
static_const_unsigned sda_bit_position,
static_const_unsigned other_bits_mask)

Implements I2C on a single multi-bit port.
This function implements an I2Cmaster bus using a single port. Not supported on
L or U series devices.

Parameters

· c – an array of server interface connections for clients to connect
to

· n – the number of clients connected
· p_i2c – the multi-bit port containing both SCL and SDA.

the bit positions of SDA and SCL are configured using the
sda_bit_position and scl_bit_position arguments.

· kbits_per_second – the speed of the I2C bus
· sda_bit_position – the bit of the SDA line on the port
· scl_bit_position – the bit of the SCL line on the port
· other_bits_mask – a value that is ORed into the port value

driven to p_i2c. The SDA and SCL bit values for this vari-
able must be set to 0. Note that p_i2c is configured with
set_port_drive_low() and therefore external pullup resistors are re-
quired to produce a value 1 on a bit.

11

lib_i2c: I²C library

void i2c_master_async(SERVER_INTERFACE(i2c_master_async_if, i[n]), size_t n,
port_t p_scl, port_t p_sda, static_const_unsigned
kbits_per_second, static_const_size_t
max_transaction_size)

I2C master component (asynchronous API).
This function implements I2C and allows clients to asynchronously perform oper-
ations on the bus.

Parameters

· i – the interfaces to connect the component to its clients
· n – the number of clients connected to the component
· p_scl – the SCL port of the I2C bus
· p_sda – the SDA port of the I2C bus
· kbits_per_second – the speed of the I2C bus
· max_transaction_size – the size of the local buffer in bytes.

Any transactions exceeding this size will cause a run-time excep-
tion.

12

lib_i2c: I²C library

void i2c_master_async_comb(SERVER_INTERFACE(i2c_master_async_if, i[n]),
size_t n, port_t p_scl, port_t p_sda,
static_const_unsigned kbits_per_second,
static_const_size_t max_transaction_size)

I2C master component (asynchronous API, combinable).
This function implements I2C and allows clients to asynchronously perform oper-
ations on the bus. Note that this component can be run on the same logical core
as other tasks (i.e. it is [[combinable]]). However, care must be taken that the other
tasks do not take too long in their select cases otherwise this componentmaymiss
I2C transactions.

Parameters

· i – the interfaces to connect the component to its clients
· n – the number of clients connected to the component
· p_scl – the SCL port of the I2C bus
· p_sda – the SDA port of the I2C bus
· kbits_per_second – the speed of the I2C bus
· max_transaction_size – the size of the local buffer in bytes.

Any transactions exceeding this size will cause a run-time excep-
tion.

13

lib_i2c: I²C library

5.2 I²C master supporting typedefs

enum i2c_res_t
This type is used in I2C functions to report back on whether the slave performed
an ACK or NACK on the last piece of data sent to it.
Values:

enumerator I2C_NACK
the slave has NACKed the last byte

enumerator I2C_ACK
the slave has ACKed the last byte

enum i2c_regop_res_t
This type is used by the supplementary I2C register read/write functions to report
back on whether the operation was a success or not.
Values:

enumerator I2C_REGOP_SUCCESS
the operation was successful

enumerator I2C_REGOP_DEVICE_NACK
the operation was NACKed when sending the device address, so either the
device is missing or busy

enumerator I2C_REGOP_INCOMPLETE
the operation was NACKed halfway through by the slave

14

lib_i2c: I²C library

5.3 I²C master synchronous interface

group i2c_master_if
This interface is used to communication with an I2C master component. It pro-
vides facilities for reading and writing to the bus.

Functions

i2c_res_t write(uint8_t device_addr, uint8_t buf[n], size_t n,
REFERENCE_PARAM(size_t, num_bytes_sent), int
send_stop_bit)

Write data to an I2C bus.
Parameters

· device_addr – the address of the slave device to write to.
· buf – the buffer containing data to write.
· n – the number of bytes to write.
· num_bytes_sent – the function will set this value to the

number of bytes actually sent. On success, this will be equal
to n but it will be less if the slave sends an early NACK on the
bus and the transaction fails.

