
USB Audio User Guide
Publication Date: 2024/3/26
Document Number: XM008854A

Document Number: XM008854A

USB Audio User Guide

SYNOPSIS

The XMOS USB Audio solution provides USB Audio Class compliant devices over USB 2.0 (high-speed or
full-speed). Based on the XMOS xcore-200 (XS2) and xcore.ai (XS3) architectures, it supports USB Audio
Class 2.0 and USB Audio Class 1.0, asynchronous mode (synchronous as an option) and sample rates up
to 384kHz.

The complete source code, together with the free XMOS XTC development tools and xCORE multi-core
micro-controller devices, allow the developer to select the exact mix of interfaces and processing required.

The XMOS USB Audio solution is deployed as a framework (see lib_xua) with reference design appli-
cations extending and customising this framework. These reference designs have particular qualified
feature sets and an accompanying reference hardware platform.

This software user guide assumes the reader is familiar with the XC language and xcore devices. For
more information see XMOS Programming Guide1.

The reader should also familiarise themselves with the XMOS USB Device Library (lib_xud)2 and the XMOS
USB Audio Library (lib_xua)3

The reader should always refer to the supplied CHANGELOG and README files for known issues of a
specific release

1https://www.xmos.com/published/xmos-programming-guide
2https://github.com/xmos/lib_xud/releases/latest
3https://github.com/xmos/lib_xua/releases/latest

2

https://www.xmos.com/published/xmos-programming-guide
https://github.com/xmos/lib_xud/releases/latest
https://github.com/xmos/lib_xua/releases/latest

USB Audio User Guide

Table of Contents

1 Overview 4

2 Hardware Platforms 5
2.1 xcore.ai Multi-Channel Audio Board . 5

2.1.1 Hardware Features . 6
2.1.2 Analogue Input & Output . 7
2.1.3 Digital Input & Output . 7
2.1.4 MIDI . 7
2.1.5 Audio Clocking . 7
2.1.6 Control I/O . 8
2.1.7 LEDs, Buttons and Other IO . 8
2.1.8 Power . 8
2.1.9 Debug . 9

2.2 xCORE-200 Multi-Channel Audio Board . 10
2.2.1 Analogue Input & Output . 10
2.2.2 Digital Input & Output . 10
2.2.3 MIDI . 10
2.2.4 Audio Clocking . 11
2.2.5 LEDs, Buttons and Other IO . 11

2.3 xCORE.ai Evaluation Kit . 12
2.3.1 Analogue Audio Input & Output . 13
2.3.2 Audio Clocking . 13
2.3.3 LEDs, Buttons and Other IO . 13
2.3.4 Power . 13
2.3.5 Debug . 13

3 Driver Support 14
3.1 OS Support for UAC 1.0 . 14
3.2 OS Support for UAC 2.0 . 14
3.3 Thirds Party Windows Drivers . 14

4 Quick Start 16
4.1 USB Audio 2.0 Reference Software . 18
4.2 USB Audio Class 2.0 Evaluation Driver for Windows . 18
4.3 XMOS XTC Development Tools . 19
4.4 Building the Firmware . 20
4.5 Running the Firmware . 20
4.6 Writing the Application Binary to Flash . 20
4.7 Playing Audio . 21
4.8 Next Steps . 21

5 Programming Guide 22
5.1 Project Structure . 23

5.1.1 Build System . 23
5.1.2 Applications and Libraries . 23

5.2 Build Configurations . 24
5.3 Configuration Naming . 24
5.4 Quality & Testing . 25
5.5 A Typical USB Audio Application . 27

3

USB Audio User Guide

5.5.1 Lib_xua Configuration . 27
5.5.2 User Functions . 31
5.5.3 The Main Program . 32

5.6 Adding Custom Code . 38
5.6.1 Example: Changing Output Format . 39
5.6.2 Example: Adding DSP to the Output Stream . 39

6 USB Audio Applications 41
6.1 The xcore.ai Multi-Channel Audio Board . 41

6.1.1 Clocking and Clock Selection . 42
6.1.2 DAC and ADC Configuration . 43
6.1.3 AudioHwInit() . 44
6.1.4 AudioHwConfig() . 44
6.1.5 Validated Build Options . 44

6.2 The xcore-200 Multi-Channel Audio Board . 44
6.2.1 Clocking and Clock Selection . 46
6.2.2 DAC and ADC Configuration . 47
6.2.3 AudioHwInit() . 47
6.2.4 AudioHwConfig() . 47
6.2.5 Validated Build Options . 48

7 API 49
7.1 Configuration Defines . 49

7.1.1 Code location (tile) . 49
7.1.2 Channel Counts . 50
7.1.3 Frequencies and Clocks . 50
7.1.4 Audio Class . 51
7.1.5 System Feature Configuration . 51
7.1.6 USB Device Configuration . 53
7.1.7 Volume Control . 55
7.1.8 Mixing Parameters . 55
7.1.9 Power . 55

7.2 Required User Function Definitions . 56
7.2.1 External Audio Hardware Configuration Functions 56
7.2.2 Audio Streaming Functions . 57
7.2.3 Host Active . 57
7.2.4 HID Controls . 58

8 Frequently Asked Questions 59

4

1 Overview

Functionality
Provides USB interface to audio I/O.
Supported Standards
USB USB 2.0 (Full-speed and High-speed)

USB Audio Class 1.04

USB Audio Class 2.05

USB Firmware Upgrade (DFU) 1.16

USB MIDI Device Class 1.07

Audio I2S/TDM
S/PDIF (receive may be limited to 96kHz
depending on external hardware)
ADAT
Direct Stream Digital (DSD)
PDM Microphones
MIDI

Supported Sample Frequencies
16kHz to 384kHz8

Supported Devices
XMOS Devices xcore-200 Series

xcore.ai Series
Requirements

Development Tools
xTIMEcomposer Development Tools
v15.1 or later

USB xCORE device with integrated USB phy

Audio

External audio DAC/ADC/CODECs (and
required supporting componentry)
supporting I2S/TDM

Boot/Storage
Compatible SPI/QSPI Flash device (or
xCORE device with internal flash)

Licensing and Support
Reference code provided without charge under license from XMOS.
Please visit http://www.xmos.com/support/contact for support.
Reference code is maintained by XMOS Limited.

4http://www.usb.org/developers/devclass_docs/audio10.pdf
5http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
6http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
7http://www.usb.org/developers/devclass_docs/midi10.pdf
8Not all features may be supported at all sample frequencies, simultaneously or on all devices.

5

http://www.xmos.com/support/contact
http://www.usb.org/developers/devclass_docs/audio10.pdf
http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/devclass_docs/midi10.pdf

2 Hardware Platforms

IN THIS CHAPTER

· xcore.ai Multi-Channel Audio Board

· xCORE-200 Multi-Channel Audio Board

· xCORE.ai Evaluation Kit

This section describes the hardware development platforms supported by the XMOS USB
Audio reference design software.

2.1 xcore.ai Multi-Channel Audio Board

The XMOS xcore.ai Multichannel Audio Board (XK-AUDIO-316-MC) is a complete hardware
and software reference platform targeted at up to 32-channel USB audio applications,
such as DJ decks, mixers and other musical instrument interfaces. The board can also
be used to prototype products with reduced feature sets or HiFi style products.

The XK-AUDIO-316-MC is based around the XU316-1024-TQ128-C24 multicore microcon-
troller; a dual-tile xcore.ai device with an integrated High Speed USB 2.0 PHY and 16 logical
cores delivering up to 2400MIPS of deterministic and responsive processing power.

Exploiting the flexible programmability of the xcore.ai architecture, the XK-AUDIO-316-MC
supports a USB audio source, streaming 8 analogue input and 8 analogue output audio
channels simultaneously - at up to 192kHz. It also supports digital input/output streams
(S/PDIF and ADAT) and MIDI. Ideal for consumer and professional USB audio interfaces.
The board can also be used for testing general purpose audio DSP activities - mixing,
filtering, etc.

The guaranteed Hardware-ResponseTM times of xCORE technology always ensure lowest
latency (round trip as low as 3ms), bit perfect audio streaming to and from the USB host

For full details regarding the hardware please refer to xcore.ai Multichannel Audio Platform
Hardware Manual.

The XK-AUDIO-316-MC reference hardware has an associated firmware application that
uses lib_xua to implement fully-featured and production ready USB Audio solution. Full
details of this application can be found later in this document.

6

USB Audio User Guide

2.1.1 Hardware Features

The location of the various featurs of the xcore.ai Multichannel Audio Board (XK-AUDIO-
316-MC) is shown in Figure 1.

A

B

C
D

E

GF H

I

J

T

R
S

Q

O

P

ML

Figure 1:
xcore.ai

Multichannel
Audio Board

block diagram

It includes the following features:

· A: xcore.ai (XU316-1024-TQ128-C24) multicore microcontroller device

· B: 8 line level analog inputs (3.5mm stereo jacks)

· C: 8 line level analog outputs (3.5mm stereo jacks)

· D: 384kHz 24 bit audio DACs

· E: 192kHz 24 bit audio ADCs

· F: Optical connections for digital interface (e.g. S/PDIF and ADAT)

· G: Coaxial connections for digital interfaces (e.g. S/PDIF)

· H: MIDI in and out connections

· I: Flexible audio master clock generation

· J: USB 2.0 micro-B jacks

· L: 4 general purpose LEDs

· M: 3 general purpose buttons

· O: Flexible I2S/TDM input data routing

7

USB Audio User Guide

· P: Flexible I2S/TDM output data routing

· Q: Integrated power supply

· R: Quad-SPI boot ROM

· S: 24MHz Crystal

· T: Integrated XTAG4 debugger

2.1.2 Analogue Input & Output

A total of eight single-ended analog input channels are provided via 3.5mm stereo jacks.
These inputs feed into a pair of quad-channel PCM1865 ADCs from Texas Instruments.

A total of eight single-ended analog output channels are provided. These are fed from
four PCM5122 stereo DAC’s from Texas instruments.

All ADC’s and DAC’s are configured via an I2C bus. Due to an clash of device addresses a
I2C mux is used.

The four digital I2S/TDM input and output channels are mapped to the xCORE input/out-
puts through a header array. These jumpers allow channel selection when the ADCs/DACs
are used in TDM mode.

2.1.3 Digital Input & Output

Optical and coaxial digital audio transmitters are used to provide digital audio input
output in formats such as IEC60958 consumer mode (S/PDIF) and ADAT. The output data
streams from the xCORE are re-clocked using the external master clock to synchronise the
data into the audio clock domain. This is achieved using simple external D-type flip-flops.

2.1.4 MIDI

MIDI input and output is provided on the board via standard 5-pin DIN connectors compli-
ant to the MIDI specification. The signals are buffered using 5V line drivers and are then
connected ports on the xCORE, via a 5V to 3.3V buffer. A 1-bit port is used for receive and
a 4-bit port is used for transmit. A pullup resistor on the MIDI output ensures there is no
MIDI output when the xCORE device is not actively driving the output.

2.1.5 Audio Clocking

In order to accommodate a multitude of clocking options a flexible clocking scheme is
provided for the audio subsystem.

Three methods of generating an audio master clock are provided on the board:

· A Cirrus Logic CS2100-CP PLL device. The CS2100 features both a clock generator and
clock multiplier/jitter reduced clock frequency synthesizer (clean up) and can generate
a low jitter audio clock based on a synchronisation signal provided by the xCORE

8

USB Audio User Guide

· A Skyworks Si5351B PLL device. The Si5351 is an I2C configurable clock generator that
is suited for replacing crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs),
and fanout buffers.

· xcore.ai devices are equipped with a secondary (or application) PLL which can be used
to generate audio clocks.

Selecting between these methods is done via writing to bits 6 and 7 of PORT 8D on tile[0].
See §2.1.6.

The supplied software currently supports the xcore.ai secondary PLL or CS2100 device.

2.1.6 Control I/O

4 bits of PORT 8C are used to control external hardware on the board. This is described in
Figure 2.

Bit(s) Functionality 0 1
[0:3] Unused
4 Enable 3v3 power for digital (inverted) Enabled Disabled
5 Enable 3v3 power for analogue Disabled Enabled
6 PLL Select CS2100 Si5351B
7 Master clock direction Output Input

Figure 2:
PORT 8C

functionality

To use the xCORE application PLL bit 7 should be set to 0. To use one of the external PLL’s
bit 7 should be set to 1.

2.1.7 LEDs, Buttons and Other IO

All programmable I/O on the board is configured for 3.3 volts.

Four green LED’s and three push buttons are provided for general purpose user interfacing.

The LEDs are connected to PORT 4F and the buttons are connected to bits [0:2] of PORT
4E, both on tile 0. Bit 3 of this port is connected to the (currently unused) ADC interrupt
line.

The board also includes support for an AES11 format Word Clock input via 75 ohm BNC.
The software does not currently support any functionality related to this and it is provided
for future expansion.

All spare I/O is brought out and made available on 0.1” headers for easy connection of
expansion boards etc.

2.1.8 Power

The board is capable of acting as a USB2.0 self or bus powered device. If bus powered, the
board takes power from the USB DEVICE connector (micro-B receptacle). If self powered,
board takes power from EXTERNAL POWER input (micro-B receptacle).

9

USB Audio User Guide

A Power Source Select (marked PWR SRC) is used to select between bus and self-powered
configuration.

To remain USB compliant the software should be properly configured for bus vs self
powered operation

2.1.9 Debug

For convenience the board includes an on-board xTAG4 for debugging via JTAG/xSCOPE.
This is accessed via the USB (micro-B) receptacle marked DEBUG.

10

USB Audio User Guide

2.2 xCORE-200 Multi-Channel Audio Board

The XMOS xCORE-200Multi-channel Audio board9 (XK-AUDIO-216-MC) is a complete hard-
ware and reference software platform targeted at up to 32-channel USB and networked
audio applications, such as DJ decks and mixers.

The XK-AUDIO-216-MC is based around the XE216-512-TQ128 multicore microcontroller;
an dual-tile xCORE-200 device with an integrated High Speed USB 2.0 PHY, RGMII (Gigabit
Ethernet) interface and 16 logical cores delivering up to 2000MIPS of deterministic and
responsive processing power.

Exploiting the flexible programmability of the xCORE-200 architecture, the XK-AUDIO-
216-MC supports either USB or network audio source, streaming 8 analogue input and 8
analogue output audio channels simultaneously - at up to 192kHz.

For full details regarding the hardware please refer to xCORE-200 Multichannel Audio
Platform Hardware Manual10.

The reference board has an associated firmware application that uses the USB Audio 2.0
software reference platform. Details of this application can be found in section §6.2.

2.2.1 Analogue Input & Output

A total of eight single-ended analog input channels are provided via 3.5mm stereo jacks.
Each is fed into a CirrusLogic CS5368 ADC. Similarly a total of eight single-ended analog
output channels are provided. Each is fed into a CirrusLogic CS4384 DAC.

The four digital I2S/TDM input and output channels are mapped to the xCORE input/out-
puts through a header array. This jumper allows channel selection when the ADC/DAC is
used in TDM mode

2.2.2 Digital Input & Output

Optical and coaxial digital audio transmitters are used to provide digital audio input
output in formats such as IEC60958 consumer mode (S/PDIF) and ADAT. The output
data streams from the xCORE-200 are re-clocked using the external master clock to
synchronise the data into the audio clock domain. This is achieved using simple external
D-type flip-flops.

2.2.3 MIDI

MIDI I/O is provided on the board via standard 5-pin DIN connectors. The signals are
buffered using 5V line drivers and are then connected to 1-bit ports on the xCORE-200, via
a 5V to 3.3V buffer.

9https://www.xmos.com/support/boards?product=18334
10https://www.xmos.com/support/boards?product=18334&component=18687

11

https://www.xmos.com/support/boards?product=18334
https://www.xmos.com/support/boards?product=18334&component=18687

USB Audio User Guide

2.2.4 Audio Clocking

A flexible clocking scheme is provided for both audio and other system services. In order
to accommodate a multitude of clocking options, the low-jitter master clock is generated
locally using a frequency multiplier PLL chip. The chip used is a Phaselink PL611-01, which
is pre-programmed to provide a 24MHz clock from its CLK0 output, and either 24.576
MHz or 22.5792MHz from its CLK1 output.

The 24MHz fixed output is provided to the xCORE-200 device as the main processor clock.
It also provides the reference clock to a Cirrus Logic CS2100, which provides a very low
jitter audio clock from a synchronisation signal provided from the xCORE-200.

Either the locally generated clock (from the PL611) or the recovered low jitter clock (from
the CS2100) may be selected to clock the audio stages; the xCORE-200, the ADC/DAC
and Digital output stages. Selection is conntrolled via an additional I/O, bit 5 of PORT 8C.

2.2.5 LEDs, Buttons and Other IO

An array of 4*4 green LEDs, 3 buttons and a switch are provided for general purpose user
interfacing. The LED array is driven by eight signals each controlling one of 4 rows and 4
columns.

A standard XMOS xSYS interface is provided to allow host debug of the board via JTAG.

12

USB Audio User Guide

2.3 xCORE.ai Evaluation Kit

The XMOS xCORE.ai Evaluation Kit (XK-EVK-XU316) is an evaluation board for the xCORE.ai
multi-core microcontroller from XMOS.

Figure 3:
xCORE.ai

Evaluation Kit

The XK-EVK-XU316 allows testing in multiple application scenarios and provides a good
general software development board for simple tests and demos. The XK-EVK-XU316
comprises an xCORE.ai processor with a set of I/O devices and connectors arranged
around it, as shown in :Figure 4.

xcore.ai
cross-over
processor

External
Memory

CODEC

Flash

LEDs

ButtonMIPI
connector

Microphone
connector

Integrated
xTAG debugger

WiFi

USB
GPIO

connectors

MIPI

PDM

I2C
I2S

QSPI

JTAG

SPI

LPDDR1

USB

Figure 4:
xCORE.ai

Evaluation Kit
block diagram

External hardware features board include, four general purpose LEDs, two general purpose
push-button switches, a PDM microphone connector, audio codec with line-in and line-out
jack, QSPI flash memory, LPDDR1 external memory 58 GPIO connections from tile 0 and 1,
micro USB for power and host connection, MIPI connector for a MIPI camera, integrated
xTAG debug adapter and a reset switch with LED to indicate running.

13

USB Audio User Guide

For full details regarding the hardware please refer to XK-EVK-XU316 xCORE.ai Evaluation
Kit Manual11.

The XK-EVK-XU316 hardware has an associated firmware application that uses lib_xua
to implement an example USB Audio device. Full details of this application can be found
later in this document.

The xCORE.ai Evaluation Kit is a general purpose evaluation platform and should be
considered as an example rather than a fully fledged reference design.

2.3.1 Analogue Audio Input & Output

A stereo CODEC (TLV320AIC3204), connected to the xCORE.ai device via an I2S interface,
provides analogue input/output functionality at line level.

The audio CODEC is are configured by the xCORE.ai device via an I2C bus.

2.3.2 Audio Clocking

xCORE.ai devices are equipped with a secondary (or application) PLL which is used to
generate the audio clocks for the CODEC.

2.3.3 LEDs, Buttons and Other IO

Four green LED’s and two push buttons are provided for general purpose user interfacing.

The LEDs are connected to PORT 4C and the buttons are connected to bits [0:1] of PORT
4D.

All spare I/O is brought out and made available on 0.1” headers for easy connection of
expansion boards etc.

2.3.4 Power

The XK-EVK-XU316 requires a 5V power source that is normally provided through the
micro-USB cable J3. The voltage is converted by on-board regulators to the 0V9, 1V8 and
3V3 supplies used by the components.

The board should therefore be configured to present itself as a bus powered device when
connected to an active USB host.

2.3.5 Debug

For convenience the board includes an on-board xTAG4 for debugging via JTAG/xSCOPE.
This is accessed via the USB (micro-B) receptacle marked DEBUG.

11https://www.xmos.ai/download/xcore.ai-explorer-board-v2.0-hardware-manual(5).pdf

14

https://www.xmos.ai/download/xcore.ai-explorer-board-v2.0-hardware-manual(5).pdf

3 Driver Support

IN THIS CHAPTER

· OS Support for UAC 1.0

· OS Support for UAC 2.0

· Thirds Party Windows Drivers

The XMOS USB Audio Reference design includes support for USB Audio Class (UAC)
versions 1.0 and 2.0. UAC 2.0 includes support for audio over high-speed USB (UAC 1.0
supports full-speed only) and other feature additions.

3.1 OS Support for UAC 1.0

Support for USB Audio Class 1.0 has been included in macOS and Windows for a number
of years. Most Linux distributions also include support.

3.2 OS Support for UAC 2.0

Support for USB Audio Class 2.0 is only included in more modern versions of macOS and
Windows:

· Since version 10.6.4 macOS natively supports USB Audio Class 2.0

· Since version 10, release 1809, Windows natively supports USB Audio Class 2.0

3.3 Thirds Party Windows Drivers

For some products it may be desirable to use a third-party driver for Windows. A number
reasons exist as to why this may be desirable:

· In order to support UAC 2.0 on Windows versions earlier than 10

· The built-in Windows support is typically designed for consumer audio devices, not for
professional audio devices

· The built in drivers support sound APIs such as WASAPI, DirectSound, MME, but not
ASIO.