· send_stop_bit – if this is non-zero then a stop bit will be
sent on the bus after the transaction. This is usually required
for normal operation. If this parameter is zero then no stop bit
will be omitted. In this case, no other task can use the compo-
nent until a stop bit has been sent.

Returns
I2C_ACK if the write was acknowledged by the slave device, oth-
erwise I2C_NACK.

i2c_res_t read(uint8_t device_addr, uint8_t buf[n], size_t n, int send_stop_bit)
Read data from an I2C bus.

Parameters

· device_addr – the address of the slave device to read from
· buf – the buffer to fill with data
· n – the number of bytes to read
· send_stop_bit – if this is non-zero then a stop bit will be

sent on the bus after the transaction. This is usually required
for normal operation. If this parameter is zero then no stop bit
will be omitted. In this case, no other task can use the compo-
nent until a stop bit has been sent.

Returns
I2C_ACK if the read was acknowledged by the slave device, oth-
erwise I2C_NACK.

void send_stop_bit(void)
Send a stop bit.
This function will cause a stop bit to be sent on the bus. It should be used to
complete/abort a transaction if the send_stop_bit argument was not set
when calling the read() or write() functions.

void shutdown()
Shutdown the I2C component.
This function will cause the I2C task to shutdown and return.
Shutdown the I2C component.
This function will cause the I2C slave task to shutdown and return.

15

lib_i2c: I²C library

inline uint8_t read_reg(CLIENT_INTERFACE(i2c_master_if, i), uint8_t
device_addr, uint8_t reg,
REFERENCE_PARAM(i2c_regop_res_t, result))

Read an 8-bit register on a slave device.
This function reads an 8-bit addressed, 8-bit register from the i2c bus. The
function reads data by transmitting the register addr and then reading the
data from the slave device.
Note that no stop bit is transmitted between the write and the read. The op-
eration is performed as one transaction using a repeated start.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to read from
· reg – the address of the register to read
· result – indicates whether the read completed success-

fully. Will be set to I2C_REGOP_DEVICE_NACK if the slave
NACKed, and I2C_REGOP_SUCCESS on successful comple-
tion of the read.

Returns
the value of the register

inline i2c_regop_res_t write_reg(CLIENT_INTERFACE(i2c_master_if, i), uint8_t
device_addr, uint8_t reg, uint8_t data)

Write an 8-bit register on a slave device.
This function writes an 8-bit addressed, 8-bit register from the i2c bus. The
function writes data by transmitting the register addr and then transmitting
the data to the slave device.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to write to
· reg – the address of the register to write
· data – the 8-bit value to write

inline uint8_t read_reg8_addr16(CLIENT_INTERFACE(i2c_master_if, i), uint8_t
device_addr, uint16_t reg,
REFERENCE_PARAM(i2c_regop_res_t,
result))

Read an 8-bit register on a slave device from a 16-bit register address.
This function reads a 16-bit addressed, 8-bit register from the i2c bus. The
function reads data by transmitting the register addr and then reading the
data from the slave device.
Note that no stop bit is transmitted between the write and the read. The op-
eration is performed as one transaction using a repeated start.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to read from
· reg – the 16-bit address of the register to read (most signifi-

cant byte first)
· result – indicates whether the read completed success-

fully. Will be set to I2C_REGOP_DEVICE_NACK if the slave
NACKed, and I2C_REGOP_SUCCESS on successful comple-
tion of the read.

Returns
the value of the register

16

lib_i2c: I²C library

inline i2c_regop_res_t write_reg8_addr16(CLIENT_INTERFACE(i2c_master_if,
i), uint8_t device_addr, uint16_t reg,
uint8_t data)

Write an 8-bit register on a slave device from a 16-bit register address.
This function writes a 16-bit addressed, 8-bit register from the i2c bus. The
function writes data by transmitting the register addr and then transmitting
the data to the slave device.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to write to
· reg – the 16-bit address of the register to write (most signifi-

cant byte first)
· data – the 8-bit value to write

inline uint16_t read_reg16(CLIENT_INTERFACE(i2c_master_if, i), uint8_t
device_addr, uint16_t reg,
REFERENCE_PARAM(i2c_regop_res_t, result))