The XMOS USB Audio Reference design is tested against Thesycon USB Audio Driver for
Windows. This includes the following feature-set/benefits:

· Available for Windows 10 and Windows 11 operating systems

· Designed for professional audio devices and consumer-style devices

· Supports ASIO for transparent and low-latency audio streaming

· Supports Windows sound APIs such as WASAPI, DirectSound, MME

15

USB Audio User Guide

· Supports high-end audio features such as bit-perfect PCM up to 768 kHz sampling
rate, native DSD format (through ASIO) up to DSD1024

· Supports multiple clock sources such as S/PDIF, ADAT or WCLK inputs

· Supports MIDI 1.0 class, including MIDI port sharing

· Supports DFU (Device Firmware Upgrade) and comes with a GUI utility for firmware
update

· Provides a private API for driver control and direct device communication (SDK avail-
able)

· Comes with a control panel application for driver status/control

· Optionally supports virtual channels (channels available at ASIO and Windows APIs
but not implemented in the device)

· Optionally supports mixing and/or signal processing plugin in the kernel-mode driver

· Fully supports driver signing, branding and customization including driver installer
(Customization will be done by Thesycon)

· Technical support and maintenance provided by Thesycon

· Custom features available on request

Many of the benefits listed above apply to both UAC1.0 and UAC2.0 and the Thesycon
Driver supports both class versions. It should be noted, however, that XMOS only currently
tests UAC1 with built-in drivers.

16

4 Quick Start

IN THIS CHAPTER

· USB Audio 2.0 Reference Software

· USB Audio Class 2.0 Evaluation Driver for Windows

· XMOS XTC Development Tools

· Building the Firmware

· Running the Firmware

· Writing the Application Binary to Flash

· Playing Audio

· Next Steps

XMOS development boards are typically supplied with no firmware installed. The following
steps explain how to install the latest firmware on the board and use it. Each step is
explained in detail in the following sections.

1. Download the latest USB Audio 2.0 Device Software release from http://xmos.com ·
Applications · USB & Multi-Channel Audio and follow the USB AUDIO SOFTWARE
link. Before you download the software review the licence and click Accept to initiate
the download.
(Section §4.1.)

2. If using a Windows host computer, download the USB Audio Class 2.0 Evaluation
Driver for Windows from http://xmos.com · Applications · USB & Multi-Channel
Audio and follow the DRIVER SUPPORT link and click on Download. Once downloaded,
run the executable and install the driver.
(Section §4.2.)

3. Download the XMOS XTC Tools from: http://www.xmos.com/software-tools and
install.
The firmware should be compiled using a specific version of the tools. Make sure that
you download the correct version of the tools.
(Section §4.3)

4. Compile the firmware relavant to the board you have .
(Section: §4.4)

5. Connect the board to your development system using the xTAG supplied, and program
the firmware onto the board.
(Section §4.5)

6. Connect audio input and output devices, and play your audio.

17

http://www.xmos.com/software-tools

USB Audio User Guide

(Section §4.7)

18

USB Audio User Guide

4.1 USB Audio 2.0 Reference Software

The latest USB Audio 2.0 Reference Design software is available free of charge from
XMOS.

The first time you download the software you need to register at:

http://www.xmos.com/

To download the firmware:

1. Go to http://xmos.com · Applications · USB & Multi-Channel Audio and follow the
USB AUDIO SOFTWARE link.

2. Review the licence agreement and click Accept.

3. Download and save the software when prompted.

The software is distributed as a zip archive containing pre-compiled binaries and source
code that can be built using the XMOS XTC Tools.

Alternatively you can contact your local sales representative for further details:

https://www.xmos.com/find-a-distributor/

4.2 USB Audio Class 2.0 Evaluation Driver for Windows

Since version 10.6.4, macOS natively supports USB Audio Class 2.0 – no driver install is
required.

Since version 10, release 1703, Windows natively supports USB Audio Class 2.0 – no
driver install is required.

Earlier Window versions only provides support for USB Audio Class 1.0. To use a USB
Audio Class 2.0 device under these Windows versions requires a third party driver.

Developers may also wish to use a third party driver for reasons including:

· ASIO support

· Advanced clocking options and controls

· Improved latency

· Native DSD (via ASIO)

· Branding customisation and custom control panels

· Large channel count devices

· Etc

XMOS therefore provides a free Windows USB Audio driver for evaluation and prototyp-
ing and a path to a more feature-rich multichannel production driver from our partner
Thesycon.

19

http://www.xmos.com/
https://www.xmos.com/find-a-distributor/

USB Audio User Guide

The evaluation driver is available from:

http://www.xmos.com/published/usb-audio-class-20-evaluation-driver-windows

Further information about the evaluation and production drivers is available in the USB
Audio Class 2.0 Windows Driver Overview document available from:

http://www.xmos.com/published/usb-audio-20-stereo-driver-windows-overview

4.3 XMOS XTC Development Tools

The XMOS XTC Tools provide everything you need to develop applications for
xcore multicore microcontrollers and can be downloaded, free of charge, from:
http://www.xmos.com/software-tools.

The XMOS XTC Tools make it easy to define real-time tasks as a parallel system. They
come with standards compliant C and C++ compilers, language libraries, simulator, sym-
bolic debugger, and runtime instrumentation and trace libraries. Multicore support offers
features for task based parallelism and communication, accurate timing and I/O, and
safe memory management. All components work off the real-time multicore functionality,
giving a fully integrated approach.

The XTC tools are required by anyone developing or deploying applications on an xcore
processor. The tools include:

· “Tile-level” toolchain (Compiler, assembler, etc)

· System libraries

· “Network-level” tools (Multi-tile mapper etc)

· XSIM simulator

· XGDB debugger

· Deployment tools

The tools as delivered are to be used within a command line environment, though may
also be integrated with your preferred IDE12.

The firmware must be compiled using a specific version of the tools. Make sure that you
download the correct version of the tools. Older versions of tools are available from the
TOOLS ARCHIVE section of http://www.xmos.com/software-tools

Information on using the tools, including installation, is provided in the XTC Tools Guide13.

12https://www.xmos.ai/documentation/XM-014363-PC-7/html/tools-guide/install-configure/config-ide/index.html
13https://www.xmos.ai/documentation/XM-014363-PC-7/html/intro.html

20

http://www.xmos.com/published/usb-audio-class-20-evaluation-driver-windows
http://www.xmos.com/published/usb-audio-20-stereo-driver-windows-overview
http://www.xmos.com/software-tools
http://www.xmos.com/software-tools
https://www.xmos.ai/documentation/XM-014363-PC-7/html/tools-guide/install-configure/config-ide/index.html
https://www.xmos.ai/documentation/XM-014363-PC-7/html/intro.html

USB Audio User Guide

4.4 Building the Firmware

For convenience the release zips provided from XMOS contain precompiled binary (xe)
files.

From a command prompt with the XMOS tools available, follow these steps:

1. Unzip the package zip to a known location

2. Move into the relevant application directory (e.g. app_usb_aud_xk_audio_316_mc)
and execute the command:

xmake all

The proceeding steps will build all of the available and supported build configurations for
the application.

The main Makefile for the project is in the application directory (e.g.
app_usb_aud_xk_audio_316_mc). This file specifies build options and dependencies.

This Makefile uses the common build infrastructure supplied with XMOS tools in
module_xmos_common. This system includes the source files from the relevant modules
and is documented within module_xmos_common. See :§5.1.1.

Support is included for an updated build system, xcommon_cmake. Again, see :§5.1.1.

4.5 Running the Firmware

Typically during development the developer wishes to program the device’s internal RAM
directly via JTAG and run then execute this program.

To run one of the compiled binaries complete the following steps:

1. Connect the USB Audio board to your host computer.

2. Connect the xTAG to the USB Audio board and connect the it to your PC or Mac via a
separate USB cable

3. Ensure any required external power jacks are connected

Finally, to run the binary on the target, execute a command similar to the following:

xrun path/to/binary.xe

The device should now present itself as a USB Audio Device on the connected host
computer. It will continue to operate as a USB Audio Device until the target board is power
cycled.

4.6 Writing the Application Binary to Flash

Optionally a binary can be programmed into the boot flash. To do this:

1. Connect the USB Audio board to your host computer.

21

USB Audio User Guide

2. Connect the xTAG to the USB Audio board and connect the it to your PC or Mac via a
separate USB cable

3. Ensure any required external power jacks are connected

From a command prompt with the XMOS tools available, run the following command:

xflash path/to/binary.xe

Once flashed the target device will reboot and execute the binary. Power cycling the target
board will cause the device to reboot the flashed binary.

If subsequently you wish to use xrun to program the device it is always advisable to erase
the flash contents using the erase-all option to the xflash tool.

4.7 Playing Audio

1. Connect the board to any power supply provided (note, some boards will be USB bus
powered)

2. Connect the board a host with driver support the USB Audio Class using a USB cable

3. Install the Windows USB Audio 2.0 demonstration driver, if required.

4. Connect your audio input/output devices to the connectors on the board e.g powered
speakers

5. In your audio application, select the XMOS USB Audio device.

6. Start playing and recording.

4.8 Next Steps

Further information on using the board and the XTC Tools is available from:

xcore-200 Multichannel Audio Platform 2v0 Hardware Manual

https://www.xmos.ai/file/xcore-200-multichannel-audio-platform-hardware-manuals?version=latest

xcore.ai Multichannel Audio Platform 2v0 Hardware Manual

https://www.xmos.ai/file/xcore-ai-multichannel-audio-platform-hardware-manuals?version=latest

XMOS USB Device Library (lib_xud)

https://github.com/xmos/lib_xud/releases/latest

XMOS USB Audio Library (lib_xua)

https://github.com/xmos/lib_xua/releases/latest

XTC Tools User Guide

https://www.xmos.ai/view/Tools-15---Documentation

22

https://www.xmos.ai/file/xcore-200-multichannel-audio-platform-hardware-manuals?version=latest
https://www.xmos.ai/file/xcore-ai-multichannel-audio-platform-hardware-manuals?version=latest
https://github.com/xmos/lib_xud/releases/latest
https://github.com/xmos/lib_xua/releases/latest
https://www.xmos.ai/view/Tools-15---Documentation

5 Programming Guide

IN THIS CHAPTER

· Project Structure

· Build Configurations

· Configuration Naming

· Quality & Testing

· A Typical USB Audio Application

· Adding Custom Code

The following sections provide a guide on how to program the USB Audio applications
including information on project structure, build configurations and creating your own
custom USB audio applications.

23

USB Audio User Guide

5.1 Project Structure

5.1.1 Build System

The XMOS USB Audio Reference Design software and associated libraries employ the
XMOS XCOMMON build system. The XCOMMON build system is built on top of the GNU
Makefile build system. The XCOMMON build system accelerates the development of
xCORE applications. Instead of having to express dependencies explicitly in Makefiles,
users should follow a particular folder structures and naming convention, from which
dependencies are inferred automatically.

The XCOMMON build system depends on use of of the tool XMAKE14 specifically. It cannot
currently be used with a generic port of GNU Make.

Support is included for an updated, cmake-based, build sytem; xcommon_cmake. Whilst
this is available for evaluation use, the recommended and verified build flow is still the
xmake/xcommon based flow as documented. Further details and documentation regarding
xcommon_cmake can be found here15

5.1.2 Applications and Libraries

The sw_usb_audio GIT16 repository includes multiple application directories that in turn
contain Makefiles that build into executables. Typically you can expect to see one ap-
plication directory per hardware platform. Applications and there respective hardware
platforms are listed in Figure 5.

Application Hardware platform

app_usb_aud_xk_316_mc xcore.ai USB Audio 2.0 Multi-channel Audio Board
app_usb_aud_xk_216_mc xcore-200 USB Audio 2.0 Multi-channel Audio Board
app_usb_aud_xk_evk_xu316 xcore.ai Evaluation Kit

Figure 5:
USB Audio
Reference

Applications

The code is split into several modules (or library) directories, each their own GIT repository.
The code for these libraries is included in the build by adding the library name to the
USED_MODULES define in an application Makefile.

Each library has a module_build_info file that lists it’s dependencies in
DEPENDENT_MODULES. This allows dependency trees and nesting.

Most of the core code is contained in the XMOS USB Audio Library (lib_xua). A full list of
core dependencies is shown in Figure 6.

Some of these core dependencies will have their own dependencies, for example
lib_mic_array depnds on lib_xassert (see above), lib_logging (a lightweight print
library) and lib_dsp (a DSP library).

14https://www.xmos.ai/documentation/XM-014363-PC-7/html/tools-guide/tools-ref/cmd-line-tools/xmake-manual/xmake-manual.html#xmake
15https://www.github.com/xmos/xcommon_cmake
16https://git-scm.com

24

https://www.xmos.ai/documentation/XM-014363-PC-7/html/tools-guide/tools-ref/cmd-line-tools/xmake-manual/xmake-manual.html#xmake
https://www.github.com/xmos/xcommon_cmake
https://git-scm.com

USB Audio User Guide

Library Description

lib_xua Common code for USB audio applications
lib_xud Low level USB device library
lib_spdif S/PDIF transmit and receive code
lib_adat ADAT transmit and receive code
lib_mic_array PDM microphone interface and decimator
lib_xassert Lightweight assertions library

Figure 6:
Core

dependencies
of USB Audio

Applications may use additional dependencies to support the hardware platform or add
features beyond core functionality. For example, the application for XK-AUDIO-316-MC
uses the additional dependencies listed in Figure 7:

Library Description

lib_i2c I2C interface, used to configure DACs/ADCs etc

Figure 7:
Example
additonal

dependencies

5.2 Build Configurations

Due to the flexibility of the reference design software there are a large number of build
options. For example input and output channel counts, Audio Class version, interface
types etc. A “build configuration” is a set of build options that combine to produce a binary
with a certain feature set.

The following command builds all supported configurations:

xmake all

Build configurations are listed in the application Makefile with their associated options, a
specific configuration can be built via the command line as follows:

xmake CONFIG=<config name >

Once build a corresponding binary for a configuration can be found in the following
location:

<app name >/bin/<app name >_<config name >.xe

5.3 Configuration Naming

A naming scheme is employed in each application to link features to a build configura-
tion/binary. Depending on the hardware interfaces available variations of the same basic
scheme are used.

25

USB Audio User Guide

Each relevant build option is assigned a position in the configuration name, with a character
denoting the options value (normally ‘x’ is used to denote “off” or “disabled”)

Some example build options are listed in Figure 8.

Build Option Name Options Denoted by

Audio Class Version 1 or 2 1 or 2
MIDI on or off m or x
S/PDIF Output on or off s or x
S/PDIF Input on or off s or x

Figure 8:
Example build

options and
naming

For example, in this scheme, a configuration named 2xsx would indicate Audio Class 2.0,
MIDI disabled, S/PDIF output enabled and S/PDIF input disabled.

Some additional letters or numbers may also be used to denote things like channel counts
etc. See comments in the application Makefile for details.

5.4 Quality & Testing

It is not possible for all build option permutations to be exhaustively tested. The XMOS
USB Audio Reference Design software therefore defines three levels of quality:

· Fully Tested - the configuration is fully supported. A product based on it can be imme-
diately put into to a production environment with high confidence. Quality assurance
(QA) should cover any customised code/functionality.

· Partially Tested - the configuration is partially tested. A product based on it can be
put into a production environment with medium confidence. Some additional QA is
recommended.

· Build Tested - the configuration is guaranteed to build but has not been tested. Full QA
is required.

Typically disabing a function should have no effect on QA. For example, disabling S/PDIF
on a fully-tested configuration with it enabled should not effect its quality.

XMOS aims to provide fully tested configurations for popular device configurations and
common customer requirements.

It is advised that full QA is applied to any product regardless of the quality level of the
configuration it is based on.

Fully tested configurations can be found in the application Makefile. Partially
and build tested configurations can be found in the configs_partial.inc and
configs_build.inc files respectively. Using the command xmake all will only build
fully tested configurations. Partially tested and build tested configurations can be
accessed by setting the PARTIAL_TEST_CONFIGS and BUILD_TEST_CONFIGS variables
respectively. For example:

xmake PARTIAL_TEST_CONFIGS =1 all

26

USB Audio User Guide

Pre-release (i.e. alpha, beta or RC) firmware should not be used as basis for a production
device and may not be representative of the final release firmware. Additionally, some
releases may include feaures of lesser quality level. For example a beta release may
contain a feature still at alpha level quality. See application README for details of any such
features.

Due to the similarities between the xCORE-200 and xCORE.ai series feature sets, it is
fully expected that all listed xCORE-200 series configurations will operate as expected
on the xCORE.ai series and vice versa. It is therefore expected that a quality level of a
configuration will migrate between XMOS device series.

27

USB Audio User Guide

5.5 A Typical USB Audio Application

This section provides a walk through of a typical USB Audio application. Where spe-
cific examples are required code is used from the application for XK-AUDIO-316-MC
(app_usb_aud_xk_316_mc).

The applications in sw_usb_audio use the “Codeless ProgrammingModel” as documented
in lib_xua. Briefly, the main() function is used from lib_xua with build-time defines in
the application configuring the framework provided by lib_xua. Various functions from
lib_xua are then overridden to provide customisation. See lib_xua for full details.

Each application directory contains:

1. A Makefile

2. A src directory

The src directory is arranged into two directories:

1. A core directory containing source items that must be made available to the USB
Audio framework

2. An extensions directory that includes extensions to the framework such as external
device configuration etc

The core folder for each application contains:

1. A .xn file to describe the hardware platform the application will run on

2. An (optional) configuration header file to customised the framework provided by
lib_xua named xua_conf.h

The XCOMMON build sytem autmatically locates _conf.h files in the source tree for all
used lib dependencies.

5.5.1 Lib_xua Configuration

The xua_conf.h file contains all the build-time #defines required to tailor framework
provided by lib_xua to the particular application at hand. Typically these over-ride default
values in xua_conf_default.h in lib_xua/api.

Firstly in app_usb_aud_xk_316_mc the xua_conf.h file sets defines to determine overall
capability. For this application most of the optional interfaces are disabled by default. This
is because the applications provide a large number build configurations in the Makefile
enabling various interfaces. For a product with a fixed specification this almost certainly
would not be the case and setting in this file may be the preferred option.

Note that ifndef is used to check that the option is not already defined in the Makefile.

28

USB Audio User Guide

/* Enable/Disable MIDI - Default is MIDI off */

#ifndef MIDI

#define MIDI (0)

#endif

/* Enable/Disable S/PDIF output - Default is S/PDIF off */

#ifndef XUA_SPDIF_TX_EN

#define XUA_SPDIF_TX_EN (0)

#endif

/* Enable/Disable S/PDIF input - Default is S/PDIF off */

#ifndef XUA_SPDIF_RX_EN

#define XUA_SPDIF_RX_EN (0)

#endif

/* Enable/Disable ADAT output - Default is ADAT off */

#ifndef XUA_ADAT_TX_EN

#define XUA_ADAT_TX_EN (0)

#endif

/* Enable/Disable ADAT input - Default is ADAT off */

#ifndef XUA_ADAT_RX_EN

#define XUA_ADAT_RX_EN (0)

#endif

/* Enable/Disable Mixing core(s) - Default is on */

#ifndef MIXER

#define MIXER (1)

#endif

/* Set the number of mixes to perform - Default is 0 i.e mixing disabled */

#ifndef MAX_MIX_COUNT

#define MAX_MIX_COUNT (0)

#endif

/* Audio Class version - Default is 2.0 */

#ifndef AUDIO_CLASS

#define AUDIO_CLASS (2)

#endif

Next, the file defines properties of the audio channels including counts and arrangements.
By default the application provides 8 analogue channels for input and output.

The total number of channels exposed to the USB host (set via NUM_USB_CHAN_OUT and
NUM_USB_CHAN_IN) are calculated based on the audio interfaces enabled. Again, this
is due to the multiple build configurations in the application Makefile and likely to be
hard-coded for a product.

29

USB Audio User Guide

/* Number of I2S channels to DACs*/

#ifndef I2S_CHANS_DAC

#define I2S_CHANS_DAC (8)

#endif

/* Number of I2S channels from ADCs */

#ifndef I2S_CHANS_ADC

#define I2S_CHANS_ADC (8)

#endif

/* Number of USB streaming channels - by default calculate by counting

↪→ audio interfaces */

#ifndef NUM_USB_CHAN_IN

#define NUM_USB_CHAN_IN (I2S_CHANS_ADC + 2* XUA_SPDIF_RX_EN + 8*

↪→ XUA_ADAT_RX_EN) /* Device to Host */

#endif

#ifndef NUM_USB_CHAN_OUT

#define NUM_USB_CHAN_OUT (I2S_CHANS_DAC + 2* XUA_SPDIF_TX_EN + 8*

↪→ XUA_ADAT_TX_EN) /* Host to Device */

#endif

/*** Defines relating to channel arrangement/indices ***/

Channel indices/offsets are set based on the audio interfaces enabled. Channels are
indexed from 0. Setting SPDIF_TX_INDEX to 0 would cause the S/PDIF channels to
duplicate analogue channels 0 and 1. Note, the offset for analogue channels is always 0.