Read an 16-bit register on a slave device from a 16-bit register address.
This function reads a 16-bit addressed, 16-bit register from the i2c bus. The
function reads data by transmitting the register addr and then reading the data
from the slave device. It is assumed the data is returnedmost significant byte
first on the bus.
Note that no stop bit is transmitted between the write and the read. The op-
eration is performed as one transaction using a repeated start.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to read from
· reg– the address of the register to read (most significant byte

first)
· result – indicates whether the read completed success-

fully. Will be set to I2C_REGOP_DEVICE_NACK if the slave
NACKed, and I2C_REGOP_SUCCESS on successful comple-
tion of the read.

Returns
the 16-bit value of the register

inline i2c_regop_res_t write_reg16(CLIENT_INTERFACE(i2c_master_if, i),
uint8_t device_addr, uint16_t reg, uint16_t
data)

Write an 16-bit register on a slave device from a 16-bit register address.
This function writes a 16-bit addressed, 16-bit register from the i2c bus. The
function writes data by transmitting the register addr and then transmitting
the data to the slave device.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to write to
· reg – the 16-bit address of the register to write (most signifi-

cant byte first)
· data – the 16-bit value to write (most significant byte first)

Returns
I2C_REGOP_DEVICE_NACK if the address is NACKed,
I2C_REGOP_INCOMPLETE if not all data was ACKed and
I2C_REGOP_SUCCESS on successful completion of the write
with every byte being ACKed.

17

lib_i2c: I²C library

inline uint16_t read_reg16_addr8(CLIENT_INTERFACE(i2c_master_if, i),
uint8_t device_addr, uint8_t reg,
REFERENCE_PARAM(i2c_regop_res_t,
result))

Read an 16-bit register on a slave device from a 8-bit register address.
This function reads a 8-bit addressed, 16-bit register from the i2c bus. The
function reads data by transmitting the register addr and then reading the data
from the slave device. It is assumed that the data is return most significant
byte first on the bus.
Note that no stop bit is transmitted between the write and the read. The op-
eration is performed as one transaction using a repeated start.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to read from
· reg – the address of the register to read
· result – indicates whether the read completed success-

fully. Will be set to I2C_REGOP_DEVICE_NACK if the slave
NACKed, and I2C_REGOP_SUCCESS on successful comple-
tion of the read.

Returns
the 16-bit value of the register

inline i2c_regop_res_t write_reg16_addr8(CLIENT_INTERFACE(i2c_master_if,
i), uint8_t device_addr, uint8_t reg,
uint16_t data)

Write an 16-bit register on a slave device from a 8-bit register address.
This function writes a 8-bit addressed, 16-bit register from the i2c bus. The
function writes data by transmitting the register addr and then transmitting
the data to the slave device.

Parameters

· i – the interface to the I2C master
· device_addr – the address of the slave device to write to
· reg – the address of the register to write
· data – the 16-bit value to write (most significant byte first)

Returns
I2C_REGOP_DEVICE_NACK if the address is NACKed,
I2C_REGOP_INCOMPLETE if not all data was ACKed and
I2C_REGOP_SUCCESS on successful completion of the write
with every byte being ACKed.

18

lib_i2c: I²C library

5.4 I²C master asynchronous interface

group i2c_master_async_if
This interface is used to communicate with an I2C master component asyn-
chronously. It provides facilities for reading and writing to the bus.

Functions

void async_master_write(uint8_t device_addr, uint8_t buf[n], size_t n, int
send_stop_bit)

Initialize a write to an I2C bus.
Parameters

· device_addr – the address of the slave device to write to
· buf – the buffer containing data to write
· n – the number of bytes to write
· send_stop_bit – if this is non-zero then a stop bit will be

sent on the bus after the transaction. This is usually required
for normal operation. If this parameter is zero then no stop bit
will be omitted. In this case, no other task can use the compo-
nent until a stop bit has been sent.

void async_master_read(uint8_t device_addr, size_t n, int send_stop_bit)
Initialize a read to an I2C bus.