30

USB Audio User Guide

/* Channel index of S/PDIF Tx channels: separate channels after analogue

↪→ channels (if they fit) */

#ifndef SPDIF_TX_INDEX

#if (I2S_CHANS_DAC + 2* XUA_SPDIF_TX_EN) <= NUM_USB_CHAN_OUT

#define SPDIF_TX_INDEX (I2S_CHANS_DAC)

#else

#define SPDIF_TX_INDEX (0)

#endif

#endif

/* Channel index of S/PDIF Rx channels: separate channels after analogue

↪→ channels */

#ifndef SPDIF_RX_INDEX

#define SPDIF_RX_INDEX (I2S_CHANS_ADC)

#endif

/* Channel index of ADAT Tx channels: separate channels after S/PDIF

↪→ channels (if they fit) */

#ifndef ADAT_TX_INDEX

#if (I2S_CHANS_DAC + 2* XUA_SPDIF_TX_EN + 8* XUA_ADAT_TX_EN) <=

↪→ NUM_USB_CHAN_OUT

#define ADAT_TX_INDEX (I2S_CHANS_DAC + 2* XUA_SPDIF_TX_EN)

#else

#define ADAT_TX_INDEX (0)

#endif

#endif

/* Channel index of ADAT Rx channels: separate channels after S/PDIF

↪→ channels */

#ifndef ADAT_RX_INDEX

#define ADAT_RX_INDEX (I2S_CHANS_ADC + 2* XUA_SPDIF_RX_EN)

#endif

The file then sets some frequency related defines for the audio master clocks and the
maximum sample-rate for the device.

/* Master clock defines (in Hz) */

#ifndef MCLK_441

#define MCLK_441 (512*44100) /* 44.1, 88.2 etc */

#endif

#ifndef MCLK_48

#define MCLK_48 (512*48000) /* 48, 96 etc */

#endif

/* Minumum sample frequency device runs at */

#ifndef MIN_FREQ

#define MIN_FREQ (44100)

#endif

/* Maximum sample frequency device runs at */

#ifndef MAX_FREQ

#define MAX_FREQ (192000)

#endif

31

USB Audio User Guide

Due to the multi-tile nature of the xCORE architecture the framework needs to be informed
as to which tile various interfaces should be placed on, for example USB, S/PDIF etc.

#define XUD_TILE (0)

#define PLL_REF_TILE (0)

#define AUDIO_IO_TILE (1)

#define MIDI_TILE (1)

The file also sets some defines for general USB ID’s and strings. These are set for the
XMOS reference design but vary per manufacturer:

#define VENDOR_ID (0 x20B1) /* XMOS VID */

#ifndef PID_AUDIO_2

#define PID_AUDIO_2 (0x0016)

#endif

#ifndef PID_AUDIO_1

#define PID_AUDIO_1 (0x0017)

#endif

#define PRODUCT_STR_A2 "XMOS xCORE.ai MC (UAC2 .0)"

#define PRODUCT_STR_A1 "XMOS xCORE.ai MC (UAC1 .0)"

For a full description of all the defines that can be set in xua_conf.h see §7.1

5.5.2 User Functions

In addition to the xua_conf.h file, the application needs to provide implementations of
some overridable user functions in lib_xua to provide custom functionality.

For app_usb_aud_xk_316_mc the implementations can be found in
src/extensions/audiohw.xc and src/extensions/audiostream.xc

The two functions it overrides in audiohw.xc are AudioHwInit() and AudioHwConfig().
These are run from lib_xua on startup and sample-rate change respectively. Note, the
default implementations in lib_xua are empty. These functions have parameters for
sample frequency, sample depth, etc.

In the case of app_usb_aud_xk_316_mc these functions configure the external DAC’s and
ADC’s via an I2C bus and configure the xCORE secondary PLL to generate the required
master clock frequencies.

Due to the complexity of the hardware on the XK-AUDIO-316-MC the source code is not
included here.

The application also overrides UserAudioStreamStart() and UserAudioStreamStop().
These are called from lib_xua when the audio stream to the device is started or stopped
respectively. The applications uses these functions to enable/disable the LEDs on the
board based on whether an audio stream is present (input or output).

32

USB Audio User Guide

#include <platform.h>

on tile [0]: out port p_leds = XS1_PORT_4F;

void UserAudioStreamStart(void)

{

/* Turn all LEDs on */

p_leds <: 0xF;

}

void UserAudioStreamStop(void)

{

/* Turn all LEDs off */

p_leds <: 0x0;

}

A media player application may choose to keep an audio stream open and simply send
zero data when paused.

5.5.3 The Main Program

The main() function is the entry point to an application. In the XMOS USB Audio Reference
Design software it is shared by all applications and is therefore part of the framework.

This section is largely informational as most developers should not need to modify the
main() function. main() is located in main.xc in lib_xua, this file contains:

· A declaration of all the ports used in the framework. These clearly vary depending on
the hardware platform the application is running on.

· A main() function which declares some channels and then has a par statement which
runs the required cores in parallel.

Full documentation can be found in lib_xua.

The first core run is a usb_audio_core task. This runs cores for the USB interface and
buffering tasks for audio and endpoint buffering:

33

USB Audio User Guide

{

unsigned x;

thread_speed ();

/* Attach mclk count port to mclk clock -block (for feedback) */

// set_port_clock(p_for_mclk_count , clk_audio_mclk);

#if(AUDIO_IO_TILE != XUD_TILE)

set_clock_src(clk_audio_mclk_usb , p_mclk_in_usb);

set_port_clock(p_for_mclk_count , clk_audio_mclk_usb);

start_clock(clk_audio_mclk_usb);

#else

/* Clock port from same clock -block as I2S */

/* TODO remove asm() */

asm("ldw %0, dp[clk_audio_mclk]":"=r"(x));

asm("setclk res[%0], %1"::"r"(p_for_mclk_count), "r"(x));

#endif

/* Endpoint & audio buffering cores */

XUA_Buffer(c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO],/* Audio Out*/

#if (NUM_USB_CHAN_IN > 0)

c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /* Audio

↪→ In */

#endif

#if (NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP)

c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /* Audio

↪→ FB */

#endif

#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI

↪→ Out */ // 2

c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI

↪→ In */ // 4

c_midi ,

#endif

#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

/* Audio Interrupt - only used for interrupts on

↪→ external clock change */

c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],

c_clk_int ,

#endif

c_sof , c_aud_ctl , p_for_mclk_count

#if (XUA_HID_ENABLED)

, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif

, c_mix_out

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change

#if (! XUA_USE_SW_PLL)

, i_pll_ref

#else

, c_sw_pll

#endif

#endif

);

//:

}

/* Endpoint 0 Core */

{

thread_speed ();

XUA_Endpoint0(c_xud_out [0], c_xud_in [0], c_aud_ctl , c_mix_ctl ,

↪→ c_clk_ctl , c_EANativeTransport_ctrl , dfuInterface

↪→ VENDOR_REQUESTS_PARAMS_);

}

34

USB Audio User Guide

This task runs various cores including one for the USB interfacing core (XUD_Main()):

35

USB Audio User Guide

XUD_Main(c_xud_out , ENDPOINT_COUNT_OUT , c_xud_in ,

↪→ ENDPOINT_COUNT_IN ,

c_sof , epTypeTableOut , epTypeTableIn , usbSpeed ,

↪→ xudPwrCfg);

}

/* Core USB audio task , buffering , USB etc */

{

unsigned x;

thread_speed ();

/* Attach mclk count port to mclk clock -block (for feedback)

↪→ */

// set_port_clock(p_for_mclk_count , clk_audio_mclk);

#if(AUDIO_IO_TILE != XUD_TILE)

set_clock_src(clk_audio_mclk_usb , p_mclk_in_usb);

set_port_clock(p_for_mclk_count , clk_audio_mclk_usb);

start_clock(clk_audio_mclk_usb);

#else

/* Clock port from same clock -block as I2S */

/* TODO remove asm() */

asm("ldw %0, dp[clk_audio_mclk]":"=r"(x));

asm("setclk res[%0], %1"::"r"(p_for_mclk_count), "r"(x));

#endif

/* Endpoint & audio buffering cores */

XUA_Buffer(c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO],/* Audio Out*/

#if (NUM_USB_CHAN_IN > 0)

c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /*

↪→ Audio In */

#endif

#if (NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP)

c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /*

↪→ Audio FB */

#endif

#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI

↪→ Out */ // 2

c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI

↪→ In */ // 4

c_midi ,

#endif

#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

/* Audio Interrupt - only used for interrupts on

↪→ external clock change */

c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],

c_clk_int ,

#endif

c_sof , c_aud_ctl , p_for_mclk_count

#if (XUA_HID_ENABLED)

, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif

, c_mix_out

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change

#if (! XUA_USE_SW_PLL)

, i_pll_ref

#else

, c_sw_pll

#endif

#endif

);

//:

}

/* Endpoint 0 Core */

{

thread_speed ();

XUA_Endpoint0(c_xud_out [0], c_xud_in [0], c_aud_ctl , c_mix_ctl

↪→ , c_clk_ctl , c_EANativeTransport_ctrl , dfuInterface

↪→ VENDOR_REQUESTS_PARAMS_);

}

#endif /* XUA_USB_EN */

}

#if ((XUA_SYNCMODE == XUA_SYNCMODE_SYNC || XUA_SPDIF_RX_EN ||

↪→ XUA_ADAT_RX_EN) && XUA_USE_SW_PLL)

on tile[AUDIO_IO_TILE]: sw_pll_task(c_sw_pll);

#endif

on tile[AUDIO_IO_TILE]:

{

/* Audio I/O task , includes mixing etc */

usb_audio_io(c_mix_out

#if (XUA_SPDIF_TX_EN) && (SPDIF_TX_TILE != AUDIO_IO_TILE)

, c_spdif_tx

#endif

#if (MIXER)

, c_mix_ctl

#endif

, c_spdif_rx , c_adat_rx , c_clk_ctl , c_clk_int

#if (XUD_TILE != 0) && (AUDIO_IO_TILE == 0) && (XUA_DFU_EN == 1)

, dfuInterface

#endif

#if (XUA_NUM_PDM_MICS > 0)

#endif

#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

, i_pll_ref

#endif

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change

#endif

#if ((XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN) && XUA_USE_SW_PLL)

, p_for_mclk_count_audio

, c_sw_pll

#endif

);

}

//:

#if (XUA_SPDIF_TX_EN) && (SPDIF_TX_TILE != AUDIO_IO_TILE)

on tile[SPDIF_TX_TILE]:

{

thread_speed ();

SpdifTxWrapper(c_spdif_tx);

}

#endif

#if defined(MIDI) && defined(IAP) && (IAP_TILE == MIDI_TILE)

/* MIDI and IAP share a core */

on tile[IAP_TILE]:

{

thread_speed ();

usb_midi(p_midi_rx , p_midi_tx , clk_midi , c_midi , 0, c_iap , null ,

↪→ null , null);

}

#else

#if defined(MIDI)

/* MIDI core */

on tile[MIDI_TILE]:

{

thread_speed ();

usb_midi(p_midi_rx , p_midi_tx , clk_midi , c_midi , 0);

}

#endif

#if defined(IAP)

on tile[IAP_TILE]:

{

thread_speed ();

iAP(c_iap , null , null , null);

}

#endif

#endif

#if (XUA_SPDIF_RX_EN)

on tile[XUD_TILE]:

{

thread_speed ();

spdif_rx(c_spdif_rx , p_spdif_rx , clk_spd_rx , 192000);

}

#endif

#if (XUA_ADAT_RX_EN)

on stdcore[XUD_TILE] :

{

set_thread_fast_mode_on ();

while (1)

{

adatReceiver48000(p_adat_rx , c_adat_rx);

adatReceiver44100(p_adat_rx , c_adat_rx);

}

}

#endif

36

USB Audio User Guide

#if XUA_USB_EN

#if (XUD_TILE != 0) && (AUDIO_IO_TILE != 0) && (XUA_DFU_EN == 1)

/* Run flash code on its own - hope it gets combined */

//# warning Running DFU flash code on its own

on stdcore [0]: DFUHandler(dfuInterface , null);

#endif

#endif

#ifndef PDM_RECORD

#if (XUA_NUM_PDM_MICS > 0)

#if (PDM_TILE != AUDIO_IO_TILE)

/* PDM Mics running on a separate to AudioHub */

on stdcore[PDM_TILE]:

{

xua_pdm_mic_config(p_pdm_mclk , p_pdm_clk , p_pdm_mics , clk_pdm);

xua_pdm_mic(c_ds_output , p_pdm_mics);

}

#endif

#ifdef MIC_PROCESSING_USE_INTERFACE

on stdcore[PDM_TILE].core [0]: XUA_PdmBuffer(c_ds_output , c_pdm_pcm ,

↪→ i_mic_process);

#else

on stdcore[PDM_TILE].core [0]: XUA_PdmBuffer(c_ds_output , c_pdm_pcm)

↪→ ;

#endif /* MIC_PROCESSING_USE_INTERFACE */

#endif /* XUA_NUM_PDM_MICS > 0*/

#endif /* PDM_RECORD */

}

return 0;

}

#endif

The specification of the channel arrays connecting to this driver are described in XM-
005512-PC.

The channels connected to XUD_Main() are passed to the XUA_Buffer() function which
implements audio buffering and also buffering for other Endpoints.

37

http://www.xmos.com/doc/XM-005512-PC/latest/page3#usb-audio-sec-component-api
http://www.xmos.com/doc/XM-005512-PC/latest/page3#usb-audio-sec-component-api

USB Audio User Guide

XUA_Buffer(c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO],/* Audio Out*/

#if (NUM_USB_CHAN_IN > 0)

c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /* Audio

↪→ In */

#endif

#if (NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP)

c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /* Audio

↪→ FB */

#endif

#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI

↪→ Out */ // 2

c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI

↪→ In */ // 4

c_midi ,

#endif

#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

/* Audio Interrupt - only used for interrupts on

↪→ external clock change */

c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],

c_clk_int ,

#endif

c_sof , c_aud_ctl , p_for_mclk_count

#if (XUA_HID_ENABLED)

, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif

, c_mix_out

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change

#if (! XUA_USE_SW_PLL)

, i_pll_ref

#else

, c_sw_pll

#endif

#endif

);

A channel connects this buffering task to the audio driver which controls the I2S output.
It also forwards and receives audio samples from other interfaces e.g. S/PDIF, ADAT, as
required:

38

USB Audio User Guide

usb_audio_io(c_mix_out

#if (XUA_SPDIF_TX_EN) && (SPDIF_TX_TILE != AUDIO_IO_TILE)

, c_spdif_tx

#endif

#if (MIXER)

, c_mix_ctl

#endif

, c_spdif_rx , c_adat_rx , c_clk_ctl , c_clk_int

#if (XUD_TILE != 0) && (AUDIO_IO_TILE == 0) && (XUA_DFU_EN == 1)

, dfuInterface

#endif

#if (XUA_NUM_PDM_MICS > 0)

#endif

#if (XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN)

, i_pll_ref

#endif

#if (XUA_SYNCMODE == XUA_SYNCMODE_SYNC)

, c_audio_rate_change

#endif

#if ((XUA_SPDIF_RX_EN || XUA_ADAT_RX_EN) && XUA_USE_SW_PLL)

, p_for_mclk_count_audio

, c_sw_pll

#endif

);

}

Finally, other task are create for various interfaces, for example, if MIDI is enabled a core
is required to drive the MIDI input and output.

on tile[MIDI_TILE]:

{

thread_speed ();

usb_midi(p_midi_rx , p_midi_tx , clk_midi , c_midi , 0);

}

5.6 Adding Custom Code

The flexibility of the XMOS USB Audio Reference Design software is such that you can
modify the reference applications to change the feature set or add extra functionality. Any
part of the software can be altered since full source code is supplied.

The reference designs have been verified against a variety of host OS types at different
samples rates. However, modifications to the code may invalidate the results of this
verification and you are strongly encouraged to fully re-test the resulting software.

Developers are encouraged to use a version control system, i.e. GIT, to track changes to
the codebase, however, this is beyond the scope of this document.

The general steps to producing a custom codebase are as follows:

39

USB Audio User Guide

1. Make a copy of the application directory (e.g. app_usb_aud_xk_316_mc or
app_usb_aud_xk_216_mc) you wish to base your code on, to a separate directory with
a different name.

2. Make a copy of any dependencies you wish to alter (most of the time you probably do
not want to do this). Update the Makefile of your new application to use these new
custom modules.

3. Make appropriate changes to the code, rebuild and re-flash the device for testing.

Once you have made a copy, you need to:

1. Provide a .xn file for your board (updating the TARGET variable in the Makefile appro-
priately).

2. Update xua_conf.h with the specific defines you wish to set.

3. Add any custom code in other files you need.

4. Update main.xc to add any custom tasks

Whilst a developer may directly change the code in main.xc to add custom tasks this
may not always be desirable. Doing this may make taking updates from XMOS non-trivial
(the same can be said for any custom modifications to any core libraries). Since adding
tasks is considered a reasonably common customisation defines USER_MAIN_CORES and
USER_MAIN_DECLARATIONS are made available.

An example usage is shown in app_usb_aud_xk_316_mc/src/extensions/user_main.h
In reality the developer must weigh up the pain of using these defines versus the pain of
merging updates from XMOS.

The following sections show some example changes with a high level overview of how to
change the code.

5.6.1 Example: Changing Output Format

Youmaywish to customize the digital output format e.g. for a CODEC that expects sample
data right-justified with respect to the word clock.

To do this you need to alter the main audio driver loop in xua_audiohub.xc. After the
alteration you need to re-test the functionality.

Hint, a naive approach would simply include right-shifting the audio data by 7 bits before it
is output to the port. This would of course lose LSB data depending on the sample-depth.

5.6.2 Example: Adding DSP to the Output Stream

To add some DSP requires an extra core of computation. Depending on the xCORE device
being used you may have to disable some existing functionality to free up a core (e.g.
disable S/PDIF). There are many ways that DSP processing can be added, the steps below
outline one approach:

40

USB Audio User Guide

1. Remove some functionality using the defines in XM-005512-PC to free up a core as
required.

2. Add another core to do the DSP. This core will probably have a single XC channel. This
channel can be used to send and receive audio samples from the XUA_AudioHub()
task. A benefit of modifying samples here is that samples from all inputs are collected
into one place at this point. Optionally, a second channel could be used to accept
control messages that affect the DSP. This could be from Endpoint 0 or some other
task with user input - a core handling button presses, for example.

3. Implement the DSP on this core. This needs to be synchronous (i.e. for every sample
received from the XUA_AudioHub(), a sample needs to be outputted back).

41

http://www.xmos.com/doc/XM-005512-PC/latest/page3#sec-custom-defines-api

6 USB Audio Applications

IN THIS CHAPTER

· The xcore.ai Multi-Channel Audio Board

· The xcore-200 Multi-Channel Audio Board

The reference applications supplied in sw_usb_audio use the framework provided in
lib_xua and provide qualified configurations of the framework which support, and are
validated, on an accompanying reference hardware platform.

These reference design applications customise and extended this framework to provide
the required functionality. This document will now go on to detail how each of the provided
applications customise and extend the framework

The applications contained in this repo use lib_xua in a “code-less” manner. That it, they
use the main() function from lib_xua and customise the code-base as required using
build time defines and by providing implementations to the various required functions in
order to support their hardware.

Please see lib_xua documentation for full details.

6.1 The xcore.ai Multi-Channel Audio Board

An application of the USB audio framework is provided specifically for the hardware
described in §2.1 and is implemented on an xcore.ai-series dual tile device. The related
code can be found in app_usb_aud_xk_316_mc.

The design supports upto 8 channels of analogue audio input/output at sample-rates up
to 192kHz (assuming the use of I2S). This can be further increased by utilising TDM. It
also supports S/PDIF, ADAT and MIDI input and output aswell as the mixing functionalty
of lib_xua.

The design uses the following tasks:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint Buffer

· Decoupler

· AudioHub Driver

· Mixer

· S/PDIF Transmitter

42

USB Audio User Guide

· S/PDIF Receiver

· ADAT Receiver

· Clockgen

· MIDI

The software layout of the USB Audio 2.0 Reference Design running on the xcore.ai device
is shown in Figure 9.

Each circle depicts a task running in a single core concurrently with the other tasks. The
lines show the communication between each task.

XUD

EP0

Buff Dec

I2S

USB

S/PDIF

Rx

ADAT

Rx

CS2100

SI5351
Ref Clk

S/PDIF

Tx

ADAT

Tx

Coax

Opt

ADC/DAC

Mixer
Mixer

Coax

Opt

MIDI MIDI

I2CPll Ref

BACombined: Data Path:

Control path:

Shared Path:

Button[0:2]

3v3 PLL
Sel MClk

3v3 en

clock gen

Figure 9:
xcore.ai

Multichannel
Audio

System/Core
Diagram

6.1.1 Clocking and Clock Selection

As well as the secondary (application) PLL of the xcore.ai device the board includes two
options for master clock generation:

· A Cirrus Logic CS2100 fractional-N clock multiplier allowing the master clock to be
generated from a xCORE derived reference.