Parameters

· device_addr – the address of the slave device to read from.
· n – the number of bytes to read.
· send_stop_bit – if this is non-zero then a stop bit will be

sent on the bus after the transaction. This is usually required
for normal operation. If this parameter is zero then no stop bit
will be omitted. In this case, no other task can use the compo-
nent until a stop bit has been sent.

slave_void operation_complete(void)
Completed operation notification.
This notification will fire when a read or write is completed.

i2c_res_t get_write_result(REFERENCE_PARAM(size_t, num_bytes_sent))
Get write result.
This function should be called after a write has completed.

Parameters

· num_bytes_sent – the function will set this value to the
number of bytes actually sent. On success, this will be equal
to n but it will be less if the slave sends an early NACK on the
bus and the transaction fails.

Returns
I2C_ACK if the write was acknowledged by the slave device, oth-
erwise I2C_NACK.

i2c_res_t get_read_data(uint8_t buf[n], size_t n)
Get read result.
This function should be called after a read has completed.

Parameters

19

lib_i2c: I²C library

· buf – the buffer to fill with data.
· n – the number of bytes to read, this should be the same as

the number of bytes specified in read(), otherwise the behavior
is undefined.

Returns
I2C_ACK if the write was acknowledged by the slave device, oth-
erwise I2C_NACK.

void async_master_send_stop_bit(void)
Send a stop bit.
This function will cause a stop bit to be sent on the bus. It should be used to
complete/abort a transaction if the send_stop_bit argument was not set
when calling the read() or write() functions.

void async_master_shutdown()
Shutdown the I2C component.
This function will cause the I2C task to shutdown and return.

6 Slave API

All I²C slave functions can be accessed via the i2c.h header:
#include "i2c.h"

lib_i2c should also be included in the application’s APP_DEPENDENT_MODULES list
in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_i2c")

20

lib_i2c: I²C library

6.1 Creating an I²C slave instance

void i2c_slave(CLIENT_INTERFACE(i2c_slave_callback_if, i), port_t p_scl, port_t
p_sda, uint8_t device_addr)

I2C slave task.
This function instantiates an i2c_slave component.

Parameters

· i – the client end of the i2c_slave_callback_if interface. The com-
ponent takes the client end and will make calls on the interface
when the master performs reads or writes.

· p_scl – the SCL port of the I2C bus
· p_sda – the SDA port of the I2C bus
· device_addr – the address of the slave device

21

lib_i2c: I²C library

6.2 I²C slave interface

group i2c_slave_callback_if
This interface is used to communicate with an I2C slave component. It provides
facilities for reading and writing to the bus. The I2C slave component acts a client
to this interface. So the application must respond to these calls (i.e. the members
of the interface are callbacks to the application).

Functions

i2c_slave_ack_t ack_read_request(void)
Master has requested a read.
This callback function is called by the component if the bus master requests
a read from this slave device.
At this point the slave can choose to accept the request (and drive an ACK
signal back to the master) or not (and drive a NACK signal).

Returns
the callback must return either I2C_SLAVE_ACK or
I2C_SLAVE_NACK.

i2c_slave_ack_t ack_write_request(void)
Master has requested a write.
This callback function is called by the component if the bus master requests
a write from this slave device.
At this point the slave can choose to accept the request (and drive an ACK
signal back to the master) or not (and drive a NACK signal).

Returns
the callback must return either I2C_SLAVE_ACK or
I2C_SLAVE_NACK.

uint8_t master_requires_data()
Master requires data.
This callback function will be called when the I2C master requires data from
the slave.

Returns
the data to pass to the master.

i2c_slave_ack_t master_sent_data(uint8_t data)
Master has sent some data.
This callback function will be called when the I2C master has transferred a
byte of data to the slave.

void stop_bit(void)
Stop bit.
This callback function will be called by the component when a stop bit is sent
by the master.

22

lib_i2c: I²C library

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

23

	Introduction
	External signal description
	Connecting to the xcore device

	I²C master library usage
	I²C master synchronous operation
	I²C master asynchronous operation
	Repeated start bits

	I²C slave library usage
	Master API
	Creating an I²C master instance
	I²C master supporting typedefs
	I²C master synchronous interface
	I²C master asynchronous interface

	Slave API
	Creating an I²C slave instance
	I²C slave interface