· A Skyworks Si5351A-B-GT CMOS clock generator.

The master clock source is chosen by driving two control signals as shown below:

43

USB Audio User Guide

Control Signal Master Clock Source
EXT_PLL_SEL MCLK_DIR

0 0 Cirrus CS2100
1 0 Skyworks SI5351A-B-GT
X 1 xcore.ai secondary (application) PLL

Each of the sources have potential benefits, some of which are discussed below:

· The Cirrus CS2100 simplifies generating a master clock locked to an external clock
(such as S/PDIF in or word clock in).
· It multiplies up the PLL_SYNC signal which is generated by the xcore.ai device based

on the desired external source (so S/PDIF in frame signal or word clock in).

· The Si5351A-B-GT offers very low jitter performance at a relatively lower cost than the
CS2100. Locking to an external source is more difficult.

· The xcore.ai application PLL is obviously the lowest cost and significantly lowest power
solution, however its jitter performance can not match the Si5351A which may be
important in demanding applications. Locking to an external clock is possible but
involves more complicated firmware and more MIPS.

The master clock source is controlled by a mux which, in turn, is controlled by bit 5 of
PORT 8C:

Value Source

0 Master clock is sourced from PhaseLink PLL
1 Master clock is source from Cirrus Clock Multiplier

Figure 10:
Master Clock

Source
Selection

The clock-select from the phaselink part is controlled via bit 7 of PORT 8C:

Value Frequency

0 24.576MHz
1 22.579MHz

Figure 11:
Master Clock

Frequency
Select

6.1.2 DAC and ADC Configuration

The board is equipped with a single multi-channel audio DAC (Cirrus Logic CS4384) and a
single multi-channel ADC (Cirrus Logic CS5368) giving 8 channels of analogue output
and 8 channels of analogue input.

Configuration of both the DAC and ADC takes place using I2C. The design uses the I2C
lib lib_i2c17.

17http://www.github.com/xmos/lib_i2c

44

http://www.github.com/xmos/lib_i2c

USB Audio User Guide

The reset lines of the DAC and ADC are connected to bits 1 and 6 of PORT 8C respectively.

6.1.3 AudioHwInit()

The AudioHwInit() function is implemented to perform the following:

· Initialise the I2C master software module

· Puts the audio hardware into reset

· Enables the power to the audio hardware

· Select the PhaseLink PLL as the audio master clock source.

6.1.4 AudioHwConfig()

The AudioHwConfig() function is called on every sample frequency change.

The AudioHwConfig() function first puts the both the DAC and ADC into reset by setting
P8C[1] and P8C[6] low. It then selects the required master clock and keeps both the DAC
and ADC in reset for a period in order allow the clocks to stabilize.

The DAC and ADC are brought out of reset by setting P8C[1] and P8C[6] back high.

Various registers are then written to the ADC and DAC as required.

6.1.5 Validated Build Options

The reference design can be built in several ways by changing the build options. These
are described in §7.1.

The design has only been fully validated against the build options as set in the application
as distributed in the Makefile. See §5.2 for details and general information on build
configuration naming scheme.

These fully validated build configurations are enumerated in the supplied Makefile

The build configuration naming scheme employed in the makefile is shown in Figure 12.

e.g. A build configuration named 2AMi10o10xsxxxx would signify: Audio class 2.0 running
in asynchronous mode. xCORE is I2S master. Input and output enabled (10 channels
each), no MIDI, S/PDIF input, no S/PDIF output, no ADAT or DSD.

In addition to this some terms may be appended onto a build configuration name to
signify additional options. For example, tdm may be appended to the build configuration
name to indicate the I2S mode employed.

6.2 The xcore-200 Multi-Channel Audio Board

An application of the USB audio framework is provided specifically for the hardware
described in §2.2 and is implemented on an xcore-200-series dual tile device. The related
code can be found in app_usb_aud_xk_216_mc.

45

USB Audio User Guide

Feature Option 1 Option 2

Audio Class 1 2
USB Sync Mode async: A sync: S
I2S Role slave: S master: M
Input enabled: i (channel count) disabled: x
Output enabled: i (channel count) disabled: x
MIDI enabled: m disabled: x
S/PDIF input enabled: s disabled: x
S/PDIF input enabled: s disabled: x
ADAT input enabled: a disabled: x
ADAT output enabled: a disabled: x
DSD output enabled: d disabled: x

Figure 12:
Build config

naming
scheme

The design supports upto 8 channels of analogue audio input/output at sample-rates up
to 192kHz (assuming the use of I2S). This can be further increased by utilising TDM. It
also supports S/PDIF, ADAT and MIDI input and output aswell as the mixing functionalty
of lib_xua.

The design uses the following tasks:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint Buffer

· Decoupler

· AudioHub Driver

· Mixer

· S/PDIF Transmitter

· S/PDIF Receiver

· ADAT Receiver

· Clockgen

· MIDI

The software layout of the USB Audio 2.0 Reference Design running on the xCORE.ai
device is shown in Figure 13.

Each circle depicts a task running in a single core concurrently with the other tasks. The
lines show the communication between each task.

46

USB Audio User Guide

tile[0]

tile[1]

Figure 13:
xcore-200

Multichannel
Audio

System/Core
Diagram

6.2.1 Clocking and Clock Selection

The board includes two options for master clock generation:

· A single oscillator with a Phaselink PLL to generate fixed 24.576MHz and 22.5792MHz
master-clocks

· A Cirrus Logic CS2100 clock multiplier allowing the master clock to be generated from
a XCore derived reference.

The master clock source is controlled by a mux which, in turn, is controlled by bit 5 of
PORT 8C:

The clock-select from the phaselink part is controlled via bit 7 of PORT 8C:

47

USB Audio User Guide

Value Source

0 Master clock is sourced from PhaseLink PLL
1 Master clock is source from Cirrus Clock Multiplier

Figure 14:
Master Clock

Source
Selection

Value Frequency

0 24.576MHz
1 22.579MHz

Figure 15:
Master Clock

Frequency
Select

6.2.2 DAC and ADC Configuration

The board is equipped with a single multi-channel audio DAC (Cirrus Logic CS4384) and a
single multi-channel ADC (Cirrus Logic CS5368) giving 8 channels of analogue output
and 8 channels of analogue input.

Configuration of both the DAC and ADC takes place using I2C. The design uses lib_i2c18.

The reset lines of the DAC and ADC are connected to bits 1 and 6 of PORT 8C respectively.

6.2.3 AudioHwInit()

The AudioHwInit() function is implemented to perform the following:

· Initialise the I2C master software module

· Puts the audio hardware into reset

· Enables the power to the audio hardware

· Select the PhaseLink PLL as the audio master clock source.

6.2.4 AudioHwConfig()

The AudioHwConfig() function is called on every sample frequency change.

The AudioHwConfig() function first puts the both the DAC and ADC into reset by setting
P8C[1] and P8C[6] low. It then selects the required master clock and keeps both the DAC
and ADC in reset for a period in order allow the clocks to stabilize.

The DAC and ADC are brought out of reset by setting P8C[1] and P8C[6] back high.

Various registers are then written to the ADC and DAC as required.

18http://www.github.com/xmos/lib_i2c

48

http://www.github.com/xmos/lib_i2c

USB Audio User Guide

6.2.5 Validated Build Options

The reference design can be built in several ways by changing the build options. These
are described in §7.1.

The design has only been fully validated against the build options as set in the application
as distributed in the Makefile. See §5.2 for details and general information on build
configuation naming scheme.

These fully validated build configurations are enumerated in the supplied Makefile.

In practise, due to the similarities between the xcore-200 and xCORE.ai series feature set,
it is fully expected that all listed xcore-200 series configurations will operate as expected
on the xCORE.ai series and vice versa.

The build configuration naming scheme employed in the makefile is shown in Figure 16.

Feature Option 1 Option 2

Audio Class 1 2
USB Sync Mode async: A sync: S
I2S Role slave: S master: M
Input enabled: i (channel count) disabled: x
Output enabled: i (channel count) disabled: x
MIDI enabled: m disabled: x
S/PDIF input enabled: s disabled: x
S/PDIF input enabled: s disabled: x
ADAT input enabled: a disabled: x
ADAT output enabled: a disabled: x
DSD output enabled: d disabled: x

Figure 16:
Build config

naming
scheme

e.g. A build configuration named 2AMi10o10xsxxxx would signify: Audio class 2.0 running
in asynchronous mode. xCORE is I2S master. Input and output enabled (10 channels
each), no MIDI, S/PDIF input, no S/PDIF output, no ADAT or DSD.

In addition to this some terms may be appended onto a build configuration name to
signify additional options. For example, tdm may be appended to the build configuration
name to indicate the I2S mode employed.

49

7 API

IN THIS CHAPTER

· Configuration Defines

· Required User Function Definitions

7.1 Configuration Defines

An application using the USB audio framework provided by lib_xua needs to have defines set for configu-
ration. Defaults for these defines are found in lib_xua in xua_conf_default.h.

An application should override these defines in an optional xua_conf.h file or in the Makefile for a relevant
build configuration.

This section documents commonly used defines, for full listings and documentation see the lib_xua.

7.1.1 Code location (tile)

Macro AUDIO_IO_TILE
Description Location (tile) of audio I/O.

Default: 0

Macro XUD_TILE
Description Location (tile) of audio I/O.

Default: 0

Macro MIDI_TILE
Description Location (tile) of MIDI I/O.

Default: AUDIO_IO_TILE

Macro PLL_REF_TILE
Description Location (tile) of reference signal to CS2100.

Default: AUDIO_IO_TILE

50

USB Audio User Guide

Macro SPDIF_TX_TILE
Description Location (tile) of SPDIF Tx.

Default: AUDIO_IO_TILE

7.1.2 Channel Counts

Macro NUM_USB_CHAN_OUT
Description Number of output channels (host to device).

Default: NONE (Must be defined by app)

Macro NUM_USB_CHAN_IN
Description Number of input channels (device to host).

Default: NONE (Must be defined by app)

Macro I2S_CHANS_DAC
Description Number of I2S channesl to DAC/CODEC.

Must be a multiple of 2.
Default: NONE (Must be defined by app)

Macro I2S_CHANS_ADC
Description Number of I2S channels from ADC/CODEC.

Must be a multiple of 2.
Default: NONE (Must be defined by app)

Macro DSD_CHANS_DAC
Description Number of DSD output channels.

Default: 0 (disabled)

7.1.3 Frequencies and Clocks

51

USB Audio User Guide

Macro MAX_FREQ
Description Max supported sample frequency for device (Hz).

Default: 192000Hz

Macro MIN_FREQ
Description Min supported sample frequency for device (Hz).

Default: 44100Hz

Macro MCLK_441
Description Master clock defines for 44100 rates (in Hz).

Default: NONE (Must be defined by app)

Macro MCLK_48
Description Master clock defines for 48000 rates (in Hz).

Default: NONE (Must be defined by app)

7.1.4 Audio Class

Macro AUDIO_CLASS
Description USB Audio Class Version.

Default: 2 (Audio Class version 2.0)

7.1.5 System Feature Configuration

7.1.5.1 MIDI

Macro MIDI
Description Enable MIDI functionality including buffering, descriptors etc.

Default: DISABLED

52

USB Audio User Guide

Macro MIDI_RX_PORT_WIDTH
Description MIDI Rx port width (1 or 4bit).

Default: 1

7.1.5.2 S/PDIF

Macro XUA_SPDIF_TX_EN
Description Enables SPDIF Tx.

Default: 0 (Disabled)

Macro SPDIF_TX_INDEX
Description Defines which output channels (stereo) should be output on S/PDIF.

Note, Output channels indexed from 0.
Default: 0 (i.e. channels 0 & 1)

Macro XUA_SPDIF_RX_EN
Description Enables SPDIF Rx.

Default: 0 (Disabled)

Macro SPDIF_RX_INDEX
Description S/PDIF Rx first channel index, defines which channels S/PDIF will be input on.

Note, indexed from 0.
Default: NONE (Must be defined by app when SPDIF_RX enabled)

7.1.5.3 ADAT

Macro XUA_ADAT_RX_EN
Description Enables ADAT Rx.

Default: 0 (Disabled)

53

USB Audio User Guide

Macro ADAT_RX_INDEX
Description ADAT Rx first channel index.

defines which channels ADAT will be input on. Note, indexed from 0.
Default: NONE (Must be defined by app when XUA_ADAT_RX_EN is true)

7.1.5.4 PDM Microphones

Macro XUA_NUM_PDM_MICS
Description Number of PDM microphones in the design.

Default: 0

7.1.5.5 DFU

Macro XUA_DFU_EN
Description Enable DFU functionality.

A driver required for Windows operation.
Default: 1 (Enabled)

7.1.5.6 HID

Macro HID_CONTROLS
Description Enable HID playback controls functionality.

1 for enabled, 0 for disabled.
Default 0 (Disabled)

7.1.5.7 CODEC Interface

Macro CODEC_MASTER
Description Defines whether XMOS device runs as master (i.e.

drives LR and Bit clocks)
0: XMOS is I2S master. 1: CODEC is I2s master.
Default: 0 (XMOS is master)

7.1.6 USB Device Configuration

54

USB Audio User Guide

Macro VENDOR_STR
Description Vendor String used by the device.

This is also pre-pended to various strings used by the design.
Default: “XMOS”

Macro VENDOR_ID
Description USB Vendor ID (or VID) as assigned by the USB-IF.

Default: 0x20B1 (XMOS)

Macro PRODUCT_STR
Description USB Product String for the device.

If defined will be used for both PRODUCT_STR_A2 and PRODUCT_STR_A1
Default: Undefined

Macro PRODUCT_STR_A2
Description Product string for Audio Class 2.0 mode.

Default: “XMOS xCORE (UAC2.0)”

Macro PRODUCT_STR_A1
Description Product string for Audio Class 1.0 mode.

Default: “XMOS xCORE (UAC1.0)”

Macro PID_AUDIO_1
Description USB Product ID (PID) for Audio Class 1.0 mode.

Only required if AUDIO_CLASS == 1 or AUDIO_CLASS_FALLBACK is enabled.
Default: 0x0003

Macro PID_AUDIO_2
Description USB Product ID (PID) for Audio Class 2.0 mode.

Default: 0x0002

55

USB Audio User Guide

Macro BCD_DEVICE
Description Device firmware version number in Binary Coded Decimal format: 0xJJMN where JJ:

major, M: minor, N: sub-minor version number.
NOTE: User code should not modify this but should modify BCD_DEVICE_J,
BCD_DEVICE_M, BCD_DEVICE_N instead
Default: XMOS USB Audio Release version (e.g. 0x0651 for 6.5.1).

7.1.7 Volume Control

Macro OUTPUT_VOLUME_CONTROL
Description Enable/disable output volume control including all processing and descriptor support.

Default: 1 (Enabled)

Macro INPUT_VOLUME_CONTROL
Description Enable/disable input volume control including all processing and descriptor support.

Default: 1 (Enabled)

7.1.8 Mixing Parameters

Macro MIXER
Description Enable “mixer” core.

Default: 0 (Disabled)

Macro MAX_MIX_COUNT
Description Number of seperate mixes to perform.

Default: 8 if MIXER enabled, else 0

Macro MIX_INPUTS
Description Number of channels input into the mixer.

Note, total number of mixer nodes is MIX_INPUTS * MAX_MIX_COUNT
Default: 18

7.1.9 Power

56

USB Audio User Guide

Macro XUA_POWERMODE
Description Report as self or bus powered device.

This affects descriptors and XUD usage and is important for USB compliance
Default: XUA_POWERMODE_BUS

7.2 Required User Function Definitions

The following functions need to be defined by an application using the XMOS USB Audio framework.

7.2.1 External Audio Hardware Configuration Functions

Function AudioHwInit
Description This function is called when the audio core starts after the device boots up and should

initialize the external audio harware e.g. clocking, DAC, ADC etc

Type void AudioHwInit(chanend ?c_codec)

Parameters c_codec An optional chanend that was original passed into audio() that can
be used to communicate with other cores.

Function AudioHwConfig
Description This function is called when the audio core starts or changes sample rate. It should

configure the extenal audio hardware to run at the specified sample rate given the
supplied master clock frequency.

Type void AudioHwConfig(unsigned samFreq,
unsigned mclk,
chanend ?c_codec,
unsigned dsdMode,
unsigned sampRes_DAC,
unsigned sampRes_ADC)

Continued on next page

57

USB Audio User Guide

Parameters samFreq The sample frequency in Hz that the hardware should be configured
to (in Hz).

mclk The master clock frequency that is required in Hz.

c_codec An optional chanend that was original passed into audio() that can
be used to communicate with other cores.

dsdMode Signifies if the audio hardware should be configured for DSD operation

sampRes_DAC The sample resolution of the DAC stream

sampRes_ADC The sample resolution of the ADC stream

7.2.2 Audio Streaming Functions

The following functions can be optionally used by the design. They can be useful for mute lines etc.

Function AudioStreamStart
Description This function is called when the audio stream from device to host starts.

Type void AudioStreamStart(void)

Function AudioStreamStop
Description This function is called when the audio stream from device to host stops.

Type void AudioStreamStop(void)

7.2.3 Host Active

The following function can be used to signal that the device is connected to a valid host.

This is called on a change in state.

Function AudioStreamStart
Description
Type void AudioStreamStart(int active)

Continued on next page

58

USB Audio User Guide

Parameters active Indicates if the host is active or not. 1 for active else 0.

7.2.4 HID Controls

The following function is called when the device wishes to read physical user input (buttons etc).

Function UserReadHIDButtons
Description
Type void

UserReadHIDButtons(unsigned char hidData[])

Parameters hidData The function should write relevant HID bits into this array. The bit
ordering and functionality is defined by the HID report descriptor used.

59

8 Frequently Asked Questions

Why does the USBView tool from Microsoft show errors in the devices descriptors?

The USBView tool supports USB Audio Class 1.0 only

How do I set the maximum sample rate of the device?

See MAX_FREQ define in usb_audio_sec_custom_defines_api

What is the maximum channel count the device can support?

The maximum channel count of a device is a function of sample-rate and sample-depth.
A standard high-speed USB Isochronous endpoint can handle a 1024 byte packet every
microframe (125uS).

It follows then that at 192kHz the device/hosts expects 24 samples per frame
(192000/8000). When using Asynchronous mode we must allow for +/- one sample, so
25 samples per microframe in this case.

Assuming 4 byte (32 bit) sample size, the bus expects ((192000/8000)+1) * 4 = 100 bytes
per channel per microframe. Dividing the maximum packet size by this value yields the
theoretical maximum channel count at the given frequency, that is 1024/100 = 10.24.
Clearly this must be rounded down to 10 whole channels.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it
to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.
60

	Overview
	Hardware Platforms
	xcore.ai Multi-Channel Audio Board
	Hardware Features
	Analogue Input & Output
	Digital Input & Output
	MIDI
	Audio Clocking
	Control I/O
	LEDs, Buttons and Other IO
	Power
	Debug

	xCORE-200 Multi-Channel Audio Board
	Analogue Input & Output
	Digital Input & Output
	MIDI
	Audio Clocking
	LEDs, Buttons and Other IO

	xCORE.ai Evaluation Kit
	Analogue Audio Input & Output
	Audio Clocking
	LEDs, Buttons and Other IO
	Power
	Debug

	Driver Support
	OS Support for UAC 1.0
	OS Support for UAC 2.0
	Thirds Party Windows Drivers

	Quick Start
	USB Audio 2.0 Reference Software
	USB Audio Class 2.0 Evaluation Driver for Windows
	XMOS XTC Development Tools
	Building the Firmware
	Running the Firmware
	Writing the Application Binary to Flash
	Playing Audio
	Next Steps

	Programming Guide
	Project Structure
	Build System
	Applications and Libraries

	Build Configurations
	Configuration Naming
	Quality & Testing
	A Typical USB Audio Application
	Lib_xua Configuration
	User Functions
	The Main Program

	Adding Custom Code
	Example: Changing Output Format
	Example: Adding DSP to the Output Stream

	USB Audio Applications
	The xcore.ai Multi-Channel Audio Board
	Clocking and Clock Selection
	DAC and ADC Configuration
	AudioHwInit()
	AudioHwConfig()
	Validated Build Options

	The xcore-200 Multi-Channel Audio Board
	Clocking and Clock Selection
	DAC and ADC Configuration
	AudioHwInit()
	AudioHwConfig()
	Validated Build Options

	API
	Configuration Defines
	Code location (tile)
	Channel Counts
	Frequencies and Clocks
	Audio Class
	System Feature Configuration
	USB Device Configuration
	Volume Control
	Mixing Parameters
	Power

	Required User Function Definitions
	External Audio Hardware Configuration Functions
	Audio Streaming Functions
	Host Active
	HID Controls

	Frequently Asked Questions

